Poluarea radioactiva

48
GRUPUL ŞCOLAR AGRICOL BECLEAN JUDEŢUL BISTRIŢA-NĂSĂUD TEMA PROIECTULUI POLUAREA RADIOACTIVA A MEDIULUI DE CĂTRE INDUSTRIA NUCLEARĂ PROF. POP AUREL

description

Poluarea radioactiva

Transcript of Poluarea radioactiva

Page 1: Poluarea radioactiva

GRUPUL ŞCOLAR AGRICOL BECLEAN

JUDEŢUL BISTRIŢA-NĂSĂUD

TEMA PROIECTULUI

POLUAREA RADIOACTIVA A MEDIULUI DE CĂTRE

INDUSTRIA NUCLEARĂ

PROF. POP AUREL

2010

Page 2: Poluarea radioactiva

POLUAREA RADIOACTIVĂ A MEDIULUI DE CĂTRE INDUSTRIA NUCLEARĂ

CUPRINS

1. Argument

1.1. Poluarea radioactivă

2.1 Calculul dozelor la expunerea internă

2. Prevederi legislative în domeniu

3. Centrale nucleare electrice

3.1. Principiul de funcţionare

3.2. Ciclul combustibilului nuclear

3.3. Reactorul nuclear

3.4. Tipuri de reactoare nucleare

3.5. Reîncărcărea reactoarelor nucleare

3.6. Aplicaţii ale reactoarelor nucleare

3.7. Securitatea centralelor nucleare

3.8. Poluări datorate centralelor electronucleare (CEN)

5. Concluzii

Bibliografie

6. Anexe

2

Page 3: Poluarea radioactiva

Capitolul I. Argument.

Vreme de decenii, radiaţiile ionizate au constituit doar o curiozitate de laborator, cunoscută

numai câtorva iniţiaţi. Descoperirea radioactivităţii artificiale şi apoi aceea a fisiunii uraniului, în

deceniul al patrulea al acestui secol, au dat un puternic imbold cercetărilor de energie

nucleară.Energia nucleară a ieşit însă din anonimat abia după aruncarea celor două bombe

atomice în 1945 asupra Japoniei, la Hiroshima a explodat prima bombă aruncată asupra

populaţiei, că măsură militară de distrugere, iar cea de-a doua bombă atomică la Nagasaki.

Construirea reactorilor nucleari şi posibilitatea de a utiliza aceste instalaţii pentru a produce

energie electrică în cantitate mare, au transferat apoi problema cercetării radiaţiilor şi odată cu

aceasta şi problema protecţiei contra radiaţiilor, în plin domeniu industrial şi economic. Studii

recente au arătat că datorită tuturor cauzelor de poluare radioactivă, doza de radiaţii pe cap de

locuitor a crescut în ultimii 20 de ani de 5 până la 10 ori. Iradierea îndelungată, chiar cu doze

mici, poate produce leucopenii şi malformaţii congenitale, pe când iradierea cu doze mari duce

la accentuarea leucopeniei, la eriteme, la hemoragii interne, căderea părului, sterilitatea

completă, iar în cazurile extreme produce moartea.

I.1. Poluarea radioactivă

Un tip de poluare a mediului ambiant a apărut odată cu prepararea şi utilizarea pe scară

largă a substanţelor radioactive. Se ştie că acestea emit radiaţii ionizante, care pot să devină

extrem de periculoase pentru toate vietăţile dacă nu se iau anumite măsuri de protecţie.

Sursele de radioactivitate se pot grupa în două categorii:

a) surse naturale

b) surse artificiale

3

Page 4: Poluarea radioactiva

Radioactivitatea naturală este determinată de substanţele radioactive de origine terestră

(precum U-238, U-235, Th-232, Ac-228, K-40 etc.), la care se adaugă radionuclizii cosmogeni

(H-3, Be-7, C-14 etc.) rezultaţi în urma interacţiei radiaţiilor cosmice cu straturile superioare ale

atmosferei. Un aspect important al radioactivităţii naturale este legat de gazele radioactive –

radon ( Rn-222) şi toron (Rn-220), care provin din uraniul existent în scoarţa terestră, ce

difuzează prin sol şi ajung în atmosferă. Toate radiaţiile ionizante, de origine terestră sau

cosmică, constituie fondul natural de radiaţii care acţionează asupra organismelor vii.

