acizii grasi si tocoferolul.pdf

download acizii grasi si tocoferolul.pdf

of 6

Transcript of acizii grasi si tocoferolul.pdf

  • 8/10/2019 acizii grasi si tocoferolul.pdf

    1/6

    ORIGINAL ARTICLE

    Fatty acid composition and tocopherol content

    in four TunisianHypericumspecies:Hypericum perforatum,

    Hypericum tomentosum, Hypericum perfoliatumand

    Hypericum ericoides Ssp. Roberti

    Karim Hosni a,*, Kamel Msaa da b, Mouna Ben Taa rit b, Brahim Marzouk b

    a Laboratoire des Substances Naturelles, Institut National de Recherche et dAnalyse Physico-chimique,

    Biotechpole de Sidi Thabet 2020, Tunisiab Laboratoire des Substances Bioactives, Centre de Biotechnologie a` la technopole de Borj Cedria 2050, Tunisia

    Received 28 October 2012; accepted 21 October 2013

    KEYWORDS

    Hypericum sp.;

    Hypericaceae;

    Fatty acids;

    Tocopherols;

    Chemical variation

    Abstract The fatty acid and tocopherol constituents of four Tunisian Hypericum species:

    Hypericum perforatum,Hypericum perfoliatum,Hypericum tomentosumand the endemic subspecies

    Hypericum ericoidesSsp. Robertiwere analyzed in detail. Results revealed that all species have very

    low total lipid contents (0.63.5 mg/g dw). The major identified fatty acids were linoleic

    (11.2137.62%), oleic (11.223.27%) and palmitic acid (4.0320.67%). Analysis of tocopherols

    allowed the identification of three isoforms (a-, c- and d-tocopherols). The d-tocopherol

    (2.6922.32 lg/g dw) was found as the prominent tocopherol. Quantitative differences in the fatty

    acid and tocopherol profiles between Hypericumspecies were observed. H. perfoliatumandH. erico-

    ides Ssp. Robertishowed significantly higher content of linoleic acid, whereas significantly higher

    amounts of oleic acid and palmitic acid were detected in H. perforatumand H. tomentosum, respec-

    tively. Multivariate analysis (principal components analysis and hierarchical cluster analysis) based

    on the fatty acid profiles joined H. perfoliatum and H. ericoides in one group, while H. perforatum

    andH. tomentosumwere joined in a second group at the same linkage distance. With the exception

    of H. perforatum, this is the first report on the fatty acid and tocopherol constituents of H.

    perfoliatum, H. tomentosum and H. ericoides Ssp. Roberti.

    2013 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.

    1. Introduction

    The genusHypericumis a member of the Hypericaceae family,

    belonging to the large clade of mostly tropical plants known as

    Clusioid clade (Meseguer et al., 2013). The Hypericaceae

    family encompasses approximately 500 species (Nu rk et al.,

    * Corresponding author. Tel.: +216 71537666; fax: +216 71537677.

    E-mail addresses: [email protected], [email protected]

    (K. Hosni).

    Peer review under responsibility of King Saud University.

    Production and hosting by Elsevier

    Arabian Journal of Chemistry (2013) xxx, xxxxxx

    King Saud University

    Arabian Journal of Chemistry

    www.ksu.edu.sawww.sciencedirect.com

    1878-5352 2013 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.http://dx.doi.org/10.1016/j.arabjc.2013.10.019

    Please cite this article in press as: Hosni, K. et al., Fatty acid composition and tocopherol content in four Tunisian Hypericumspecies:Hypericum perforatum, Hypericum

    tomentosum, Hypericum perfoliatum and Hypericum ericoidesSsp. Roberti. Arabian Journal of Chemistry (2013), http://dx.doi.org/10.1016/j.arabjc.2013.10.019

    mailto:[email protected]:[email protected]://dx.doi.org/10.1016/j.arabjc.2013.10.019http://dx.doi.org/10.1016/j.arabjc.2013.10.019http://dx.doi.org/10.1016/j.arabjc.2013.10.019http://dx.doi.org/10.1016/j.arabjc.2013.10.019http://www.sciencedirect.com/science/journal/18785352http://dx.doi.org/10.1016/j.arabjc.2013.10.019http://dx.doi.org/10.1016/j.arabjc.2013.10.019http://dx.doi.org/10.1016/j.arabjc.2013.10.019http://dx.doi.org/10.1016/j.arabjc.2013.10.019http://www.sciencedirect.com/science/journal/18785352http://dx.doi.org/10.1016/j.arabjc.2013.10.019http://dx.doi.org/10.1016/j.arabjc.2013.10.019mailto:[email protected]:[email protected]
  • 8/10/2019 acizii grasi si tocoferolul.pdf

    2/6

    2013) accommodated in 36 sections (Robson, 2006). Several

    Hypericum species, in particular Hypericum perforatum, are

    of great economical importance since they have been used as

    a consolidated source of natural active pharmaceuticals.

    Because of its well established market position, its popularity

    and its efficacy, H. perforatum is one of the best selling herbs

    for the past two decades (De Smet, 2005). The whole extract

    and some defined phytochemicals extracted from some Hyper-

    icum species exhibit numerous pharmacological properties,ranging from wound healing and antiseptics to antiviral,

    anti-inflammatory, antitumoral and apoptosis-inducing activi-

    ties (Sanchez-Mateo et al., 2002; Gibbons et al., 2005; Po Shiu

    and Gibbons, 2006). Moreover, recent laboratory studies have

    confirmed their antioxidants, antifungal, antimicrobial and

    cytotoxic activities (Cakir et al., 2005; Housseinzadeh et al.,

    2005).

    As a consequence of the popularity gained and to sustain

    the massive market demand, a great effort has been directed

    toward chemical investigation of numerous species from the

    genusHypericum. These investigations have led to the identifi-

    cation and isolation of a wide array of components reputedly

    responsible for the aforementioned biological activities

    (Smelcerovic et al., 2006). They are mainly phenols, flavonoids,xanthones, phloroglucinols, naphtodianthrones and essential

    oils (De Smet, 2005). However, most of these phytochemical

    studies were focused on particular secondary metabolites and

    comprehensive data in the minor components such as fatty

    acids and tocopherols are scarce.

    Therefore, the present contribution aimed at identifying the

    fatty acid composition and tocopherol content in four

    TunisianHypericum species: H. perforatum, Hypericum perfo-

    liatum, Hypericum tomentosum and the endemic subspecies

    Hypericum ericoidesSsp.Roberti.Our results will add valuable

    information to the existing knowledge on the phytochemistry

    of the genus Hypericum and to define the possible application

    areas for the rational use of these species.

