Matematica - Integrale-1
-
Upload
andreinicusor1958-1 -
Category
Documents
-
view
73 -
download
4
Embed Size (px)
description
Transcript of Matematica - Integrale-1
j
CAPITOLUL I
I N T E G R A L E (recapitulare liceu)TABEL DERIVATEFuncii elementareFuncii compuse
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16) F. F. important
Reguli de derivare1) 4)
2) 5)
3)
TABEL INTEGRALE
1)
12)
2)
13)
3)
14)
4)
15)
5)
16)
6)
17)
7)
18)
8)
19)
9)
20)
10)
21)
11)
5)
R i
a)
b)
c)
Proprieti
1)
2) .
1.1. Primitive (integrale)n clasa a XI-a se ddea i se cerea unde:
Deci, tim funcia i se cere s aflm tangentele la grafic n fiecare punct (domeniul funciei).
n clasa a XII-a tim i se cere s aflm .
Fig. 1
Altfel spus cunosc tangentele la grafic n fiecare punct al graficului i se cere s se afle funcia care are aceast proprietate. (Problema invers a tangentelor sau se mai numete i determinarea primitivelor).Definiie: Fie R. Se numete primitiv a funciei f, o funcie F cu proprietile:
a) F este derivabil
b) F(x)=f(x)Dac F(x)=f(x), atunci condiia este echivalent cu .Notaie: Primitiva care se mai numete i integral.
Observaii:
1) indic n raport cu care variabil are loc integrarea;
2) reprezint difereniala argumentului x.
Definiie: Difereniala unei funcii este: , unde (este o diferen).
Proprietile diferenialei
1) Dac
2) Dac
3) Dac
Proprietile primitivelor
a) Dac i sunt dou primitive ale aceleiai funcii f, atunci ele difer printr-o constant
b)
c)
Aplicaie: Folosind proprietile i tabelul de integrale s se calculeze:
Soluie:
EMBED Equation.3
EMBED Equation.3
EMBED Equation.3 Deci:
Verificare c:
Dar
EMBED Equation.3
Tema 1.1 Folosind tabelul de integrale i proprietile primitivelor s se calculeze urmtoarele integrale:
1) 2)
3) 4)
5) 6)
7) 8)
9) 10)
11) 12)
13) ; 14)
15) 16)
17) 18)
19) 20)
21) 22)
23) 24)
1.2. Metoda schimbrii de variabil
A (Varianta clasic= Metoda a I-a din carte)
Fie: , dac fac schimbarea de variabil: , atunci ,
iar prin nlocuire:
formula schimbrii de variabil
Aplicaia 1: S se calculeze:
Soluie:
Fcnd schimbarea de variabil
atunci:
EMBED Equation.3 Din substituie: deci:
Observaie: Proprietile funciilor inverse trigonometrice:
Dac avem de calculat: atunci:
cu , devine:
Aplicaia 2. S se calculeze:
Soluie: Dac facem substituia , atunci , iar
Din substituia:
, iar
Tema 1.2.1.1) 2)
3) 4)
5) 6)
7) 8)
9) 10)
11) 12)
13) 14)
15)
Observaie: Schimbrile de variabil indicate trebuie s fie gsite de rezolvitor!!
Metoda schimbrii de variabilB (Varianta a II-a vezi metoda a II-a din carte)
Depistarea (gsirea) schimbrii de variabil se face cu ajutorul urmtoarei proprieti:
Proprietatea (*). Dac o parte are calitatea c face parte din funcia mpreun cu derivata ei , atunci:
n loc de demonstraie!!
Dac are proprietatea (*), atunci (vezi prima metod de schimbare de variabil) i atunci:
Observaie (F. F. important)
1)Dac are proprietatea (*), atunci nu este indicat s inversm substituia, ci s o difereniem direct . Cum funcia are proprietatea (*), atunci se nlocuiete direct.
ATENIE!!! Prin inversare se pierde timp!!
2) Proprietatea (*) ne nva!! ce substituie trebuie fcut pentru fiecare integral. Acest lucru se va deprinde din exemplele prezentate mai jos.
Aplicaia 1: S se calculeze:
Rezolvare. ntrebm ce funcie are derivata
Rspuns: care face parte din funcia f(x) Deci are calitatea c face parte din integrant mpreun cu derivata ei. Atunci:
(care se gsete n integral).
iar
Cum nu este indicat! Dac ghicesc substituia , atunci inversm relaia, iar:
EMBED Equation.3
Aplicaia 2: S se calculeze:
Rezolvare:
ntrebm ce funcie are derivata
Rspuns:
care are calitatea c face parte din funcia de sub integral. Atunci se face substituia
(care se gsete n componena integralei).
Atunci:
Cum nu este indicat!! Dac ghicesc substituia
,atunci inversez relaia
EMBED Equation.3
(vezi prima schimbare de variabil ). Atunci:
sau:
Calculez separat expresia:
EMBED Equation.3 .Atunci:
EMBED Equation.3 Deci, incomparabil prin inversarea substituiei se pierde timp!