Radioactivitatea artificială este datorată prezenţei în mediul înconjurător a unor

radionuclizi care îşi datorează existenţa activităţii omului.

Radiaţia artificială este folosită în multe ramuri de activitate. De exemplu, în industrie este

folosită pentru controlul proceselor şi a calităţii produselor, iar în scop de studiu, este folosită în

institute de cercetare şi învăţământ superior. Tot aici trebuie inclusă şi activitatea medicilor sau a

personalului sanitar care lucrează cu radiaţii.

Doza fondului natural de radiaţii este cuprinsă între 10-100 µrem/h.

La fondul natural de radiaţii se adaugă iradierea artificială datorată procedurilor medicale,

utilizării TV, ceasurilor electronice, materialelor de construcţie, etc. cu un aport de cca 1,04

mSv/an.

Doza maximă admisă variază cu obişnuinţa şi vârsta:

- 1,3 rem/an, sub 45 ani;

- 2,5 rem/an, peste 45 ani;

- 0,3 rem/săptămână, pentru individ care lucrează într-un laborator de radiaţii.

Boala radiaţiei apare la mai mult de 15 rem/an.

S-a stabilit o scală a nivelelor de iradiere:

- 0,001 rad – iradiere anuală datorată activităţilor nucleare;

- 0,005 rad – iradiere anuală datorată ecranului de televiziune;

4

Page 5: Poluarea radioactiva

- 0,05 rad – examen radiologic;

- 0,1 rad – iradiere naturală media anuală;

- 0,5 rad – pragul oficial de securtate pentru public;

- 200-400 rad – mortalitatea în 5% din cazuri;

- 400-600 rad – mortalitatea în 50% din cazuri până în a 30-a zi;

- peste 600 rad – moarte sigură în 90% din cazuri, în maxim 2 săptămâni.

Mărimea prin care se evaluează nivelul iradierii substanţelor vii şi efectele asupra

acestora este doza.

Doza absorbită reprezintă energia cedată de radiaţia ionizantă unităţii de masă a

substanţei prin care trece, unitatea de măsură fiind gray (Gy).

Doza echivalentă constituie un indicator al riscului de expunere pentru un anumit ţesut la

diferite radiaţii şi se defineşte ca fiind doza absorbită într-un ţesut supus la o radiaţie oarecare

care produce acelaşi efect biologic ca o doză absorbită corespunzătoare unei radiaţii standard.

Unitatea de măsură este sievert (Sv).

Monitorizarea dozei gama şi a parametrilor meteorologici se realizează cu o staţie automată

care face parte din Reţeaua Naţională de Supraveghere a Radioactivităţii Mediului iar

coordonarea ştiinţifică, tehnică şi metodologică a RNSRM este asigurată de Laboratorul Naţional

de Referinţă pentru Radioactivitate (LNR) din cadrul Agenţiei Naţionale pentru Protecţia

Mediului.

Sistemul de monitorizare a dozei gama în timp real a fost achiziţionat în anul 2006 în

cadrul proiectului PHARE “Procurarea de echipamente necesare în scopul creării unui sistem

adecvat de monitorizare şi raportare a radioactivităţii mediului”.

Sistemul de monitorizare a dozei gama se compune din:

- 2 sonde de detecţie ce măsoară debitul echivalent de doză gama (μSv/h)

- 1 staţie meteorologică automată care măsoară: presiunea atmosferică,

5

Page 6: Poluarea radioactiva

temperatura, direcţia şi viteza vântului, umiditatea, radiaţia solară şi cantitatea de precipitaţii.

Staţia de monitorizare a dozei gama este amplasată în faţa sediului Agenţiei pentru

Protecţia Mediului Brăila şi realizează supravegherea radioactivităţii factorului de mediu aer

(figura 1).

Fig. 1 Staţia de monitorizare a dozei gama

Datele achiziţionate de staţie sunt transmise în timp real, printr-un sistem de comunicaţie

prin cablu, la serverul Agenţiei pentru Protecţia Mediului Brăila şi simultan, prin GPRS, către

Laboratorul Naţional de Referinţă pentru Radioactivitate.

