Curs 0

20
Utilizarea Sistemelor de Operare de fapt… Instalare, Configurare si Utilizare Sisteme de Calcul Conf. dr. ing. Remus BRAD

Transcript of Curs 0

Page 1: Curs 0

Utilizarea Sistemelor de Operare

de fapt…

Instalare, Configurare si UtilizareSisteme de Calcul

Conf. dr. ing. Remus BRAD

Page 2: Curs 0

2

Bibliografie

• Remus Brad, Marius Bratu - Instalare, configurare siutilizare sisteme de calcul, Editura Universitatii“Lucian Blaga” din Sibiu, 2001

• Peter Norton, Secrete PC, Editura Teora, ISBN 973-601-547-5

• Scott Mueller, PC depanare si modernizare, EdituraTeora, ISBN 973-601-653-6

• Winn Rosch, Totul despre Hardware, Editura Teora

• http://rbrad.ulbsibiu.ro/teaching/courses/icus.php

Page 3: Curs 0

3

Bibliografie

Şi…Google

Page 4: Curs 0

4

Despre materia studiata...“Hard-disk-ul este una dintre cele mai importante componente ale unui

calculator, de fapt este creierul calculatorului deoarece de la el, adicăel este programat , construit pentru a face aproape toate operaţiile din calculator. Hardul este un dreptunghi de dimensiuni acceptabile undesunt proiectate microprocesoare, chipuri etc. pt. a putea face operaţiiledate de la tastatură. El face legătura pt. a afişa rezultatele etc. Operaţiile de bază sunt programate în acest hard”

„Placa de sunet de tip Sound Blaster este o placă magnetică care sefoloseşte în cadrul aplicaţiilor cu vibro-sunete.

„Să ştiţi că am instalat de toate dar acest Windows NT SERVER nu l-aminstalt de loc. Să ştiţi că am auzit că este bun pentru reţele mari şi am văzut cum merge, dar nu-l-am instalat niciodată, doar ce am mai citit despre el.”

„După aceea aprindem calculatorul cu ajutorul unei dishete sistem”„Formatarea fizică presupune ştergerea lui fizică, adică fără a mai avea

acces la el, pe când, formatarea logică presupune ştergerea lui din memorie, adică ştergerea celui marcat fizic.”

Page 5: Curs 0

5

Calculatoarele asa cum le cunoastem..

display

networkconnection

keyboard

Did computers always looked like this?

Will computers always look like that?

Page 6: Curs 0

6

Primul calculator

Discovered in 1901

Used for astronomical calculations

Sophisticated 20 gearsassembly

Knowledge completely lost …

Built around 87 B.C.

Page 7: Curs 0

7

Puţină istorie

• …• 76 B.C. - Antikythera mechanism• 1642 Blaise Pascal - calculating machine• 1800s Babbadge – analytical engine• 1930s – 1940s electromechanical computers• 1937 – J. Atanasoff / C. Berry– ABC (electronic)• 1943/46 – J. Mauchly et al - ENIAC (18,000 tubes)• 1945 – J von Neumann – von Neumann architecture• 1948, 1958 – transistor & IC invention• 1960s – transistor based computers• 1971 – Intel 4004 – the first GP microprocessor• The “modern” computer era started …

Page 8: Curs 0

8

• 1800s Ada Byron – concepts of branches and loops• 1945 Konrad Zuse – Plankalkul (first algorithmic language)• 1949 J. Mauchly – Short Code (first HLL)• 1951 G. Hopper – the first compiler• 1957 J. Backus – FORTRAN• 1960s IBM – virtual machine concept• 1968 N. Wirth – Pascal• 1970s AT&T - UNIX• 1972 D. Ritchie et al – C• 1987 A. Tanenbaum – MINIX (open source clone of UNIX)• 1991 L. Torvalds – Linux• …

Puţină istorie

Page 9: Curs 0

9

Tipuri de calculatoare

• Supercomputer $5-20 million• Mainframe $0.5-4 million• Server $10-200 thousand• PC/Workstation $1-10 thousand• Game console $300-$1000• Embedded device $1-$100• Future disposable 1-100 cents

Page 10: Curs 0

10

Legea lui Moore: 2X transistors / “year”

• “Cramming More Components onto Integrated Circuits”– Gordon Moore, Electronics, 1965

• # on transistors / cost-effective integrated circuit double every N months (12 ≤ N ≤ 24)

Page 11: Curs 0

11

Legea lui Moore

•• LegeaLegea luilui Moore e Moore e valabilavalabila de de atitiaatitia aniani!!