Tema 1.2.2. S se calculeze urmtoarele integrale:1) 2)
3) 4)
5) 6)
7) 8)
9) 10)
11) 12)
13)
EMBED Equation.3 14)
15) 16)
17) 18) 19)
20) 21)
22) 23)
24) 25)
a) b) c) d) e)
1.3. Integrarea prin priFormula integrrii prin pri:
Dar: (integrala derivatei face funcia)
S-a obinut:
formula integralei prin pri.
Aplicaii: S se calculeze integralele urmtoare folosind metoda integrrii prin pri.
1)
Se alege:
Atunci:
2)
Se alege:
Notm:
Rezult:
. Atunci:
3)
EMBED Equation.3 .
sau:
(a)
Calculm prin pri:
sau:
(b)
nlocuind pe (b) n (a) se obine:
,
sau:
A)Calculul urmtoarelor integrale:
a) b) c)
a)
,
Atunci:
EMBED Equation.3 .
sau:
EMBED Equation.3 .
Deci:
care se gsete n tabelul de integrale.
Analog pentru b) i c).
b)
c)
Observaie. Integralele a), b), c) sunt ntlnite frecvent, motiv pentru care sunt trecute n tabelul de integrale. Important este ideea de a le calcula (artificiul), dar n probleme se utilizeaz direct din tabel.
B) Obinerea relaiilor de recuren pentru:
Obinerea unei relaii de recuren este indicat atunci cnd avem de calculat o integral care se preteaz de a fi determinat prin recuren.
Aplicaie. S se calculeze
Soluie. Deoarece I se calculeaz aplicnd metoda integrrii prin pri de patru ori, atunci considerm integrala general
care se calculeaz prin pri
,
Atunci:
EMBED Equation.3
care reprezint relaia de recuren.
Dar
;
Dar
Atunci:
Deci:
Tema 1.3.1
S se calculeze integralele urmtoare folosind relaiile de recuren:
1) 2)
3) 4)
5)
C) Metoda identificrii-derivrii pentru sau
Soluie:
Se identific:
Derivnd relaia se obine:
sau:
Prin identificare rezult:
.
Aplicaie. S se calculeze folosind metoda identificrii-derivrii.
Soluie.
.
Prin derivare rezult:
.
Sau:
EMBED Equation.3 Prin identificare se obine:
Atunci:
acelai rezultat ca atunci cnd folosim metoda recurenei.
Tema 1.3.2
Folosind metoda identificrii-derivrii s se calculeze urmtoarele integrale:
1) 2) 3)
4)
Tema 1.3.3.
S se calculeze integralele urmtoare folosind metoda integrrii prin pri:
1) 2)
3) 4)
5) 6)
7)
EMBED Equation.3 8)
9) 10)
11) 12)
13) 14)
15) 16)
17) 18)
19) 20)
21)
1.4. Tipuri de integrale
Tip I .
Substituia:
i (A nu se ine minte!!)
Atunci:
EMBED Equation.3
, unde pentru:
facem substituia
iar se calculeaz direct folosind tabelul.Tip II.
Substituia conduce la:
unde pentru se face substituia: , iar se calculeaz direct folosind tabelul.
Tip III. Substituia i conduce la a), b), c) din tabelul de integrale.
Tip IV. Substituia i conduce la tipul II).Tema 1.4.1.1) 2)
3) 4)
5) 6)
7) 8)
9) 10)
EMBED Equation.3 11) 12)
13) 14)
15) 16)
17) 18)
19) 20)
Tip V. Fracii raionale
A. Integrarea fraciilor simple Principalele fracii simple sunt:Integrarea fraciilor simple
substituia:
substituia:
substituia:
substituia: (conduce la 5)
Se face prin recuren:
4)
i A nu se ine minte!!
Atunci:
=
unde pentru se face substituia: , iar pentru
se face prin recuren (5).5)
Pentru calculul lui se pleac de la: i se integreaz prin pri:
atunci:
S-a obinut:
sau:
(A nu se ine minte!!)Aplicaie
Se pleac de la care se integreaz prin pri.
Atunci:
sau:
sau:
EMBED Equation.3 sau:
Dar:
EMBED Equation.3 Tema 1.4.21) 2)
3) 4)
5) 6)
7)
B. Integrarea fraciilor generale:
BDac grad grad (teorema mpririi)
cu grad grad atunci:
B Dac grad grad, atunci se aplic teoremele: .
Dac , atunci:
Dac atunci:
Pentru fraciile i se aplic recursiv i .
Practic:
se descompune n factori ireductibili de gradul I i II; pentru orice factor de gradul I se aplic pn la epuizarea lor; pentru orice factor de gradul II se aplic pn la epuizarea lor;Aplicaie: S se descompun n fracii simple fracia:
Soluie.
Descompunem pe n factori ireductibili de gradul I i II.