6

SERVER APM BRĂILA

ANPM - LNR

Page 7: Poluarea radioactiva

Datele stocate în arhiva laboratorului naţional sunt validate şi retransmise la serverul

APM.

Obiectivul principal al staţiei este detectarea oricăror creşteri cu semnificaţie radiologică a

nivelelor de radioactivitate din mediu precum şi acţiunea de avertizare – alarmare a factorilor de

decizie.

În clinici şi spitale radiaţiile sunt folosite:

- la radiografii, unde se folosesc în special radiaţiile X (Rőntgen)

- în scop terapeutic se utilizează iradierea pentru distrugerea ţesuturilor tumorale maligne

unde frecvent folosite sunt radiaţiile X de mare energie sau radiaţiile gama date de sursele Co-60.

- în scopuri de investigaţie se utilizează administrarea de radionuclizi cu timpi scurţi de

înjumătăţire, după care se realizează tomografierea, în special a plămânilor, oaselor şi creierului.

Acţiunea fiziologică a radiaţiilor

Efectele vătămătoare ale radiaţiilor se împart în: efecte somatice (care pot fi la rândul lor

imediate, cronice şi întârziate) şi efecte genetice.

Efectele somatice imediate afectează sistemul nervos central şi gastrointestinal.

Efectele somatice cronice produc: depresiuni hematopoetice, sterilitate, tulburarea vederii

(cataracte), alopecia (căderea părului). Ca efecte întârziate se relevă: scurtarea vieţii şi apariţia

neoplasmelor în diferite forme (frecvent cancer epiteliar şi pulmonar).

Efecte genetice pot produce şi mutaţii genetice, de la cele mai severe, ca de exemplu,

întârzierea mintală, până la cele mai banale, cum sunt pete ale pielii.

Printre principalele surse de poluare radioactivă se numără:

- utilizarea în industrie, medicină, cercetare a diferitelor surse de radiaţii nucleare

- exploatări miniere radioactive, la extragere, prelucrare primară, transport

7

Page 8: Poluarea radioactiva

şi depozitare care pot contamina aerul prin gaze şi aerosoli, precum şi apa prin procesul de

spălare.

- metalurgia uraniului sau a altor metale radioactive şi fabricarea combustibilului nuclear,

care prin prelucrări mecanice, fizice, chimice, poate cuprinde în cadrul procesului tehnologic şi

produşi reziduali gazoşi, lichizi sau solizi stocarea, transportul eventual evacuarea lor pot

determina contaminarea mediului.

- reactorii nucleari experimentali sau de cercetare, în care se pot produce industrial noi

materiale radioactive.

- centralele nuclearo-electrice care poluează mai puţin în cursul exploatării lor corecte,

dar mult mai accentuat în cazul unui accident nuclear.

- exploziile nucleare experimentale, efectuate îndeosebi în aer sau în apă şi subteran, pot

contamina vecinătatea poligonului cât şi întregul glob, prin depunerea prafului şi aerosolilor

radioactivi, generaţi de către ciuperca exploziei.

- avariile şi accidentele produse la instalaţiile tehnologice nucleare produc cea mai

intensă contaminare

- accidentele în transportul aerian, maritim, feroviar sau rutier a celor mai felurite

materiale radioactive.

- deşeurile radioactive rezultate din activitatea economică şi de cercetare

Dublarea necesităţilor de energie electrică, la fiecare 12-13 ani, a făcut să crească brusc

interesul pentru reactorii nucleari, impunând dezvoltarea centralelor nuclearo-electrice, creşterea

competitivităţii energiei electrice de origine nucleară şi ridicarea continuă a performanţelor

atinse de reactorii acestor centrale, ca temperatura şi presiunea agentului transportor de căldură, a

puterii instalate pe unitatea de masă a zonei active a reactorului.

8

Page 9: Poluarea radioactiva

I.1 Calculul dozelor la expunerea interna

Daca un radionuclid incorporate in organism s-a fixat intr-un organ critic sau s-a

distribuit in tot corpul, va iradia organismul pana la eliminarea sa biologica sau pana la

dezintegrarea sa completa. Doza data de o asemenea sursa de iradiere, depinde evident de

energia disipata de radiatiile emise la dezintegrare. In cazul particulelor alfa si beta, datorita

parcursului mic, intreaga energie (sau cea mai mare parte a ei) va fi disipata in tesut.