    2. Materials and methods

    2.1. Plant material

    The aerial parts ofH. perforatum, H. perfoliatum, H. tomen-

    tosum and H. ericoides Ssp Roberti (top of 2/3 plants) were

    collected at the full flowering stage, during June 2006 from

    wild populations located in El Feidja (North-western

    Tunisia; latitude 36290 (N); longitude 8150 (E); altitude

    779 m). The site was characterized by annual precipitation

    of 1600 mm and mean annual temperature of 16.8C. The

    sampling site was not grazed or mown during the periodwhen the plants were gathered. The sampling was done by

    a randomized collection of 1520 plants. To avoid the

    sampling on the same plants, minimum distance of 10 m

    was adopted. The plant material was botanically character-

    ized by Prof. Mohammed El Hedi El Ouni (Department

    of Biology, Faculty of Sciences, Bizerte, Tunisia) and

    according to the morphological description presented in

    Tunisian flora (Pottier-Alapetite, 1981). The harvested mate-

    rial was air-dried at room temperature (20 2C) in the

    dark for 1 week and subsequently essayed for their fatty acid

    composition and tocopherol content.

    2.2. Extraction and analysis of fatty acids

    Samples of ground powder (1 g) in triplicate were weighed and

    extracted with chloroform: methanol (2:1, v/v) (LabScan,

    Dublin, Ireland) following the modified procedure of Bligh

    and Dyer (1959). The mixture was shaken and centrifuged

    (Eppendorf 5810R, LePecq, France) at 3000g for 10 min to

    allow phase development. The bottom (organic) layer was col-

    lected and filtered. The total extracted lipid material was recov-ered after the solvent was removed in a stream of nitrogen,

    weighed and stored at 0 C for further analysis.

    Fatty acid methyl esters (FAMEs) were prepared by using

    sodium methoxide (SigmaAldrich, Buchs, Switzerland)

    according to the method ofCecchi et al. (1985). Methyl non-

    adecanoate (C19:0) was used as internal standard.

    The FAMEs were analyzed on a HP 6890 gas chromato-

    graph (Agilent Palo Alto, CA, USA) equipped with a flame

    ionization detector (FID). The esters were separated on a

    RT-2560 capillary column (100 m length, 0.25 mm i.d,

    0.20 mm film thickness). The oven temperature was kept at

    170C for 2 min, followed by a 3 C/min ramp to 240C

    and finally held there for an additional 15 min. Nitrogen was

    used as carrier gas at a flow rate of 1.2 mL/min. The injector

    and detector temperature was maintained at 225 C. Identifica-

    tion of FAMEs was made by comparison of their retention

    time with those of reference standards purchased from Fluka

    (Steinheim, Germany).

    2.3. Determination of tocopherols

    Tocopherols were extracted from total lipids with hexane con-

    taining 0.01% of butylated hydroxytoluene (BHTP 99%, Sig-

    maAldrich, which was added to inhibit the oxidative

    degradation of tocopherols during extraction) (Sivakumar

    et al., 2005). This solution (20lL) was injected into the high-

    performance liquid chromatography system. The HPLCsystem consisted of a Shimadzu liquid chromatograph (Shima-

    dzu Corp, Kyoto, Japan) equipped with a LC-20AT quater-

    nary pump, a DGU-20A3 degasser, an SPD-M20A diode

    array detector (DAD) and a manual rheodyne injector with

    a 20 mL loop. The analytical column was a C18 reverse phase

    Hypersil ODS, 250 mm 4.6 mm with a packing material of

    5 mm of particle size. Separation of tocopherols was based

    on isocratic elution with methanol: acetonitrile (9/1) at a flow

    rate of 0.8 mL/min and the wavelength was set at 292 nm. Toc-

    opherols were identified by comparing their retention times

    with those of authentic standards obtained from SigmaAl-

    drich (St Louis, MO, USA) and they were quantified using

    the external standard method.

    2.4. Statistical analysis

    Data on total lipids, fatty acid composition and tocopherols

    were reported as mean standard deviation (SD) from tripli-

    cate determinations for each sample. Mean comparison was

    performed by analysis of variance (ANOVA) followed by

    Tukey post hoc test at the significance level of p 6 0.05. The

    multivariate statistical analyses, i.e., the principal component

    analysis (PCA) and the hierarchical cluster analysis (HCA)

    were applied to examine the inter-relationships between the

    2 K. Hosni et al.

    Please cite this article in press as: Hosni, K. et al., Fatty acid composition and tocopherol content in four Tunisian Hypericumspecies: Hypericum perforatum, Hypericum

    tomentosum, Hypericum perfoliatum and Hypericum ericoidesSsp. Roberti. Arabian Journal of Chemistry (2013), http://dx.doi.org/10.1016/j.arabjc.2013.10.019

    http://dx.doi.org/10.1016/j.arabjc.2013.10.019http://dx.doi.org/10.1016/j.arabjc.2013.10.019
  • 8/10/2019 acizii grasi si tocoferolul.pdf

    3/6

    investigated species, utilizing the content of all identified fatty

    acids. All statistical analyses were carried out using the Statis-

    tica v 5.5 software (Statsoft, 1998).

    3. Results and discussion

    3.1. Total lipids and fatty acid profile

    As illustrated inFig. 1, a statistically significant (p< 0.05) var-iation was determined in the total lipid content between the

    Hypericum species. H. perfoliatum and H. tomentosum were

    outstanding with their markedly higher total lipid content with

    their values 3.5 and 3.2 mg/g dw, respectively. For H. ericoides

    Ssp.Robertiand H. perforatum, the total lipid content ranged

    from 0.6 to 1.2 mg/g dw. The total lipid content in the present

    samples was apparently lower than those reported for Hyper-

    icum triquetrifolium Turra. (Hosni et al., 2007). Taking into

    account that the studied species grow under the same pedocli-

    matic circumstances and processed under the same conditions,

    we can argue that the observed discrepancy among Hypericum

    species might be due their genetic makeup (Richards et al.,

    2008; Hosni et al., 2010).The fatty acid composition of the four investigated Hyper-

    icum sp. is given inTable 1. The proportional composition of

    the analyzed fatty acids displayed a significant (p< 0.05) var-

    iation between species. In fact, oleic (23.27%), palmitic

    (17.43%) and linoleic acids (11.21%) were the most abundant

    fatty acids in H. perforatum. The same fatty acids were also

    found as the major fatty acid compounds in H. perfoliatum

    but with different proportions (11.2%, 37.62% and 16.8%

    for oleic, palmitic and linoleic acids, respectively). The Fatty

    acid profile of H. tomentosum was characterized by the abun-

    dance of palmitic (20.67%) followed by oleic (17.33%), stearic

    (14.8%) and a-linolenic (13.3%) acids. Linoleic acid (36.47%)

    followed by capric (20.74%), oleic (15.1%) and myristic

    (10.82%) acids were the most abundant compounds in H.

    ercoides Ssp. Roberti. The striking differences in the propor-

    tion of individual fatty acids were also reflected in the ratio

    saturated to unsaturated fatty acids (1.54, 0.91, 1.27 and 0.84

    for H. perforatum, H. perfoliatum, H. tomentosum and H.

    ericoides Ssp. Roberti, respectively).