Atunci avem descompunerea n fracii simple:
Tema 1.4.31) S se descompun n fracii simple:
C. Determinarea coeficienilor Pentru determinarea coeficienilor se pot folosi dou metode:- Metoda identificrii
- Metoda valorilor.
Tema 1.4.4.1) ; 2)
3) 4)
5)
Tip VI. Integrale iraionale de forma:
Observaie: .
1) Se consider fraciile:
2) Se determin numitorul lor comun notat cu q
3) Se face substituia:
4) Se calculeaz:
5) Rezult integrala raional.
Tema 1.4.5.1) 2)
3) 4)
5) 6)
7) 8)
EMBED Equation.3 9) 10)
Aplicaie: S se calculeze integrala
Soluie: La prima vedere aceast integral pare c nu este de acest tip.
Dar: , care este de tipul VI. Apar radicalii:
Avem fraciile Numitorul comun
Fac substituia
Dar:
VII. Integrale iraionale de forma:
Substituiile Euler
1) Dac , atunci
Prin ridicare la ptrat se obine:
i
Rezult integral raional:
2) Dac , atunci
Prin ridicare la ptrat rezult:
,
atunci:
i
Rezult integral raional.
3) Dac
Se face substituia
Prin ridicare la ptrat se obine:
Rezult integral raional.
Aplicaie: S se calculeze folosind substituiile lui Euler:
.
Soluie:
Cum facem substituia
Ridicm la ptrat i rezult:
nlocuind n substituie rezult:
.
Atunci:
Facem descompunerea n fracii simple:
Tema 1.4.6
1) - prin toate substituiile;
2) 3)
4) ; 5)
VIII. Integrale iraionale de forma:
, unde polinom de gradul n.
Metoda identificrii-derivrii.
Se identific integrala cu un polinom de grad n-1 de forma:
unde este un polinom de grad n-1 iar .
Derivnd relaia de mai sus se obine:
.
innd cont c:
se obine:
EMBED Equation.3 Rezult:
Prin identificare rezult i
Rmne de calculat doar:
care este de tipul II.
Aplicaie: S se calculeze: .
Soluie:
Dac aplicm metoda identificrii-derivrii rezult:
Prin derivare se obine:
sau:
EMBED Equation.3 Atunci:
Tema 1.4.6.1) 2) 3)
IX. Integrale iraionale de forma:
. Se face substituia
Conduce la tipul VIII
Aplicaie: S se calculeze
Soluie:Facem substituia iar,
Calculm:
EMBED Equation.3
EMBED Equation.3 . Prin nlocuire n integral rezult:
.
Prin derivare:
Fcnd identificarea rezult:
EMBED Equation.3 Atunci:
EMBED Equation.3 Tema 1.4.71) 2)
3) 4)
5) 6)
X. Integrale trigonometrice de forma:
Substituie standard:
EMBED Equation.3 .
Prin nlocuire rezult integrala raional:
Aplicaie: S se calculeze:
Soluie:Facem substituia
;
Atunci:
EMBED Equation.3
Tema 1.4.8.1) 2)
3) 4)
5) 6)
XI. Integrale trigonometrice de forma:
Se rezolv folosind formulele de transformare a produsului n sume:
a)
b)
c)
Aplicaie: S se calculeze:
Tema 1.4.9.1) 2)
3) 4)
5) 6)
7) 8)
9)
XII. Integrale trigonometrice - Substitutii speciale pentru:
1) Dac (impar n ),
atunci se face substituia
2) Dac (impar n ),
atunci se face substituia .
3) Dac (par),
atunci se face substituia
i de reinut formulele!!!:
Prin nlocuire n integral rezult integrala raional.
Aplicaie: S se calculeze
Soluie. Cum , stabilim care substituie este cea mai avantajoas?!!1)
EMBED Equation.3
2)
Facem substituia
Atunci:
3)
Facem substituia
atunci:
Abandon!!!!
Altfel:
EMBED Equation.3 Facem substituia
atunci:
Tem 1.4.10.1) 2)
3) 4)
5) 6)
7) 8)
9)
XIII. Integrala general
a)Dac (impar n cos x) , deci se face substituia
iar
EMBED Equation.3 Se dezvolt dup binomul lui Newton, apoi aplicm tabelul.b) Dac (par n cos x) ATENIE!! (Nu se face substituia )
Se folosesc formulele de trecere la unghi dublu:
Atunci:
Se dezvolt dup binomul lui Newton i se aplic recursiv (a) i (b).
Tema 1.4.11.1) 2)
3) 4)
5) 6)
7)
XIV. Integrala general de forma: .a) Dac (impar n sin x), deci se face substituia
iar
Se aplic binomul lui Newton, apoi se aplic tabelul.b) Dac (par) ATENIE!! (Nu se face substituia )
Se folosesc formulele de trecere la unghi dublu:
Atunci:
Se dezvolt dup binomul lui Newton i se aplic recursiv (a) i (b).
Tema 1.4.12.1) 2) 3)
4) 5) 6)
XV. Integrala general de forma:
Se face substituia special (3)
i rezult:
funcie raional.