Sa luam spre exemplificare cazul unui radionuclid beta emitator. Presupunem ca

parcursul radiatiilor beta in tesut este mai mic decat raza organului critic, ca radionuclidul emite

o particula beta la o dezintegrare, cu energia W [MeV] si se afla in organul critic intr-o

concentratie C [µCu/g]. In acest caz, energia disipata la o dezintegrare este:

3,7 · 104 [dez/s/µCi] ·C[µCi/g] · W [Mev/dez] · 1,6 · 10-6 [erg/MeV] = 0,0592 W

C [erg/s/g].

Energia totala disipata de radionuclid, pana la dezintegrarea completa va fi:

0,0592 WC [erg/s/g] · Tef [d] · 84600 [s/d] · 1,443 = 7380 W

Tef · C [erg/g] = 7,38 W Tef C

[rad].

Debitul dozei dat de radionuclid va fi:

]/[1092,5 4 sradCWD

(10.1)

sau

]/[13,2 hradCWD (10.1 a)

sau

]/[2,51 dradCWD

9

Page 10: Poluarea radioactiva

Dupa un interval de timp t[d], doza acumulata va fi:

][2,51

0raddtCeWD t

t

(10.2)

sau

][1

12,51 radeCWD t

(10.2 a)

Daca t >> 21T relatia (10.2 a) devine:

][8,73

2,5121 radCTWCWD

(10.2 b)

In cazul in care 21T>>t relatia (10.2 a) devine:

][2,51 radCtWD (10.2 c)

1. Sa se calculeze doza data de 1 HmCi 3introdus in organism sub forma de apa tritiata.

Pentru tritiu, organul critic este tot corpul. In consecinta, pentru omul standard, va

rezulta:

gCig

CiC /0143,0

70000

1000

Caracteristicile H3sunt:

MeVW 3105,5 si Tef = 12 d.

Deci

Dβ = 73,8 · 5,5 · 10-3 · 12 · 1,43 · 10-2 = 0,070 rad = 70 mrad

Doza cumulata in primele 12 ore va fi:

10

Page 11: Poluarea radioactiva

mradCtWDcumulata 01,2121043,1105,513,213,2 23

sau

mremmradeDD T

t

cum 201,20285,0701 2/1

693,0

In cazul radiatiilor gamma, “parcursul” mediu in tesut variaza intre 17,6 si 30,6 cm pentru

energii cuprinse intre 50 keV si 3 MeV adica pentru radiatiile emise de radionuclizii curent

utilizati in aplicatii. Este de presupus ca energia disipata pe gram de tesut este diferita de energia

absorbita de acelasi gram de tesut. Modul si probabilitatea de interactie a radiatiilor gama cu

materia este dependent de energia radiatiilor si numarul atomic al mediului absorbant. Doza

absorbita depinde de durata de injumatatire efectiva si de concentratia radionuclidului.

Daca intr-un mediu oarecare se afla distribuit in mod uniform 1 µCi/cm3 dintr-un radionuclid

gamma emitator, atunci debitul dozei dat de radiatiile gamma va fi:

]/[10 3 hRKgD

(10.3)

Factorul geometric mediu g pentru emitatori uniform distribuiti in corp.

Tabelul 10.1

Greu-

tatea

[kg]

inaltimea

200 190 180 170 160 150 140

100

90

138

134

139

136

142

138

145

140

147

143

150

146

154

148

11

Page 12: Poluarea radioactiva

80

70

60

50

40

129

123

117

112

102

130

124

118

113

104

131

125

119

114

105

134

126

120

116

106

136

129

122

117

108

139

131

125

119

109

141

135

128

122

110

Factorul g depinde de forma mediului respective.

Multe organe pot fi asimilate cu sfere sau cilindri.

Pentru o sfera de raza r, factorul g pentru centrul sferei este:

reg

14

(10.4)

µ fiind coeficientul de absorbtie al radiatiilor gama de catre mediul respectiv. Pentru

energii cuprinse intre 100 keV si 3 MeV pentru r sub 7 cm, factorul:

re r

1

Cu aceasta aproximatie, eroarea care se face la determinarea lui g nu depaseste 10%. In

consecinta, pentru centrul unei sfere mici g=4 πr. In tabelul 10.1 se da factorul g mediu pentru

emitatorii gamma uniform distribuiti in corp iar in tabelul 10.2 se da acelasi factor pentru

cilindri.