    To understand the relationships between the studied Hyper-

    icum species with respect to their fatty acid composition, a

    principal component analysis (PCA) was carried out. As

    shown inFig. 2, along the principal component 1 (PC1) whichaccounts for 62% of total variance, all species were positively

    related. Along PC2 axis, accounting for a further 25.65% of

    the total variance,H. perforatumandH. tomentosumwere neg-

    atively related toH. perfoliatumandH. ericoides. Accordingly,

    the PCA distinguished two main groups; the first group in-

    cludes H. perfoliatum and H. ericoides Ssp.Roberti(character-

    ized by their relatively higher linoleic and capric acids) while

    the second group includes H. perforatum and H. tomentosum

    (characterized by their relatively higher palmitic and stearic

    acids). Grouping the samples observable from the PCA plot

    was in general agreement with the results of hierarchical cluster

    analysis HCA (Fig. 3).

    To the best of our knowledge, the fatty acid composition of

    H. perfoliatum,H. tomentosum and H. ericoidesSsp.Robertiisreported herein for the first time. Nevertheless, the fatty acid

    composition of some Hypericum species has been previously

    reported. For example, palmitic, a-linolenic and oleic acids

    were reported as the prominent fatty acids in H. perforatum

    (Omarovam and Artamonovam, 1999). Alpha-linolenic and

    palmitic acids were reported as the major compound of Turk-

    ish Hypericum lysimachioides var. lysimachioides (Ozen et al.,

    2004a). The latter authors have also analyzed the fatty acid

    profiles ofH. perforatum and H. Hypericum retusum Aucher

    and found that palmitic acid and linolenic acid were the major

    components (Ozen et al., 2004b). They also found large

    amounts of 3-hydroxy fatty acid mainly 3-hydroxytetradeca-

    noic acid (3-OH-C14:0) and 3-hydroxyoctadecanoic acid (3-OH-C18:0) in their oil samples. Report from the same country

    had indicated that linolenic and linoleic acids were the most

    abundant fatty acids in Hypericum scabrum, while linolenic

    and palmitic acids were found as the most plentiful ones in

    Hypericum scabroides and Hypericum amblysepalum (Ozen

    and Bashan, 2003). In the same year, Stojanovic et al. (2003)

    compared the fatty acid profile ofH. perforatum, Hypericum

    maculatumand Hypericum olympicum and found that linoleic

    followed by palmitic and oleic acids were the most abundant

    fatty acids in H. maculatum and H. olympicum. In contrast,

    palmitic, oleic and lignoceric acids were found as the major

    fatty acids in H. perforatum. Linoleic, linolenic and palmitic

    acids were also reported as the main fatty acid in the lipidic

    fraction ofHypericum androseumum seeds and H. elatum rootbark (Hargreaves et al., 1967). In our previous work on fatty

    acid composition of H. triquetrifolium, we have reported the

    abundance of a-linolenic, linoleic, aleic and palmitic acids.

    Moreover, we have successfully identified the stearidonc acid

    (C18:4) which is an unusual fatty acid in the oil of this species

    (Hosni et al., 2007). More recently, Shafagat (2011), has re-

    ported that omega-3 fatty acid followed by linoleic and pal-

    mitic acids were the main components of the hexane extracts

    of H. scabrum from Iran. Based on these earlier reports and

    the present study, it can be inferred that the fatty acid compo-

    sition ofHypericumsp. varies depending on the species and the

    origin of plant.

    0

    0,05

    0,1

    0,15

    0,2

    0,25

    0,3

    0,35

    0,4

    0,45

    H, perforatum H, perfoliatum H, ericoidesH, tomentosum

    Totallipidco

    ntent(mg/gdw)

    aa

    b

    c

    Figure 1 Total lipid content (mg/g dw) in four Hypericum

    species. Data are expressed as mean SD (n= 3). Data marked

    with different superscript are significantly different (p< 0.05).

    Fatty acid composition and tocopherol content in four Tunisian Hypericum species 3

    Please cite this article in press as: Hosni, K. et al., Fatty acid composition and tocopherol content in four Tunisian Hypericumspecies:Hypericum perforatum, Hypericum

    tomentosum, Hypericum perfoliatum and Hypericum ericoidesSsp. Roberti. Arabian Journal of Chemistry (2013), http://dx.doi.org/10.1016/j.arabjc.2013.10.019

    http://dx.doi.org/10.1016/j.arabjc.2013.10.019http://dx.doi.org/10.1016/j.arabjc.2013.10.019
  • 8/10/2019 acizii grasi si tocoferolul.pdf

    4/6

    3.2. Tocopherol content

    The tocopherol contents of the investigated Hypericumspecies

    are presented inFig. 4. Three isoforms, a-, c- and d-tocophe-rols were detected and identified in all samples in significantly

    (p< 0.05) varying degrees. Individual tocopherol contents

    exhibited great variations among the studied species. The iso-

    formd-tocopherol had the highest content followed by c- and

    a-tocopherol. In terms of variations in different isoforms be-

    tween species,H. ericoideshad the highest content of tocophe-

    rols (22.32, 4.28 and 4.89 lg/g dw for d-,c- and a-tocopherol,

    respectively), while the lowest content of these isoforms was

    observed for H. tomentosum (2.69, 0.61 and 0.54lg/g dw for

    d-, c- and a-tocopherol, respectively). H. perforatum and H.

    perfoliatumhave showed intermediate values. The tocopherols

    are suggested to be synthesized by the action ofc-tocopherol

    methyl-transferase to either c- or d-tocopherol which can be

    further synthesized to a- and b-tocopherol, respectively

    (Collakova and DellaPenna, 2003). Our findings indicate that

    the biosynthesis ofd-tocopherol is a major activity in the aerial

    part of the studied Hypericum species. Published data related

    to the tocopherol content in Hypericum species are not avail-

    able and comparison is not possible. However, the tocopherol

    constituents of some species of the closely related family Clusi-

    aceae have previously been reported. In this context, Crane

    et al. (2005) have compared the tocopherol content of two

    Calophyllum species from Guadeloupe and found that a-

    tocopherol was the main isoform in the Calophyllum calaba,

    whereas, the isoform c-tocopherol was the main one in

    Calophyllum inophyllum. Another report from Vietnam had

    revealed that a-tocopherol was the main isoform in the oil of

    C. inophyllum (Matthaus et al., 2003). In another Clusiaceae

    Table 1 Fatty acid composition (% of total fatty acids) ofHypericum species.

    Fatty acid Hypericum

    perforatum perfoliatum tomentosum ericoides

    Caprylic acid (C8:0) 0.56b 4.1a 0.6b 0.88b

    Capric acid (C10:0) 2.62b 2.2b 1.34b 20.74a

    Lauric acid (C12:0) 4.29a 1.32b

    Myristic acid (C14:0) 7.98b 4.93c 7.4b 10.82a

    Palmitic acid (C16:0) 17.43ab

    16.8b

    20.67a

    4.03c

    Palmitoleic acid (C16:1) 4.63a 2.3b 1.48c 0.06d

    Stearic acid (C18:0) 10.1b 8.43bc 14.8a 7.24c

    Oleic acid (C18:1) 23.27a 11.2c 17.33b 15.1b

    Linoleic acid (C18:2) 11.21b 37.62a 12.4b 36.47a

    a-linolenic acid (C18:3) 0.19d 1.23c 13.3a 2.73b

    Arachidic acid (C20:0) 8.032a 6.43a 6.58a 0.16b

    Behenic acid (C22:0) 9.69a 4.76b 4.1c 0.45d

    SFA 60.7a 47.65b 55.49a 45.64b

    UFA 39.3b 52.35a 44.51b 54.36a

    SFA/UFA 1.54a 0.91b 1.27ab 0.84b

    Values are means of three determinations. SFA: Saturated fatty acids; UFA: Unsaturated fatty acids.