Tema 1.4.13.1) 2) 3)
4) 5)
XVI.Integrala general de forma:
a) Dac i (impar n i n ).
Facem substituia sau
b) Dac i (impar n
iar
EMBED Equation.3
EMBED Equation.3
EMBED Equation.3 c)Dac i (impar n ) Substituia este
EMBED Equation.3
EMBED Equation.3
d)Dac i (pare).ATENIE !! (Nu se face substituia ) .Se folosesc formulele de trecere la unghi dublu:
,
atunci:
EMBED Equation.3
Se aplic binomul lui Newton i se aplic recursiv (a), (b), (c) si (d).
Tema 1.4.14.1) 2)
3) 4)
5)
XVII. Integrale generale de forma:
Substituia:
i
Atunci:
Se dezvolt dup binomul Newton, apoi se mparte n n integrale.
Aplicaie: S se calculeze:
Soluie:Facem substituia
EMBED Equation.3
EMBED Equation.3
EMBED Equation.3 Tema 1.4.15.1) 2) 3) 4) 5) 6) .
XVIII. Integrale generale de forma:
Observaie: ,
atunci facem substituia:
iar
Vezi tipul XVII.
Tema 1.4.16.1) 2) 3) 4) 5) 6)
XIX. Integrale generale de forma:
Se folosete metoda recurenei:
, ,
atunci:
EMBED Equation.3 Deci s-a obinut relaia de recuren:
(A nu se ine minte!)
Aplicaie: S se calculeze:
Soluie:
Pentru a evita integrarea prin pri de 4 ori, se pleac de la integrala general:
pentru care se obine o relaie de recuren.
,
atunci:
EMBED Equation.3 ,Unde:
EMBED Equation.3
EMBED Equation.3
Atunci:
Observaie: Astfel de integrale se pot face i prin metoda identificrii care a fost prezentat la metoda integrrii prin pri.
Tema 1.4.17.
1) 2)
XX. Integrale generale de forma:
Se folosete metoda recurenei pentru ambele integrale. Vom exemplifica doar pentru:
pentru care se obine relaia de recuren.
, ,
atunci:
se integreaz prin pri.
, ,
atunci:
atunci:
relaie de recuren. (A nu se ine minte!!)
Aplicaie: S se calculeze: i .
Plecnd de la integrala general
creia i determinm o relaie de recuren
atunci:
a)
se face prin pri:
,
b)
atunci:
i
Observaie: Analog se procedeaz i pentru .
Tema 1.4.181) 2)
3) 4)
XXI. Substituii trigonometrice pentru:a)
b)
c)
Prin aceste substituii integrala se transform ntr-o integral trigonometric.
Aplicaie: S se calculeze:
Soluie:
Facem substituia :
EMBED Equation.3
EMBED Equation.3
EMBED Equation.3 ,
impar n sin x, deci se face substituia
atunci:
integral raional.
Facem descompunerea n fracii simple:
(*)x
y
O
EMBED Equation.3
y=f(x)
(T)
PAGE 58
_1192430847.unknown
_1192455406.unknown
_1192708089.unknown
_1193073181.unknown
_1193074308.unknown
_1193076703.unknown
_1193125198.unknown
_1193245027.unknown
_1193245333.unknown
_1210340446.unknown
_1210340598.unknown
_1210341013.unknown
_1210341250.unknown
_1210341407.unknown
_1210342097.unknown
_1210342102.unknown
_1210341755.unknown
_1210341269.unknown
_1210341235.unknown
_1210340749.unknown
_1210340780.unknown
_1210340700.unknown
_1210340524.unknown
_1210340581.unknown
_1210340467.unknown
_1193245420.unknown
_1193245541.unknown
_1210340297.unknown
_1193245752.unknown
_1193245429.unknown
_1193245363.unknown
_1193245168.unknown
_1193245320.unknown
_1193245163.unknown
_1193130025.unknown
_1193131430.unknown
_1193133277.unknown
_1193133470.unknown
_1193133719.unknown
_1193133862.unknown
_1193134081.unknown
_1193133628.unknown
_1193133377.unknown
_1193133103.unknown
_1193133200.unknown
_1193132103.unknown
_1193130619.unknown
_1193130839.unknown
_1193130397.unknown
_1193127569.unknown
_1193128899.unknown
_1193129094.unknown
_1193128504.unknown
_1193126520.unknown
_1193126966.unknown
_1193126357.unknown
_1193077826.unknown
_1193078336.unknown
_1193078660.unknown
_1193078824.unknown
_1193121806.unknown
_1193121893.unknown
_1193125102.unknown
_1193121838.unknown
_1193078981.unknown
_1193079033.unknown
_1193079252.unknown
_1193079266.unknown
_1193079027.unknown
_1193078912.unknown
_1193078917.unknown
_1193078906.unknown
_1193078754.unknown
_1193078789.unknown
_1193078793.unknown
_1193078760.unknown
_1193078718.unknown
_1193078742.unknown
_1193078712.unknown
_1193078514.unknown
_1193078605.unknown
_1193078651.unknown
_1193078597.unknown
_1193078455.unknown
_1193078464.unknown
_1193078348.unknown