Doza totala data de un radionuclid incorporate este:

443,1]/[24][10 3 dhdTgKD ef (10.5)

fiind densitatea tesutului, egala cu unitatea.

Pentru o concentratie C [µCi/cm3] doza totala este:

12

Page 13: Poluarea radioactiva

CgkTD ef0346,0 (10.6)

iar debitul dozei

]/[024,0]/[ ziremKgCdremD

(10.7)

Factorul geometric mediu g pentru cilindrii continand un emitator γ uniform distribuit

Tabelul 10.2

Lun-

gimea

[cm]

Raza [cm]

3 5 10 15 20 25 30 35

2

5

10

20

30

40

60

80

100

17,5

22,3

25,1

25,7

25,9

25,9

26,0

26,0

26,0

22,1

31,8

38,1

40,5

41,0

41,3

41,6

41,6

41,6

30,3

47,7

61,3

68,9

71,3

72,4

73,0

73,3

73,3

34,0

56,4

76,1

89,8

94,6

96,5

97,8

98,4

98,5

36,2

61,6

86,5

105

112

116

118

119

119

37,5

65,2

93,4

117

126

131

134

135

136

38,6

67,9

98,4

126

137

143

148

150

150

39,3

70,5

103

133

146

153

159

161

162

Doza cumulata va fi:

2/1

693,0

10346,0 T

t

efcumulata eCKgTD

(10.6)

13

Page 14: Poluarea radioactiva

Se considera cazul unui nuclid gamma activ, Cr51. Cromul se fixeaza in sange si in

consecinta, organul critic va fi tot corpul. Daca activitatea fixata in organism este de 10 µCi, iar

constantele Cr51 sunt K=0,18; Tef =23 d 125g , va rezulta conform relatiei:

][70000

][10

g

CiC

5,2107

102312518,01046,3

42

D

mrem.

Pentru radionuclizii care emit radiatii gamma de mare energie , dozele corespunzatoare

vor fi, evident, mai mari.

Capitolul II. Prevederi legislative în domeniu.

Legea nr. 137/1995 - Legea protecţiei mediului

Art. 30

Regimul protecţiei populaţiei, mediului şi a bunurilor materiale împotriva expunerii la

radiaţii ionizante şi asigurarea securităţii surselor de radiaţii se realizează prin aplicarea

diverselor proceduri şi echipamente pentru menţinerea dozelor şi riscurilor la nivelul raţional cel

mai scăzut, în limitele admise şi în scopul prevenirii accidentelor, limitării şi înlăturării

consecinţelor acestora.

Art. 31

Activităţile în domeniul nuclear necesită asigurarea mijloacelor de protecţie şi securitate

şi se pot desfăşura numai în baza acordului şi autorizaţiei de mediu, eliberate potrivit art. 8.

14

Page 15: Poluarea radioactiva

Acordul şi autorizaţia de mediu privind instalaţiile cu risc nuclear major – centrale

nuclearo-electrice, reactoare de cercetare, uzine de fabricare a combustibilului nuclear şi

depozite finale de combustibil nuclear ars – se emit de către Guvern.

Art. 32

Autoritatea competentă în domeniul nuclear elaborează norme tehnice, standarde şi

regulamente de aplicare privind:

a) protecţia populaţiei şi a mediului în zone de risc nuclear;

b) protecţia fizică a materialelor şi a instalaţiilor nucleare;

c) nivelurile şi planurile de intervenţie care privesc şi evenimentele transfrontiere;

d) transportul substanţelor radioactive;

e) proceduri specifice de autorizare.Procedura de autorizare pentru instalaţiile cu risc

nuclear major se elaorează în termen de 60 de zile de la intrarea în vigoare a prezentei legi.

Art. 33

Controlul activităţilor nucleare se face de autoritatea centrală pentru protecţia mediului şi

de alte autorităţi competente potrivit legii.

