Predeleanu Dumitru, 2213 C, Tema 1 Metode Numerice.
-
Upload
lazar-vlad -
Category
Documents
-
view
9 -
download
0
Embed Size (px)
description
Transcript of Predeleanu Dumitru, 2213 C, Tema 1 Metode Numerice.
-
5/25/2018 Predeleanu Dumitru, 2213 C, Tema 1 Metode Numerice.
1/11
-
5/25/2018 Predeleanu Dumitru, 2213 C, Tema 1 Metode Numerice.
2/11
c)octave-3.6.1.exe:1> x=[2 9 16]
-
5/25/2018 Predeleanu Dumitru, 2213 C, Tema 1 Metode Numerice.
3/11
x =
2 9 16
octave-3.6.1.exe:2> y=[2^(1/2)*17^(1/2) 3*17^(1/2) 4*17^(1/2)]
y =
5.8310 12.3693 16.4924
octave-3.6.1.exe:3> c=polyfit(x,y,2)
c =
-0.024646 1.205153 3.519229
octave-3.6.1.exe:4> P2=polyout(c)
P2 = -0.024646*s^2 + 1.2052*s^1 + 3.5192
octave-3.6.1.exe:5> P=polyval(c,x)
P =
5.8310 12.3693 16.4924
octave-3.6.1.exe:6> Ps=polyval(c,12)
Ps = 14.432
octave-3.6.1.exe:7> erP=(14.2828-14.4321)*100/14.2828
erP = -1.0453
-
5/25/2018 Predeleanu Dumitru, 2213 C, Tema 1 Metode Numerice.
4/11
d) erL=erP=-1,0453%
e) octave-3.6.1.exe:1> x=2:0.1:16;
octave-3.6.1.exe:2> N2=-0.0246*x.^2+1.2046*x. 1+3.5202;
octave-3.6.1.exe:3> L2=-0.0246*x.^2+1.2052*x.^1+3.5192;
octave-3.6.1.exe:4> P2=-0.0246*x.^2+1.2052*x.^1+3.5192;
octave-3.6.1.exe:5> f=sqrt(17)*x.^(1/2);
octave-3.6.1.exe:6> plot(x,f,"o1",x,L2,"o2",x,N2,"*4",x,P2,"+2"),grid("on")
Problema 2
octave-3.2.4.exe:1> x=[1 2 3 4 5]
x =
1 2 3 4 5
-
5/25/2018 Predeleanu Dumitru, 2213 C, Tema 1 Metode Numerice.
5/11
octave-3.2.4.exe:2> y=[-17*2 17*2 17 17/10 17*10]
y =
-34.0000 34.0000 17.0000 1.7000 170.0000
octave-3.2.4.exe:3> yi=spline(x,y)
yi =
{
x =
1
2
3
4
5
P =
10.4833 -73.9500 131.4667 -34.0000
10.4833 -42.5000 15.0167 34.0000
34.2833 -11.0500 -38.5333 17.0000
34.2833 91.8000 42.2167 1.7000
n = 4
k = 4
-
5/25/2018 Predeleanu Dumitru, 2213 C, Tema 1 Metode Numerice.
6/11
d = 1
}
octave-3.2.4.exe:4> valinterp1=ppval(yi,(2.6))
valinterp1 = 29.974
octave-3.2.4.exe:5> valinterp2=ppval(yi,(4.2))
valinterp2 = 14.090
octave-3.2.4.exe:6> x=[1 2 3 4]
x =
1 2 3 4
octave-3.2.4.exe:7> y=[-17*2 17*2 17 17/10]
y =
-34.0000 34.0000 17.0000 1.7000
octave-3.2.4.exe:8> p=polyfit(x,y,3)
p =
14.450 -129.200 354.450 -273.700
octave-3.2.4.exe:9> pp=polyout(p)
pp = 14.45*s^3 - 129.2*s^2 + 354.45*s^1 - 273.7
octave-3.2.4.exe:10> x=1:0.1:4;
octave-3.2.4.exe:11> y=14.45*x.^3-129.2*x.^2+354.45*x. 1-273.7;
-
5/25/2018 Predeleanu Dumitru, 2213 C, Tema 1 Metode Numerice.