_1193078186.unknown
_1193078273.unknown
_1193078299.unknown
_1193078324.unknown
_1193078290.unknown
_1193078223.unknown
_1193078245.unknown
_1193078209.unknown
_1193077941.unknown
_1193078013.unknown
_1193078037.unknown
_1193078001.unknown
_1193077918.unknown
_1193077929.unknown
_1193077856.unknown
_1193077211.unknown
_1193077640.unknown
_1193077729.unknown
_1193077811.unknown
_1193077714.unknown
_1193077399.unknown
_1193077599.unknown
_1193077320.unknown
_1193077045.unknown
_1193077124.unknown
_1193077196.unknown
_1193077053.unknown
_1193076810.unknown
_1193076911.unknown
_1193076761.unknown
_1193075114.unknown
_1193075994.unknown
_1193076379.unknown
_1193076599.unknown
_1193076651.unknown
_1193076693.unknown
_1193076643.unknown
_1193076451.unknown
_1193076476.unknown
_1193076405.unknown
_1193076230.unknown
_1193076284.unknown
_1193076292.unknown
_1193076246.unknown
_1193076185.unknown
_1193076204.unknown
_1193076012.unknown
_1193075706.unknown
_1193075867.unknown
_1193075908.unknown
_1193075977.unknown
_1193075884.unknown
_1193075815.unknown
_1193075844.unknown
_1193075718.unknown
_1193075457.unknown
_1193075657.unknown
_1193075668.unknown
_1193075480.unknown
_1193075232.unknown
_1193075245.unknown
_1193075145.unknown
_1193074718.unknown
_1193074986.unknown
_1193075020.unknown
_1193075026.unknown
_1193074993.unknown
_1193074787.unknown
_1193074896.unknown
_1193074772.unknown
_1193074458.unknown
_1193074533.unknown
_1193074705.unknown
_1193074485.unknown
_1193074378.unknown
_1193074435.unknown
_1193074342.unknown
_1193073298.unknown
_1193073958.unknown
_1193074214.unknown
_1193074227.unknown
_1193074232.unknown
_1193074220.unknown
_1193074197.unknown
_1193074207.unknown
_1193073996.unknown
_1193074105.unknown
_1193073329.unknown
_1193073560.unknown
_1193073932.unknown
_1193073580.unknown
_1193073337.unknown
_1193073310.unknown
_1193073315.unknown
_1193073304.unknown
_1193073248.unknown
_1193073276.unknown
_1193073287.unknown
_1193073293.unknown
_1193073281.unknown
_1193073262.unknown
_1193073270.unknown
_1193073254.unknown
_1193073206.unknown
_1193073228.unknown
_1193073236.unknown
_1193073218.unknown
_1193073193.unknown
_1193073200.unknown
_1193073187.unknown
_1192886918.unknown
_1192956151.unknown
_1192958455.unknown
_1192964381.unknown
_1193073118.unknown
_1193073141.unknown
_1193073162.unknown
_1193073175.unknown
_1193073149.unknown
_1193073127.unknown
_1193073135.unknown
_1192964644.unknown
_1192964924.unknown
_1192967200.unknown
_1192967457.unknown
_1192967551.unknown
_1192967634.unknown
_1192967404.unknown
_1192965162.unknown
_1192965273.unknown
_1192965068.unknown
_1192964774.unknown
_1192964853.unknown
_1192964724.unknown
_1192964551.unknown
_1192964615.unknown
_1192964482.unknown
_1192962621.unknown
_1192963910.unknown
_1192964059.unknown
_1192964106.unknown
_1192963996.unknown
_1192962775.unknown
_1192963611.unknown
_1192962693.unknown
_1192962440.unknown
_1192962553.unknown
_1192962573.unknown
_1192962512.unknown
_1192962175.unknown
_1192962329.unknown
_1192958501.unknown
_1192957479.unknown
_1192958014.unknown
_1192958184.unknown
_1192958420.unknown
_1192958066.unknown
_1192957925.unknown
_1192957978.unknown
_1192957825.unknown
_1192956567.unknown
_1192956915.unknown
_1192956951.unknown
_1192956847.unknown
_1192956396.unknown
_1192956533.unknown
_1192956349.unknown
_1192888552.unknown
_1192953387.unknown
_1192955596.unknown
_1192956016.unknown
_1192956087.unknown
_1192955928.unknown
_1192954230.unknown
_1192954985.unknown
_1192953526.unknown
_1192888739.unknown
_1192888857.unknown
_1192890731.unknown
_1192888768.unknown
_1192888636.unknown
_1192888726.unknown
_1192888576.unknown
_1192887742.unknown
_1192888317.unknown
_1192888497.unknown
_1192888525.unknown
_1192888345.unknown
_1192888178.unknown
_1192888221.unknown
_1192888084.unknown
_1192887473.unknown
_1192887608.unknown
_1192887676.unknown
_1192887509.unknown