42,000,000 transistors2000: Pentium IV

325,000,000 transistors (25M CPU / 300M Cache)2002: Itanium

24,000,000 transistors1999: Pentium III

7,500,000 transistors1997: Pentium II

3,100,000 transistors1993: Pentium

1,180,000 transistors1989: 80486 DX

275,000 transistors1985: 80386

120,000 transistors1982: 80286

29,000 transistors1978: 8086

5,000 transistors1974: 8080

2,500 transistors1972: 8008

2,250 transistors1971: 4004

Page 12: Curs 0

12

Cum se obtine performanta• Drill down into 4 technologies:

– Disks, – Memory, – Network, – Processors

• Compare for Bandwidth vs. Latency improvements in performance over time

• Bandwidth: number of events per unit time– E.g., M bits / second over network, M bytes / second from disk

• Latency: elapsed time for a single event– E.g., one-way network delay in microseconds,

average disk access time in milliseconds

Page 13: Curs 0

13

Disks: Archaic vs Modern

• Seagate 373453, 2003• 15000 RPM (4X)• 73.4 GBytes (2500X)• Tracks/Inch: 64000 (80X)• Bits/Inch: 533,000 (60X)• Four 2.5” platters

(in 3.5” form factor)• Bandwidth:

86 MBytes/sec (140X)• Latency: 5.7 ms (8X)• Cache: 8 MBytes

• CDC Wren I, 1983• 3600 RPM• 0.03 GBytes capacity• Tracks/Inch: 800• Bits/Inch: 9550• Three 5.25” platters

• Bandwidth: 0.6 MBytes/sec

• Latency: 48.3 ms• Cache: none

Page 14: Curs 0

14

Latency Lags Bandwidth (for last ~20 years)

• Performance Milestones

• Disk: 3600, 5400, 7200, 10000, 15000 RPM (8x, 143x)(latency = simple operation w/o contentionBW = best-case)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative BW

Improvement

Disk

(Latency improvement = Bandwidth improvement)

Page 15: Curs 0

15

Memory: Archaic vs Modern• 1980 DRAM

(asynchronous)• 0.06 Mbits/chip• 64,000 xtors, 35 mm2

• 16-bit data bus per module, 16 pins/chip

• 13 Mbytes/sec• Latency: 225 ns• (no block transfer)

• 2000 Double Data Rate Synchr. (clocked) DRAM

• 256.00 Mbits/chip (4000X)• 256,000,000 xtors, 204 mm2

• 64-bit data bus per DIMM, 66 pins/chip (4X)

• 1600 Mbytes/sec (120X)• Latency: 52 ns (4X)• Block transfers (page mode)

Page 16: Curs 0

16

Latency Lags Bandwidth (last ~20 years)• Performance Milestones

• Memory Module: 16bit plain DRAM, Page Mode DRAM, 32b, 64b, SDRAM, DDR SDRAM (4x,120x)

• Disk: 3600, 5400, 7200, 10000, 15000 RPM (8x, 143x)

(latency = simple operation w/o contentionBW = best-case)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative BW

Improvement

MemoryDisk

(Latency improvement = Bandwidth improvement)

Page 17: Curs 0

17

LANs: Archaic vs Modern• Ethernet 802.3• Year of Standard: 1978• 10 Mbits/s

link speed • Latency: 3000 µsec• Shared media• Coaxial cable

• Ethernet 802.3ae• Year of Standard: 2003• 10,000 Mbits/s (1000X)

link speed • Latency: 190 µsec (15X)• Switched media• Category 5 copper wire

Coaxial Cable:

Copper coreInsulator

Braided outer conductorPlastic Covering

Copper, 1mm thick, twisted to avoid antenna effect

Twisted Pair:"Cat 5" is 4 twisted pairs in bundle

Page 18: Curs 0

18

Latency Lags Bandwidth (last ~20 years)

• Performance Milestones

• Ethernet: 10Mb, 100Mb, 1000Mb, 10000 Mb/s (16x,1000x)

• Memory Module: 16bit plain DRAM, Page Mode DRAM, 32b, 64b, SDRAM, DDR SDRAM (4x,120x)

• Disk: 3600, 5400, 7200, 10000, 15000 RPM (8x, 143x)

(latency = simple operation w/o contentionBW = best-case)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative BW

Improvement

Memory

Network

Disk

(Latency improvement = Bandwidth improvement)

Page 19: Curs 0

19

CPUs: Archaic vs Modern• 1982 Intel 80286 • 12.5 MHz• 2 MIPS (peak)• Latency 320 ns• 134,000 xtors, 47 mm2

• 16-bit data bus, 68 pins• Microcode interpreter,

separate FPU chip• (no caches)

• 2001 Intel Pentium 4• 1500 MHz (120X)• 4500 MIPS (peak) (2250X)• Latency 15 ns (20X)• 42,000,000 xtors, 217 mm2

• 64-bit data bus, 423 pins• 3-way superscalar,

Dynamic translate to RISC, Superpipelined (22 stage),Out-of-Order execution

• On-chip 8KB Data caches, 96KB Instr. Trace cache, 256KB L2 cache

Page 20: Curs 0

20

Latency Lags Bandwidth (last ~20 years)• Performance Milestones• Processor: ‘286, ‘386, ‘486,

Pentium, Pentium Pro, Pentium 4 (21x,2250x)

• Ethernet: 10Mb, 100Mb, 1000Mb, 10000 Mb/s (16x,1000x)

• Memory Module: 16bit plain DRAM, Page Mode DRAM, 32b, 64b, SDRAM, DDR SDRAM (4x,120x)

• Disk : 3600, 5400, 7200, 10000, 15000 RPM (8x, 143x)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative BW

Improvement

Processor

Memory

Network

Disk

(Latency improvement = Bandwidth improvement)

CPU high, Memory low(“Memory Wall”)