7/11
octave-3.2.4.exe:12> yi=spline(x,y,x)
yi =
Columns 1 through 7:
-34.00000 -20.90405 -9.43840 0.48365 8.94880 16.04375 21.85520
Columns 8 through 14:
26.46985 29.97440 32.45555 34.00000 34.69445 34.62560 33.88015
Columns 15 through 21:
32.54480 30.70625 28.45120 25.86635 23.03840 20.05405 17.00000
Columns 22 through 28:
13.96295 11.02960 8.28665 5.82080 3.71875 2.06720 0.95285
Columns 29 through 31:
0.46240 0.68255 1.70000
octave-3.2.4.exe:13> plot(x,yi),grid("on")
-
5/25/2018 Predeleanu Dumitru, 2213 C, Tema 1 Metode Numerice.
8/11
Problema 3
octave-3.6.1.exe:1> j=5*((17*((-5/sqrt(3)+6)^2+1))/(1+log(-5/sqrt(3)+6))+(17*((5/sqrt(3)+6)^2+1))/(1+log(5/sqrt(3)+6)))
j = 2560.2
octave-3.6.1.exe:2> er1=(17*150.8745-j)/(17*150.8745)*100
er1 = 0.18297
octave-3.6.1.exe:3> x=[1 6 11]
x =
1 6 11
octave-3.6.1.exe:4> function y=f(x)
> y=17*(x^2+1)/(1+log(x))
> endfunction
-
5/25/2018 Predeleanu Dumitru, 2213 C, Tema 1 Metode Numerice.
9/11
octave-3.6.1.exe:5> format long
octave-3.6.1.exe:6> i=quad("f",1,11)
i = 2564.86654798786
octave-3.6.1.exe:7> er2=(17*150.8745-i)/(17*150.8745)*100
er2 = -1.87096911061579e-006
octave-3.6.1.exe:8>y=[17*(1^2+1)/(1+log(2)) 17*(6^2+1)/(1+log(6)) 17*(11^2+1)/(1+log(11))]
y =
20.0809477110878 225.3059430560197 610.3778467227263
octave-3.6.1.exe:9> k=5/3*(20.0809+4*225.3059+610.3778)
k = 2552.80383333333
octave-3.6.1.exe:10> er3=(17*150.8745-k)/(17*150.8745)*100
er3 = 0.470303880013509
Problema 4
4.1)
octave-3.6.1.exe:1> x=0:2:24;
y=[17*65 17*67 17*79 17*97 17*120 17*143 17*164 17*180 17*189 17*187 17*172 17*140
17*89]
y =
Columns 1 through 11:
-
5/25/2018 Predeleanu Dumitru, 2213 C, Tema 1 Metode Numerice.
10/11
1105 1139 1343 1649 2040 2431 2788 3060 3213 3179 2924
Columns 12 and 13:
2380 1513
octave-3.6.1.exe:2> c=polyfit(x,y,3)
c =
-1.0185 26.3969 -29.7348 1103.4588
octave-3.6.1.exe:3> P=polyout(c)
P = -1.0185*s^3 + 26.397*s^2 - 29.735*s^1 + 1103.5
octave-3.6.1.exe:4> F=polyval(c,x)
F =
Columns 1 through 8:
1103.5 1141.4 1341.7 1655.3 2033.5 2427.3 2787.8 3066.1
Columns 9 through 13:
4.2)
octave-3.6.1.exe:6> trapz(x,y)
ans = 54910
octave-3.6.1.exe:7> sum(-1.0185*x.^3 + 26.397*x.^2 -29.735*x.^1 + 1103.5)
-
5/25/2018 Predeleanu Dumitru, 2213 C, Tema 1 Metode Numerice.
11/11
ans = 2.8767e+004
3213.4 3180.7 2919.2 2380.0 1514.2
4.3)
octave-3.6.1.exe:8 > grid("on"),plot(x,y,"-*3;graficul zilnic de sarcina(tabel);"), hold("on")
octave-3.6.1.exe:9> plot(x,-1.0185*x.^3 + 26.397*x.^2 -29.735*x.^1 + 1103.5,"-o1;functia P=P(t)(punctul
1) ;")