_1192887391.unknown
_1192887421.unknown
_1192887079.unknown
_1192710617.unknown
_1192882474.unknown
_1192886023.unknown
_1192886492.unknown
_1192886640.unknown
_1192886706.unknown
_1192886635.unknown
_1192886191.unknown
_1192886256.unknown
_1192886081.unknown
_1192883585.unknown
_1192883658.unknown
_1192885650.unknown
_1192883625.unknown
_1192882625.unknown
_1192882711.unknown
_1192882566.unknown
_1192881946.unknown
_1192882100.unknown
_1192882273.unknown
_1192882460.unknown
_1192882182.unknown
_1192882006.unknown
_1192882066.unknown
_1192881987.unknown
_1192710723.unknown
_1192881606.unknown
_1192881720.unknown
_1192881443.unknown
_1192710658.unknown
_1192710691.unknown
_1192710630.unknown
_1192709130.unknown
_1192710249.unknown
_1192710328.unknown
_1192710576.unknown
_1192710589.unknown
_1192710527.unknown
_1192710289.unknown
_1192710307.unknown
_1192710268.unknown
_1192709202.unknown
_1192709289.unknown
_1192709418.unknown
_1192709220.unknown
_1192709167.unknown
_1192709182.unknown
_1192709147.unknown
_1192708329.unknown
_1192708705.unknown
_1192708922.unknown
_1192708981.unknown
_1192708856.unknown
_1192708564.unknown
_1192708666.unknown
_1192708469.unknown
_1192708174.unknown
_1192708216.unknown
_1192708265.unknown
_1192708195.unknown
_1192708134.unknown
_1192708153.unknown
_1192708115.unknown
_1192696978.unknown
_1192702860.unknown
_1192706796.unknown
_1192707125.unknown
_1192707609.unknown
_1192707890.unknown
_1192707977.unknown
_1192707821.unknown
_1192707334.unknown
_1192707552.unknown
_1192707210.unknown
_1192706947.unknown
_1192707018.unknown
_1192707055.unknown
_1192706985.unknown
_1192706858.unknown
_1192706910.unknown
_1192706826.unknown
_1192706200.unknown
_1192706552.unknown
_1192706689.unknown
_1192706755.unknown
_1192706621.unknown
_1192706367.unknown
_1192706524.unknown
_1192706260.unknown
_1192705635.unknown
_1192705950.unknown
_1192706085.unknown
_1192705807.unknown
_1192703510.unknown
_1192705483.unknown
_1192703203.unknown
_1192699308.unknown
_1192702249.unknown
_1192702495.unknown
_1192702744.unknown
_1192702831.unknown
_1192702527.unknown
_1192702400.unknown
_1192702435.unknown
_1192702340.unknown
_1192699543.unknown
_1192701771.unknown
_1192702112.unknown
_1192701730.unknown
_1192699388.unknown
_1192699432.unknown
_1192699345.unknown
_1192697395.unknown
_1192698965.unknown
_1192699126.unknown
_1192699151.unknown
_1192699099.unknown
_1192697554.unknown
_1192698819.unknown
_1192697462.unknown
_1192697113.unknown
_1192697287.unknown
_1192697313.unknown
_1192697256.unknown
_1192697034.unknown
_1192697068.unknown
_1192697004.unknown
_1192691438.unknown
_1192693210.unknown
_1192694332.unknown
_1192696491.unknown
_1192696709.unknown
_1192696943.unknown
_1192696541.unknown
_1192696225.unknown
_1192696397.unknown
_1192694423.unknown
_1192694143.unknown
_1192694242.unknown
_1192694281.unknown
_1192694241.unknown
_1192694001.unknown
_1192694090.unknown
_1192693352.unknown
_1192692347.unknown
_1192692821.unknown
_1192692978.unknown
_1192693117.unknown
_1192692913.unknown
_1192692687.unknown
_1192692753.unknown
_1192692406.unknown
_1192691927.unknown
_1192692223.unknown
_1192692276.unknown
_1192692039.unknown
_1192691838.unknown
_1192691890.unknown
_1192691527.unknown
_1192606735.unknown
_1192621242.unknown
_1192688893.unknown
_1192691295.unknown
_1192691389.unknown
_1192689646.unknown
_1192621448.unknown
_1192688874.unknown
_1192621269.unknown
_1192607056.unknown
_1192621087.unknown
_1192621217.unknown
_1192620924.unknown
_1192607013.unknown
_1192607023.unknown
_1192606788.unknown
_1192602385.unknown
_1192604970.unknown
_1192605057.unknown
_1192606646.unknown
_1192605020.unknown
_1192602669.unknown
_1192604891.unknown
_1192602570.unknown
_1192456189.unknown
_1192456481.unknown
_1192602022.unknown
_1192456269.unknown
_1192456082.unknown
_1192456147.unknown
_1192455947.unknown
_1192436792.unknown
_1192440545.unknown
_1192453185.unknown