    Data within the same line and marked with different superscript are significantly different (p< 0.05).

    Axe 1 (62.01%)

    Axe2(25.6

    5%)

    H. perforatum

    H. perfoliatum

    H. tomentosum

    H. ericoides

    -0,6

    -0,4

    -0,2

    0,0

    0,2

    0,4

    0,6

    0,8

    0,66 0,70 0,74 0,78 0,82 0,86 0,90

    Figure 2 Principal component analysis of fourHypericum species on the basis of their fatty acid composition.

    4 K. Hosni et al.

    Please cite this article in press as: Hosni, K. et al., Fatty acid composition and tocopherol content in four Tunisian Hypericumspecies: Hypericum perforatum, Hypericum

    tomentosum, Hypericum perfoliatum and Hypericum ericoidesSsp. Roberti. Arabian Journal of Chemistry (2013), http://dx.doi.org/10.1016/j.arabjc.2013.10.019

    http://dx.doi.org/10.1016/j.arabjc.2013.10.019http://dx.doi.org/10.1016/j.arabjc.2013.10.019
  • 8/10/2019 acizii grasi si tocoferolul.pdf

    5/6

    species,Caraipa densifolia, onlya- andc-tocopherols were de-

    tected in its hexane extract (da Silveira et al., 2010).

    In general, data regarding the tocopherol content in differ-

    ent species were conflicting and variable depending on species,origin, plant part, plant physiology and environmental factors

    (Bruni et al., 2004; Syman ska and Kruk, 2008). At this point,

    the latter authors have showed that a-tocopherol is the most

    abundant isoform in leaves with only some exceptions reported

    for lettuce, spinach, dodder shoots, or some seedling where

    c-,d-tocopherols were found at the highest amounts. They also

    reported that d-tocopherol was the dominant isoform in Cus-

    cuta epithymum and Cuscuta japonica (Syman ska and Kruk,

    2008). In Brassica napus and Brassica juncea, the tocopherol

    content was found to be deeply influenced by environmental

    factors namely the daily temperature and rainfall (Richards

    et al., 2008).

    From a chemical perspective, it is well recognized that

    tocopherols interact with polyunsaturated acyl groups,

    protecting the lipids (especially polyunsaturated fatty acids)

    from oxidative damage by scavenging lipid peroxy radicalsand quenching or chemically reacting with reactive oxygen

    species (DellaPenna and Pogson, 2006). Therefore, it seems

    logical to speculate that the higher content of tocopherols in

    H. ericoidesmight have such physiological role since it presents

    the higher content of polyunsaturated fatty acids. This species

    might be considered as a potential source of natural antioxi-

    dant due to its high d-tocopherol content (Fazio et al., 2013).

    It is worthy to note that the present tocopherol composition

    might be useful for the taxonomical purposes for the infragen-

    eric classification of the genus Hypericum.

    In summary, the present contribution provided a new

    insight into the chemistry of H. perforatum, H. tomentosum,

    H. ericoides

    H. perfoliatum

    H. tomentosum

    H. perforatum

    20 30 40 50 60 70 80 90

    Figure 3 Dendrogram of fourHypericum species obtained by cluster analysis using square Euclidean distance.

    Figure 4 Tocopherol content (lg/g dw) in four Hypericum species. Data are expressed as mean SD ( n= 3).

    Fatty acid composition and tocopherol content in four Tunisian Hypericum species 5

    Please cite this article in press as: Hosni, K. et al., Fatty acid composition and tocopherol content in four Tunisian Hypericumspecies:Hypericum perforatum, Hypericum

    tomentosum, Hypericum perfoliatum and Hypericum ericoidesSsp. Roberti. Arabian Journal of Chemistry (2013), http://dx.doi.org/10.1016/j.arabjc.2013.10.019

    http://dx.doi.org/10.1016/j.arabjc.2013.10.019http://dx.doi.org/10.1016/j.arabjc.2013.10.019
  • 8/10/2019 acizii grasi si tocoferolul.pdf

    6/6

    H. perfoliatum and H. ericoides Ssp. Roberti. It provides base

    line information on the fatty acid composition and tocopherol

    content in the aforementioned species.

    References

    Bligh, E.G., Dyer, W.J., 1959. A rapid method of total lipid extraction

    and purification. Can. J. Biochem. Physiol. 37, 911917.

    Bruni, R., Muzzoli, M., Ballero, M., Loi, M.C., Fantin, G., Poli, F.,Sacchetti, G., 2004. Tocopherols, fatty acids and sterols in seeds of

    four Sardinian wild Euphorbia species. Fitoterapia 75, 5061.

    Cakir, A., Kordali, S., Kilic, H., Kaya, E., 2005. Antifungal properties

    of essential oil and crude extracts of Hypericum linarioides Bosse.

    Biochem. Syst. Ecol. 33, 245256.

    Cecchi, G., Biasini, S., Castano, J., 1985. Me thanolyse rapide des

    huiles en solvent. Note de laboratoire. Rev. Fr. Corps Gras 4, 163

    164.

    Collakova, E., DellaPenna, D., 2003. Homogentisate phytyltransferase

    activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant

    Physiol. 131, 632642.

    Crane, S., Aurore, G., Joseph, H., Mouloungui, Z., Bourgeois, P.,

    2005. Composition of fatty acids triacylglycerols and unsaponifi-

    able matter in Calophyllum calaba L. oil from Guadeloupe.

    Phytochemistry 66, 18251831.da Silveira, C.V., Trevisan, M.T.S., Rios, J.B., Erben, G., Haubner,

    R., Pfundstein, B., Owen, R.W., 2010. Secondary plant substances

    in various extracts of the leaves, fruits, stem and bark of Caraipa

    densifolia Mart. Food Chem. Toxicol. 48, 15971606.

    DellaPenna, D., Pogson, B.J., 2006. Vitamin synthesis in plants:

    tocopherols and carotenoids. Annu. Rev. Plant Biol. 57, 711738.

    De Smet, P.A.G.M., 2005. Herbal medicine in Europe relaxing

    regulatory standards. N. Engl. J. Med. 352, 11761178.

    Fazio, A., Plastina, P., Meijernik, J., Witkamp, R.F., Gabriele, B.,

    2013. Comparative analyses of seeds of wild fruits of Rubus and

    Sambucus species from Southern Italy: fatty acid composition of

    the oil, total phenolic content, antioxidant and anti-inflammatory

    properties of the methanolic extracts. Food Chem. 140, 817824.