Autoritatea centrală pentru protecţia mediului are următoarele atribuţii:

a) organizează monitorizarea radioactivităţii mediului pe întreg teritoriul ţării;

b) supraveghează, controlează şi dispune luarea măsurilor ce se impun pentru respectarea

prevederilor legale privind radioprotecţia mediului;

c) colaborează cu organele competente în apărarea împotriva dezastrelor.

Art. 34

15

Page 16: Poluarea radioactiva

Persoanele fizice şi juridice care desfăşoară activităţi în domeniul nuclear au următoarele

obligaţii:

a) să respecte normele de radioprotecţie şi de securitate;

b) să evalueze, direct sau prin forurile autorizate, riscul potenţial, să efectueze bilanţul de

mediu pentru activităţile existente şi să ceară autorizaţie de mediu;

c) să aplice procedurile şi să prevadă echipamentele pentru acctivităţile noi, care să

permită realizarea nivelului raţional cel mai scăzut al dozelor şi riscurilor asupra populaţiei şi

mediului, şi să ceară accord şi autorizaţie de mediu;

d) să ţină evidenţa strictă a surselor de radiaţii ionizante şi să le asigure protecţia fizică;

e) să aplice, prin sisteme proprii, programe de supraveghere a contaminării radioactive a

mediului şi de evaluare a expunerii grupurilor critice – populaţia din zona de supraveghere – care

să asigure că nu vor fi încălcate condiţiile prevăzute în autorizaţie, de eliminări de substanţe

radioactive şi că dozele se vor menţine în limitele admise;

f) să menţină în stare de funcţionare capacitatea de monitorizare a mediului local pentru a

depista orice contaminare radioactivă semnificativă care ar rezulta dintr-o eliminare accidentală

de substanţe radioactive;

g) să efectueze înregistrarea rezultatelor supravegherii şi a dozelor estimate pentru

grupurile critice;

h) să raporteze, la intervalele stabilite, rezultatele înregistrărilor autorităţilor competente;

i) să raporteze prompt autorităţii competente orice creştere semnificativă a contaminării

mediului şi dacă aceasta se datorează sau nu activităţii desfăşurate;

j) să verifice continuu exactitatea presupunerilor făcute prin evaluările probabilistice

privind consecinţele radiobiologice ale eliberărilor radioactive.

Capitolul III. Centrale nucleare electrice.

16

Page 17: Poluarea radioactiva

Dublarea necesităţilor de energie electrică, la fiecare 12-13 ani, a făcut să crească brusc

interesul pentru reactorii nucleari, impunând dezvoltarea centralelor nuclearo-electrice, creşterea

competitivităţii energiei electrice de origine nucleară şi ridicarea continuă a performanţelor

atinse de reactorii acestor centrale, ca temperatura şi presiunea agentului transportor de căldură, a

puterii instalate pe unitatea de masă a zonei active a reactorului.

Centralele nucleare sunt astfel proiectate încât să cuprindă sisteme care să prevină

producerea accidentelor nucleare. Acestea sunt dispuse “în linie”, astfel încât, dacă un sistem de

protecţie se defectează, un altul să îi ia locul şi aşa mai departe.Este posibil ca toate sistemele din

“linia” de protecţie să cadă unul după celălalt, dar probabilitatea producerii unui astfel de

eveniment este extrem de mică.

III.1. Principiul de funcţionare

Centrala nuclearo-electrică este un ansamblu de instalaţii şi construcţii reunite în scopul

producerii energiei electrice pe baza folosirii energiei nucleare.

Obţinerea energiei nucleare se bazează pe reacţia de fisiune (descompunere) nucleară în

lanţ.Instalaţia care asigură condiţiile de obţinere şi menţinere a reacţiei în lanţ este reactorul

nuclear.În principiu, reactorul se compune dintr-o parte centrală numită zonă activă, în care are

loc reacţia de fisiune şi se dezvoltă căldura de reacţie.

Zona activă conţine combustibilul nuclear alcătuit din izotopi fisionabili (U235, Pu239) şi

materiale fertile (U238, U232); moderatorul (apa grea), care are rolul de a încetini viteza

neutronilor rapizi, astfel ca reacţia să fie controlabilă; barele de control captează neutronii

rezultaţi din reacţia de fisiune; agentul de răcire, care preia căldura dezvoltată în zona activă şi o

cedează apei în schimbătorul de căldură.