_1192454465.unknown
_1192454735.unknown
_1192455201.unknown
_1192455373.unknown
_1192454790.unknown
_1192454610.unknown
_1192454664.unknown
_1192454478.unknown
_1192454125.unknown
_1192454297.unknown
_1192454352.unknown
_1192454182.unknown
_1192453859.unknown
_1192454093.unknown
_1192453386.unknown
_1192447424.unknown
_1192451704.unknown
_1192452905.unknown
_1192453000.unknown
_1192451761.unknown
_1192451650.unknown
_1192451671.unknown
_1192447467.unknown
_1192441039.unknown
_1192441729.unknown
_1192441771.unknown
_1192441084.unknown
_1192440944.unknown
_1192440998.unknown
_1192440883.unknown
_1192438140.unknown
_1192438776.unknown
_1192439519.unknown
_1192440250.unknown
_1192440449.unknown
_1192439793.unknown
_1192438941.unknown
_1192439167.unknown
_1192438828.unknown
_1192438318.unknown
_1192438647.unknown
_1192438735.unknown
_1192438595.unknown
_1192438240.unknown
_1192438279.unknown
_1192438200.unknown
_1192437201.unknown
_1192437890.unknown
_1192438018.unknown
_1192438069.unknown
_1192437952.unknown
_1192437367.unknown
_1192437536.unknown
_1192437275.unknown
_1192437068.unknown
_1192437118.unknown
_1192437165.unknown
_1192437079.unknown
_1192437024.unknown
_1192437043.unknown
_1192437001.unknown
_1192434102.unknown
_1192435706.unknown
_1192436405.unknown
_1192436519.unknown
_1192436688.unknown
_1192436703.unknown
_1192436574.unknown
_1192436443.unknown
_1192436487.unknown
_1192436417.unknown
_1192435930.unknown
_1192436104.unknown
_1192436156.unknown
_1192435947.unknown
_1192435794.unknown
_1192435867.unknown
_1192435751.unknown
_1192435126.unknown
_1192435588.unknown
_1192435642.unknown
_1192435673.unknown
_1192435615.unknown
_1192435403.unknown
_1192435453.unknown
_1192435280.unknown
_1192434624.unknown
_1192434769.unknown
_1192434848.unknown
_1192434678.unknown
_1192434447.unknown
_1192434493.unknown
_1192434311.unknown
_1192432271.unknown
_1192432675.unknown
_1192433358.unknown
_1192433688.unknown
_1192433932.unknown
_1192433386.unknown
_1192432842.unknown
_1192433225.unknown
_1192432701.unknown
_1192432416.unknown
_1192432631.unknown
_1192432637.unknown
_1192432531.unknown
_1192432357.unknown
_1192432378.unknown
_1192432305.unknown
_1192431674.unknown
_1192431901.unknown
_1192432174.unknown
_1192432200.unknown
_1192432006.unknown
_1192431786.unknown
_1192431855.unknown
_1192431745.unknown
_1192431524.unknown
_1192431609.unknown
_1192431639.unknown
_1192431564.unknown
_1192431443.unknown
_1192431485.unknown
_1192430921.unknown
_1192430963.unknown
_1192186679.unknown
_1192355691.unknown
_1192364854.unknown
_1192365602.unknown
_1192367325.unknown
_1192430685.unknown
_1192430760.unknown
_1192430798.unknown
_1192430725.unknown
_1192430576.unknown
_1192430643.unknown
_1192429530.unknown
_1192365731.unknown
_1192366113.unknown
_1192366512.unknown
_1192366745.unknown
_1192367102.unknown
_1192367208.unknown
_1192366994.unknown
_1192366594.unknown
_1192366442.unknown
_1192365805.unknown
_1192366028.unknown
_1192365766.unknown
_1192365666.unknown
_1192365700.unknown
_1192365625.unknown
_1192365341.unknown
_1192365493.unknown
_1192365546.unknown
_1192365573.unknown
_1192365517.unknown
_1192365434.unknown
_1192365470.unknown
_1192365387.unknown
_1192365213.unknown
_1192365264.unknown
_1192365292.unknown
_1192365239.unknown
_1192364977.unknown
_1192365002.unknown
_1192364902.unknown
_1192363369.unknown
_1192364457.unknown
_1192364640.unknown
_1192364725.unknown
_1192364817.unknown
_1192364671.unknown
_1192364517.unknown
_1192364620.unknown
_1192364486.unknown
_1192364235.unknown
_1192364413.unknown
_1192364435.unknown
_1192364376.unknown
_1192364002.unknown
_1192364165.unknown
_1192363808.unknown
_1192357261.unknown
_1192363129.unknown
_1192363226.unknown
_1192363263.unknown
_1192363173.unknown
_1192357353.unknown
_1192363059.unknown
_1192357292.unknown
_1192356662.unknown
_1192357055.unknown
_1192357215.unknown
_1192356928.unknown
_1192355882.unknown