    Gibbons, S., Moser, E., Hausmann, S., Stavri, M., Smith, E., Clennett,

    C., 2005. An anti-staphylococcal acylphloroglucinol from Hyper-icum foliosum. Phytochemistry 66, 14721475.

    Hargreaves, K.R., Gunstone, F.D., Taylor, J.M., 1967. Lipid constit-

    uents ofHypericum androsaemumandH. elatum. Phytochemistry 6,

    12971298.

    Hosni, K., Msaada, K., Marzouk, B., 2007. Comparative study on

    Hypericum triquetrifolium Turra. fatty acids. Asian J. Plant Sci. 6,

    384388.

    Hosni, K., Zahed, N., Chrif, R., Abid, I., Medfei, W., Kallel, M., Ben

    Brahim, N., Sebei, H., 2010. Composition of peel essential oils from

    four selected Tunisian Citrus species: evidence for the genotypic

    influence. Food Chem. 123, 10981104.

    Hosseinzadeh, H., Karimi, G.R., Rakhshanizadeh, M., 2005. Anti-

    convulsant effect of Hypericum perforatum: role of nitric oxide. J.

    Ethnopharmacol. 98, 207208.

    Matthaus, B., Vosmann, K., Pham, L.Q., Aitzetmu ller, K., 2003. FAand tocopherol composition of Vitnamese oilseeds. J. Am. Oil

    Chem. Soc. 80, 10131020.

    Meseguer, A.S., Aldasoro, J.J., Sanmartn, I., 2013. Baysian inference

    of phylogeny, morphology and range evolution reveals a complex

    evolutionary history of St. Johns wort (Hypericum). Mol. Phylo-

    genet. Evol. 67, 379403.

    Nu rk, N.M., Madrin a n, S., Carine, M.A., Chase, M.W., Blattner,

    F.R., 2013. Molecular phylogenetics and morphological evolution

    of St. Johns wort (Hypericum; Hypericaceae). Mol. Phylogenet.

    Evol. 66, 116.

    Omarovam, M.A., Artamonovam, N.A., 1999. Classes and fatty acid

    composition of lipids from Hypericum perforatum. Chem. Nat.Comp. 35, 684685.

    Ozen, H.C ., Bashan, M., Toker, Z., Keskin, C., 2004a. 3-hydroxy fatty

    acids from the flowers of Hypericum lysimachioides var. lysima-

    chioides. Turkish J. Chem. 28, 223226.

    Ozen, H.C . , Bashan, M., Keskin, C., Toker, Z., 2004b. Fatty acid and

    3-hydroxy fatty acid composition of two Hypericum species from

    Turkey. Eur. J. Lipid Sci. Technol. 106, 6870.

    Ozen, H.C ., Bashan, M., 2003. The Composition of fatty acids in

    Hypericum scabrum,H. scabroidesandH. amblysepalum. Turkish J.

    Chem. 27, 723725.

    Po Shiu, W.K., Gibbons, S., 2006. Anti-staphylococcal acylphlorog-

    lucinols from Hypericum beanie. Phytochemistry 67, 25682572.

    Pottier-Alapetite, G., 1981. La flore de la Tunisie: Angiospermes-

    Dicotyle dones Gamope tales. Ed. Ministe` re de lEnseignement

    Supe rieur et de la Recherche Scientifique et le Ministe` re delAgriculture, Tunis, pp 809811.

    Richards, A., Wijesundera, C., Salisbury, P., 2008. Genotype and

    growing environment effects on the tocopherols and fatty acids of

    Brassica napus and B. juncea. J. Am. Oil Chem. Soc. 87, 469481.

    Robson, N.K.B., 2006. Studies in the genus HypericumL. (Clusiaceae).

    1. Section 9. Hypericum sensu lato (part 3): subsection 1.

    Hypericum series 2. Senanensia, subsection 2. Erecta and section

    9b. Graveolentia. Syst. Biodivers. 4, 1998.

    Sa nchez-Mateo, C.C., Prado, B., Rabanal, R.M., 2002. Antidepressant

    effects of the methanol extract of several Hypericum species from

    the Canary Islands. J. Ethnopharmacol. 79, 119127.

    Shafagat, A., 2011. Antioxidant, antimicrobial activities and fatty acid

    components of flowers, leaf, stem and seed of Hypericum scabrum.

    Nat. Prod. Commun. 6, 17391742.

    Sivakumar, G., Bacchetta, L., Gatti, R., Zappa, G., 2005. HPLCscreening of natural vitamin E from mediterranean plants biofac-

    tories- a basic tool for pilot-scale bioreactors production of a-

    tocopherol. J. Plant Physiol. 162m 12801283.

    Smelcerovic, A., Spiteller, M., Zuehlke, S., 2006. Comparison of

    methods for the exhaustive extraction of hypericins, flavonoids,

    and hyperforin from Hypericum perforatum L. J. Agric. Food

    Chem. 54, 27502753.

    Stojanovic, G., Palic, R., Tarr, C.H., Reddy, C.M., Marinkovic, O.,

    2003. N-alkanes and fatty acids of Hypericum perforatum, Hyper-

    icum maculatum and Hypericum olympicum. Biochem. Syst. Ecol.

    31, 223226.

    Statsoft, 1998. STATISTICA for Windows (Computer Program

    Electronic Manuel). Statsoft Inc., Tulsa, OK.

    Syman ska, R., Kruk, J., 2008. Tocopherol content and isomers

    composition in selected plant species. Plant Physiol. Biochem. 46,2933.

    6 K. Hosni et al.

    Please cite this article in press as: Hosni, K. et al., Fatty acid composition and tocopherol content in four Tunisian Hypericumspecies: Hypericum perforatum, Hypericum

    tomentosum Hypericum perfoliatum and Hypericum ericoides Ssp Roberti Arabian Journal of Chemistry (2013) http://dx doi org/10 1016/j arabjc 2013 10 019