_1192356033.unknown
_1192355809.unknown
_1192193181.unknown
_1192195974.unknown
_1192352698.unknown
_1192352979.unknown
_1192355115.unknown
_1192355285.unknown
_1192354163.unknown
_1192352860.unknown
_1192352930.unknown
_1192352739.unknown
_1192197471.unknown
_1192197640.unknown
_1192352612.unknown
_1192197750.unknown
_1192197522.unknown
_1192197287.unknown
_1192197408.unknown
_1192197227.unknown
_1192194080.unknown
_1192194463.unknown
_1192195532.unknown
_1192195665.unknown
_1192194492.unknown
_1192194376.unknown
_1192194455.unknown
_1192194286.unknown
_1192194375.unknown
_1192193691.unknown
_1192193912.unknown
_1192193978.unknown
_1192193741.unknown
_1192193285.unknown
_1192193639.unknown
_1192193242.unknown
_1192191229.unknown
_1192192341.unknown
_1192192906.unknown
_1192192961.unknown
_1192192996.unknown
_1192192935.unknown
_1192192766.unknown
_1192192817.unknown
_1192192575.unknown
_1192191685.unknown
_1192192159.unknown
_1192192304.unknown
_1192191923.unknown
_1192191575.unknown
_1192191634.unknown
_1192191442.unknown
_1192187672.unknown
_1192188863.unknown
_1192189467.unknown
_1192189663.unknown
_1192189807.unknown
_1192189028.unknown
_1192188382.unknown
_1192188824.unknown
_1192188306.unknown
_1192187222.unknown
_1192187494.unknown
_1192187609.unknown
_1192187344.unknown
_1192186900.unknown
_1192186975.unknown
_1192186742.unknown
_1191243151.unknown
_1191760443.unknown
_1192184579.unknown
_1192185251.unknown
_1192185774.unknown
_1192186380.unknown
_1192186636.unknown
_1192186332.unknown
_1192185636.unknown
_1192185720.unknown
_1192185281.unknown
_1192185059.unknown
_1192185132.unknown
_1192185195.unknown
_1192185109.unknown
_1192184718.unknown
_1192185025.unknown
_1192184631.unknown
_1192184024.unknown
_1192184301.unknown
_1192184454.unknown
_1192184513.unknown
_1192184364.unknown
_1192184183.unknown
_1192184248.unknown
_1192184112.unknown
_1191764775.unknown
_1191928642.unknown
_1191928718.unknown
_1191764847.unknown
_1191763531.unknown
_1191763567.unknown
_1191760474.unknown
_1191651598.unknown
_1191656603.unknown
_1191744663.unknown
_1191744987.unknown
_1191745193.unknown
_1191744695.unknown
_1191664966.unknown
_1191744430.unknown
_1191664857.unknown
_1191655443.unknown
_1191655500.unknown
_1191655858.unknown
_1191655480.unknown
_1191654031.unknown
_1191654079.unknown
_1191653995.unknown
_1191307354.unknown
_1191650810.unknown
_1191650976.unknown
_1191651245.unknown
_1191650869.unknown
_1191307437.unknown
_1191309537.unknown
_1191307405.unknown
_1191244215.unknown
_1191307122.unknown
_1191307277.unknown
_1191307006.unknown
_1191243920.unknown
_1191243988.unknown
_1191243238.unknown
_1191225473.unknown
_1191227761.unknown
_1191228514.unknown
_1191242866.unknown
_1191242966.unknown
_1191243053.unknown
_1191243125.unknown
_1191242914.unknown
_1191242353.unknown
_1191242555.unknown
_1191228856.unknown
_1191227993.unknown
_1191228250.unknown
_1191228333.unknown
_1191228098.unknown
_1191227889.unknown
_1191227924.unknown
_1191227782.unknown
_1191226958.unknown
_1191227407.unknown
_1191227610.unknown
_1191227674.unknown
_1191227509.unknown
_1191227298.unknown
_1191227366.unknown
_1191227259.unknown
_1191226342.unknown
_1191226522.unknown
_1191226712.unknown
_1191226498.unknown
_1191226208.unknown
_1191226239.unknown
_1191226188.unknown
_1191222867.unknown
_1191225049.unknown
_1191225282.unknown
_1191225382.unknown
_1191225430.unknown
_1191225362.unknown
_1191225160.unknown
_1191225211.unknown
_1191225157.unknown
_1191224662.unknown
_1191224958.unknown
_1191225027.unknown
_1191224927.unknown
_1191222995.unknown
_1191224619.unknown
_1191222919.unknown
_1191160967.unknown
_1191163545.unknown
_1191214656.unknown
_1191222142.unknown
_1191214154.unknown
_1191163211.unknown
_1191163271.unknown
_1191163166.unknown
_1191160574.unknown
_1191160651.unknown
_1191160888.unknown
_1191160613.unknown
_1191160372.unknown
_1191160494.unknown
_1191147907.unknown