    http://refhub.elsevier.com/S1878-5352(13)00359-6/h0005http://refhub.elsevier.com/S1878-5352(13)00359-6/h0005http://refhub.elsevier.com/S1878-5352(13)00359-6/h0010http://refhub.elsevier.com/S1878-5352(13)00359-6/h0010http://refhub.elsevier.com/S1878-5352(13)00359-6/h0010http://refhub.elsevier.com/S1878-5352(13)00359-6/h0010http://refhub.elsevier.com/S1878-5352(13)00359-6/h0010http://refhub.elsevier.com/S1878-5352(13)00359-6/h0015http://refhub.elsevier.com/S1878-5352(13)00359-6/h0015http://refhub.elsevier.com/S1878-5352(13)00359-6/h0015http://refhub.elsevier.com/S1878-5352(13)00359-6/h0015http://refhub.elsevier.com/S1878-5352(13)00359-6/h0015http://refhub.elsevier.com/S1878-5352(13)00359-6/h0020http://refhub.elsevier.com/S1878-5352(13)00359-6/h0020http://refhub.elsevier.com/S1878-5352(13)00359-6/h0020http://refhub.elsevier.com/S1878-5352(13)00359-6/h0020http://refhub.elsevier.com/S1878-5352(13)00359-6/h0020http://refhub.elsevier.com/S1878-5352(13)00359-6/h0025http://refhub.elsevier.com/S1878-5352(13)00359-6/h0025http://refhub.elsevier.com/S1878-5352(13)00359-6/h0025http://refhub.elsevier.com/S1878-5352(13)00359-6/h0030http://refhub.elsevier.com/S1878-5352(13)00359-6/h0030http://refhub.elsevier.com/S1878-5352(13)00359-6/h0030http://refhub.elsevier.com/S1878-5352(13)00359-6/h0030http://refhub.elsevier.com/S1878-5352(13)00359-6/h0030http://refhub.elsevier.com/S1878-5352(13)00359-6/h0030http://refhub.elsevier.com/S1878-5352(13)00359-6/h0035http://refhub.elsevier.com/S1878-5352(13)00359-6/h0035http://refhub.elsevier.com/S1878-5352(13)00359-6/h0035http://refhub.elsevier.com/S1878-5352(13)00359-6/h0035http://refhub.elsevier.com/S1878-5352(13)00359-6/h0035http://refhub.elsevier.com/S1878-5352(13)00359-6/h0035http://refhub.elsevier.com/S1878-5352(13)00359-6/h0040http://refhub.elsevier.com/S1878-5352(13)00359-6/h0040http://refhub.elsevier.com/S1878-5352(13)00359-6/h0045http://refhub.elsevier.com/S1878-5352(13)00359-6/h0045http://refhub.elsevier.com/S1878-5352(13)00359-6/h0050http://refhub.elsevier.com/S1878-5352(13)00359-6/h0050http://refhub.elsevier.com/S1878-5352(13)00359-6/h0050http://refhub.elsevier.com/S1878-5352(13)00359-6/h0050http://refhub.elsevier.com/S1878-5352(13)00359-6/h0050http://refhub.elsevier.com/S1878-5352(13)00359-6/h0050http://refhub.elsevier.com/S1878-5352(13)00359-6/h0050http://refhub.elsevier.com/S1878-5352(13)00359-6/h0050http://refhub.elsevier.com/S1878-5352(13)00359-6/h0055http://refhub.elsevier.com/S1878-5352(13)00359-6/h0055http://refhub.elsevier.com/S1878-5352(13)00359-6/h0055http://refhub.elsevier.com/S1878-5352(13)00359-6/h0055http://refhub.elsevier.com/S1878-5352(13)00359-6/h0055http://refhub.elsevier.com/S1878-5352(13)00359-6/h0060http://refhub.elsevier.com/S1878-5352(13)00359-6/h0060http://refhub.elsevier.com/S1878-5352(13)00359-6/h0060http://refhub.elsevier.com/S1878-5352(13)00359-6/h0060http://refhub.elsevier.com/S1878-5352(13)00359-6/h0060http://refhub.elsevier.com/S1878-5352(13)00359-6/h0060http://refhub.elsevier.com/S1878-5352(13)00359-6/h0060http://refhub.elsevier.com/S1878-5352(13)00359-6/h0065http://refhub.elsevier.com/S1878-5352(13)00359-6/h0065http://refhub.elsevier.com/S1878-5352(13)00359-6/h0065http://refhub.elsevier.com/S1878-5352(13)00359-6/h0065http://refhub.elsevier.com/S1878-5352(13)00359-6/h0070http://refhub.elsevier.com/S1878-5352(13)00359-6/h0070http://refhub.elsevier.com/S1878-5352(13)00359-6/h0070http://refhub.elsevier.com/S1878-5352(13)00359-6/h0070http://refhub.elsevier.com/S1878-5352(13)00359-6/h0075http://refhub.elsevier.com/S1878-5352(13)00359-6/h0075http://refhub.elsevier.com/S1878-5352(13)00359-6/h0075http://refhub.elsevier.com/S1878-5352(13)00359-6/h0075http://refhub.elsevier.com/S1878-5352(13)00359-6/h0075http://refhub.elsevier.com/S1878-5352(13)00359-6/h0080http://refhub.elsevier.com/S1878-5352(13)00359-6/h0080http://refhub.elsevier.com/S1878-5352(13)00359-6/h0080http://refhub.elsevier.com/S1878-5352(13)00359-6/h0080http://refhub.elsevier.com/S1878-5352(13)00359-6/h0080http://refhub.elsevier.com/S1878-5352(13)00359-6/h0085http://refhub.elsevier.com/S1878-5352(13)00359-6/h0085http://refhub.elsevier.com/S1878-5352(13)00359-6/h0085http://refhub.elsevier.com/S1878-5352(13)00359-6/h0085http://refhub.elsevier.com/S1878-5352(13)00359-6/h0085http://refhub.elsevier.com/S1878-5352(13)00359-6/h0085http://refhub.elsevier.com/S1878-5352(13)00359-6/h0085http://refhub.elsevier.com/S1878-5352(13)00359-6/h0085http://refhub.elsevier.com/S1878-5352(13)00359-6/h0090http://refhub.elsevier.com/S1878-5352(13)00359-6/h0090http://refhub.elsevier.com/S1878-5352(13)00359-6/h0090http://refhub.elsevier.com/S1878-5352(13)00359-6/h0090http://refhub.elsevier.com/S1878-5352(13)00359-6/h0090http://refhub.elsevier.com/S1878-5352(13)00359-6/h0090http://refhub.elsevier.com/S1878-5352(13)00359-6/h0090http://refhub.elsevier.com/S1878-5352(13)00359-6/h0090http://refhub.elsevier.com/S1878-5352(13)00359-6/h0090http://refhub.elsevier.com/S1878-5352(13)00359-6/h0090http://refhub.elsevier.com/S1878-5352(13)00359-6/h0090http://refhub.elsevier.com/S1878-5352(13)00359-6/h0090http://refhub.elsevier.com/S1878-5352(13)00359-6/h0095http://refhub.elsevier.com/S1878-5352(13)00359-6/h0095http://refhub.elsevier.com/S1878-5352(13)00359-6/h0095http://refhub.elsevier.com/S1878-5352(13)00359-6/h0095http://refhub.elsevier.com/S1878-5352(13)00359-6/h0095http://refhub.elsevier.com/S1878-5352(13)00359-6/h0100http://refhub.elsevier.com/S1878-5352(13)00359-6/h0100http://refhub.elsevier.com/S1878-5352(13)00359-6/h0100http://refhub.elsevier.com/S1878-5352(13)00359-6/h0100http://refhub.elsevier.com/S1878-5352(13)00359-6/h0100http://refhub.elsevier.com/S1878-5352(13)00359-6/h0100http://refhub.elsevier.com/S1878-5352(13)00359-6/h0100http://refhub.elsevier.com/S1878-5352(13)00359-6/h0100http://refhub.elsevier.com/S1878-5352(13)00359-6/h0100http://refhub.elsevier.com/S1878-5352(13)00359-6/h0100http://refhub.elsevier.com/S1878-5352(13)00359-6/h0105http://refhub.elsevier.com/S1878-5352(13)00359-6/h0105http://refhub.elsevier.com/S1878-5352(13)00359-6/h0105http://refhub.elsevier.com/S1878-5352(13)00359-6/h0105http://refhub.elsevier.com/S1878-5352(13)00359-6/h0105http://refhub.elsevier.com/S1878-5352(13)00359-6/h0105http://refhub.elsevier.com/S1878-5352(13)00359-6/h0105http://refhub.elsevier.com/S1878-5352(13)00359-6/h0105http://refhub.elsevier.com/S1878-5352(13)00359-6/h0105http://refhub.elsevier.com/S1878-5352(13)00359-6/h0105http://refhub.elsevier.com/S1878-5352(13)00359-6/h0110http://refhub.elsevier.com/S1878-5352(13)00359-6/h0110http://refhub.elsevier.com/S1878-5352(13)00359-6/h0110http://refhub.elsevier.com/S1878-5352(13)00359-6/h0110http://refhub.elsevier.com/S1878-5352(13)00359-6/h0110http://refhub.elsevier.com/S1878-5352(13)00359-6/h0110http://refhub.elsevier.com/S1878-5352(13)00359-6/h0110http://refhub.elsevier.com/S1878-5352(13)00359-6/h0110http://refhub.elsevier.com/S1878-5352(13)00359-6/h0110http://refhub.elsevier.com/S1878-5352(13)00359-6/h0110http://refhub.elsevier.com/S1878-5352(13)00359-6/h0110http://refhub.elsevier.com/S1878-5352(13)00359-6/h0115http://refhub.elsevier.com/S1878-5352(13)00359-6/h0115http://refhub.elsevier.com/S1878-5352(13)00359-6/h0115http://refhub.elsevier.com/S1878-5352(13)00359-6/h0115http://refhub.elsevier.com/S1878-5352(13)00359-6/h0125http://refhub.elsevier.com/S1878-5352(13)00359-6/h0125http://refhub.elsevier.com/S1878-5352(13)00359-6/h0125http://refhub.elsevier.com/S1878-5352(13)00359-6/h0125http://refhub.elsevier.com/S1878-5352(13)00359-6/h0125http://refhub.elsevier.com/S1878-5352(13)00359-6/h0125http://refhub.elsevier.com/S1878-5352(13)00359-6/h0130http://refhub.elsevier.com/S1878-5352(13)00359-6/h0130http://refhub.elsevier.com/S1878-5352(13)00359-6/h0130http://refhub.elsevier.com/S1878-5352(13)00359-6/h0130http://refhub.elsevier.com/S1878-5352(13)00359-6/h0130http://refhub.elsevier.com/S1878-5352(13)00359-6/h0130http://refhub.elsevier.com/S1878-5352(13)00359-6/h0130http://refhub.elsevier.com/S1878-5352(13)00359-6/h0130http://refhub.elsevier.com/S1878-5352(13)00359-6/h0130http://refhub.elsevier.com/S1878-5352(13)00359-6/h0130http://refhub.elsevier.com/S1878-5352(13)00359-6/h0130http://refhub.elsevier.com/S1878-5352(13)00359-6/h0130http://refhub.elsevier.com/S1878-5352(13)00359-6/h0130http://refhub.elsevier.com/S1878-5352(13)00359-6/h0130http://refhub.elsevier.com/S1878-5352(13)00359-6/h0130http://refhub.elsevier.com/S1878-5352(13)00359-6/h0135http://refhub.elsevier.com/S1878-5352(13)00359-6/h0135http://refhub.elsevier.com/S1878-5352(13)00359-6/h0135http://refhub.elsevier.com/S1878-5352(13)00359-6/h0135http://refhub.elsevier.com/S1878-5352(13)00359-6/h0135http://refhub.elsevier.com/S1878-5352(13)00359-6/h0135http://refhub.elsevier.com/S1878-5352(13)00359-6/h0135http://refhub.elsevier.com/S1878-5352(13)00359-6/h0140http://refhub.elsevier.com/S1878-5352(13)00359-6/h0140http://refhub.elsevier.com/S1878-5352(13)00359-6/h0140http://refhub.elsevier.com/S1878-5352(13)00359-6/h0140http://refhub.elsevier.com/S1878-5352(13)00359-6/h0140http://refhub.elsevier.com/S1878-5352(13)00359-6/h0150http://refhub.elsevier.com/S1878-5352(13)00359-6/h0150http://refhub.elsevier.com/S1878-5352(13)00359-6/h0150http://refhub.elsevier.com/S1878-5352(13)00359-6/h0150http://refhub.elsevier.com/S1878-5352(13)00359-6/h0150http://refhub.elsevier.com/S1878-5352(13)00359-6/h0150http://refhub.elsevier.com/S1878-5352(13)00359-6/h0155http://refhub.elsevier.com/S1878-5352(13)00359-6/h0155http://refhub.elsevier.com/S1878-5352(13)00359-6/h0155http://refhub.elsevier.com/S1878-5352(13)00359-6/h0155http://refhub.elsevier.com/S1878-5352(13)00359-6/h0155http://refhub.elsevier.com/S1878-5352(13)00359-6/h0155http://refhub.elsevier.com/S1878-5352(13)00359-6/h0155http://refhub.elsevier.com/S1878-5352(13)00359-6/h0155http://refhub.elsevier.com/S1878-5352(13)00359-6/h0155http://refhub.elsevier.com/S1878-5352(13)00359-6/h0155http://refhub.elsevier.com/S1878-5352(13)00359-6/h0155http://refhub.elsevier.com/S1878-5352(13)00359-6/h0155http://refhub.elsevier.com/S1878-5352(13)00359-6/h0160http://refhub.elsevier.com/S1878-5352(13)00359-6/h0160http://refhub.elsevier.com/S1878-5352(13)00359-6/h0165http://refhub.elsevier.com/S1878-5352(13)00359-6/h0165http://refhub.elsevier.com/S1878-5352(13)00359-6/h0165http://refhub.elsevier.com/S1878-5352(13)00359-6/h0165http://refhub.elsevier.com/S1878-5352(13)00359-6/h0165http://dx.doi.org/10.1016/j.arabjc.2013.10.019http://dx.doi.org/10.1016/j.arabjc.2013.10.019http://refhub.elsevier.com/S1878-5352(13)00359-6/h0165http://refhub.elsevier.com/S1878-5352(13)00359-6/h0165http://refhub.elsevier.com/S1878-5352(13)00359-6/h0165http://refhub.elsevier.com/S1878-5352(13)00359-6/h0160http://refhub.elsevier.com/S1878-5352(13)00359-6/h0160http://refhub.elsevier.com/S1878-5352(13)00359-6/h0155http://refhub.elsevier.com/S1878-5352(13)00359-6/h0155http://refhub.elsevier.com/S1878-5352(13)00359-6/h0155http://refhub.elsevier.com/S1878-5352(13)00359-6/h0155http://refhub.elsevier.com/S1878-5352(13)00359-6/h0150http://refhub.elsevier.com/S1878-5352(13)00359-6/h0150http://refhub.elsevier.com/S1878-5352(13)00359-6/h0150http://refhub.elsevier.com/S1878-5352(13)00359-6/h0150http://refhub.elsevier.com/S1878-5352(13)00359-6/h0140http://refhub.elsevier.com/S1878-5352(13)00359-6/h0140http://refhub.elsevier.com/S1878-5352(13)00359-6/h0140http://refhub.elsevier.com/S1878-5352(13)00359-6/h0135http://refhub.elsevier.com/S1878-5352(13)00359-6/h0135http://refhub.elsevier.com/S1878-5352(13)00359-6/h0135http://refhub.elsevier.com/S1878-5352(13)00359-6/h0130http://refhub.elsevier.com/S1878-5352(13)00359-6/h0130http://refhub.elsevier.com/S1878-5352(13)00359-6/h0130http://refhub.elsevier.com/S1878-5352(13)00359-6/h0130http://refhub.elsevier.com/S1878-5352(13)00359-6/h0125http://refhub.elsevier.com/S1878-5352(13)00359-6/h0125http://refhub.elsevier.com/S1878-5352(13)00359-6/h0125http://refhub.elsevier.com/S1878-5352(13)00359-6/h0115http://refhub.elsevier.com/S1878-5352(13)00359-6/h0115http://refhub.elsevier.com/S1878-5352(13)00359-6/h0110http://refhub.elsevier.com/S1878-5352(13)00359-6/h0110http://refhub.elsevier.com/S1878-5352(13)00359-6/h0110http://refhub.elsevier.com/S1878-5352(13)00359-6/h0110http://refhub.elsevier.com/S1878-5352(13)00359-6/h0105http://refhub.elsevier.com/S1878-5352(13)00359-6/h0105http://refhub.elsevier.com/S1878-5352(13)00359-6/h0105http://refhub.elsevier.com/S1878-5352(13)00359-6/h0105http://refhub.elsevier.com/S1878-5352(13)00359-6/h0100http://refhub.elsevier.com/S1878-5352(13)00359-6/h0100http://refhub.elsevier.com/S1878-5352(13)00359-6/h0100http://refhub.elsevier.com/S1878-5352(13)00359-6/h0100http://refhub.elsevier.com/S1878-5352(13)00359-6/h0095http://refhub.elsevier.com/S1878-5352(13)00359-6/h0095http://refhub.elsevier.com/S1878-5352(13)00359-6/h0095http://refhub.elsevier.com/S1878-5352(13)00359-6/h0090http://refhub.elsevier.com/S1878-5352(13)00359-6/h0090http://refhub.elsevier.com/S1878-5352(13)00359-6/h0090http://refhub.elsevier.com/S1878-5352(13)00359-6/h0090http://refhub.elsevier.com/S1878-5352(13)00359-6/h0085http://refhub.elsevier.com/S1878-5352(13)00359-6/h0085http://refhub.elsevier.com/S1878-5352(13)00359-6/h0085http://refhub.elsevier.com/S1878-5352(13)00359-6/h0085http://refhub.elsevier.com/S1878-5352(13)00359-6/h0080http://refhub.elsevier.com/S1878-5352(13)00359-6/h0080http://refhub.elsevier.com/S1878-5352(13)00359-6/h0080http://refhub.elsevier.com/S1878-5352(13)00359-6/h0075http://refhub.elsevier.com/S1878-5352(13)00359-6/h0075http://refhub.elsevier.com/S1878-5352(13)00359-6/h0075http://refhub.elsevier.com/S1878-5352(13)00359-6/h0070http://refhub.elsevier.com/S1878-5352(13)00359-6/h0070http://refhub.elsevier.com/S1878-5352(13)00359-6/h0070http://refhub.elsevier.com/S1878-5352(13)00359-6/h0070http://refhub.elsevier.com/S1878-5352(13)00359-6/h0065http://refhub.elsevier.com/S1878-5352(13)00359-6/h0065http://refhub.elsevier.com/S1878-5352(13)00359-6/h0065http://refhub.elsevier.com/S1878-5352(13)00359-6/h0060http://refhub.elsevier.com/S1878-5352(13)00359-6/h0060http://refhub.elsevier.com/S1878-5352(13)00359-6/h0060http://refhub.elsevier.com/S1878-5352(13)00359-6/h0055http://refhub.elsevier.com/S1878-5352(13)00359-6/h0055http://refhub.elsevier.com/S1878-5352(13)00359-6/h0055http://refhub.elsevier.com/S1878-5352(13)00359-6/h0050http://refhub.elsevier.com/S1878-5352(13)00359-6/h0050http://refhub.elsevier.com/S1878-5352(13)00359-6/h0050http://refhub.elsevier.com/S1878-5352(13)00359-6/h0050http://refhub.elsevier.com/S1878-5352(13)00359-6/h0050http://refhub.elsevier.com/S1878-5352(13)00359-6/h0045http://refhub.elsevier.com/S1878-5352(13)00359-6/h0045http://refhub.elsevier.com/S1878-5352(13)00359-6/h0040http://refhub.elsevier.com/S1878-5352(13)00359-6/h0040http://refhub.elsevier.com/S1878-5352(13)00359-6/h0035http://refhub.elsevier.com/S1878-5352(13)00359-6/h0035http://refhub.elsevier.com/S1878-5352(13)00359-6/h0035http://refhub.elsevier.com/S1878-5352(13)00359-6/h0035http://refhub.elsevier.com/S1878-5352(13)00359-6/h0030http://refhub.elsevier.com/S1878-5352(13)00359-6/h0030http://refhub.elsevier.com/S1878-5352(13)00359-6/h0030http://refhub.elsevier.com/S1878-5352(13)00359-6/h0030http://refhub.elsevier.com/S1878-5352(13)00359-6/h0025http://refhub.elsevier.com/S1878-5352(13)00359-6/h0025http://refhub.elsevier.com/S1878-5352(13)00359-6/h0025http://refhub.elsevier.com/S1878-5352(13)00359-6/h0020http://refhub.elsevier.com/S1878-5352(13)00359-6/h0020http://refhub.elsevier.com/S1878-5352(13)00359-6/h0020http://refhub.elsevier.com/S1878-5352(13)00359-6/h0015http://refhub.elsevier.com/S1878-5352(13)00359-6/h0015http://refhub.elsevier.com/S1878-5352(13)00359-6/h0015http://refhub.elsevier.com/S1878-5352(13)00359-6/h0010http://refhub.elsevier.com/S1878-5352(13)00359-6/h0010http://refhub.elsevier.com/S1878-5352(13)00359-6/h0010http://refhub.elsevier.com/S1878-5352(13)00359-6/h0005http://refhub.elsevier.com/S1878-5352(13)00359-6/h0005