În schimbătorul de căldură, apa se vaporizează şi devine agentul producător de lucru

mecanic în turbină. Lucrul mecanic este transformat de generator în energia electrică.

17

Page 18: Poluarea radioactiva

În figura 2 este prezentată schema simplificată a unei centrale electronucleare:

Fig. 2 Schema simplificată a CNE Karachi (Pakistan) echipată cu reactor tip CANDU,

răcit şi moderat cu apă grea

Combustibilul, moderatorul şi agentul de răcire formează aşa numita filieră a reactorului

termic care determină caracteristicile specifice centralelor nucleare.

Combustibilul introdus în reactor are forma unor pilule compactate sub formă de bare.

Între barele de combustibil se găsesc barele de control.Acestea conţin cadmiu(element chimic ce

absoarbe neutroni).Ele au rolul de a regla numărul de neutroni ce pot produce noi reacţii de

fisiune, astfel încât puterea produsă de reactor să rămână constantă în timp.

18

Page 19: Poluarea radioactiva

Pentru menţinerea reacţiei în lanţ, în unele tipuri de reactoare, neutronii emişi în reacţiile

de fisiune trebuie încetiniţi.În timpul frânării neutronilor are loc un transfer de energie de la

aceştia la moderator, temperatura moderatorului şi a combustibilului mărindu-se.

Controlul reactoarelor nucleare se face computerizat(inclusiv al sistemelor utilizate pentru

protecţia reactorului şi a mediului înconjurător).

Centralele nucleare au între 1 şi 8 reactoare(unităţi), fiecare cu o putere instalată de cel

puţin 600 MW.

III.2. Ciclul combustibilului nuclear

Reactoarele termice depind, în general, de uraniul rafinat şi îmbogăţit. Unele reactoare

nucleare pot să opereze cu o mixtură de plutoniu şi uraniu (MOX). Procesul prin care minereul

de uraniu este extras din mină, procesat, îmbogăţit, folosit, posibil reprocesat şi depozitat este

cunoscut ca ciclul combustibilului nuclear. Minereul brut de uraniu este măcinat şi tratat

chimic. Pudra rezultată de oxid de uraniu este transformată apoi în hexaflorură de uraniu în

vederea pregătirii pentru îmbogăţire.Izotopul uşor fisionabil U-235 reprezintă sub 1% din uraniul

natural, astfel încât cele mai multe reactoare solicită uraniu îmbogăţit. Îmbogăţirea presupune

creşterea procentajului de U-235 şi se realizează, uzual, cu ajutorul difuziei gazoase sau prin

centrifugare de gaz. Materialul îmbogăţit rezultat este convertit în pudră de UO2 care este

sinterizat (presat şi copt) sub formă de pastile. Pastilele sunt introduse în tuburi închise etanş care

se numesc elemente (bare) combustibile. Într-un reactor nuclear se folosesc (se „ard”) un număr

mai mare sau mai mic de astfel de elemente combustibile.

III.3. Reactorul nuclear

Reactorul nuclear este o instalaţie în care este iniţiată o reacţie nucleară în lanţ, controlată

şi susţinută la o rată staţionară (în opoziţie cu o bombă nucleară, în care reacţia în lanţ apare într-

o fracţiune de secundă şi este complet necontrolată) .Reactoarele nucleare sunt folosite pentru

numeroase scopuri. Cea mai semnificativă utilizare curentă este pentru generarea de putere

19

Page 20: Poluarea radioactiva

electrică. Reactoarele de cercetare sunt folosite pentru producerea de izotopi şi pentru

experimente cu neutroni liberi. Din punct de vedere istoric, prima folosire a reactoarelor nucleare

a fost producerea plutoniului pentru bomba atomică.

O altă utilizare militară este propulsia submarinelor şi a vapoarelor (deşi aceasta

presupune un reactor mult mai mic decât cel folosit într-o centrală nuclearo-electrică). În mod

curent, toate reactoarele nucleare comerciale sunt bazate pe fisiunea nucleară şi sunt considerate

problematice datorită nesiguranţei lor şi riscurilor asupra sănătăţii. Din contră, alţii consideră

centrala nucleară ca fiind o metodă sigură şi nepoluantă de generare a electricităţii.

Instalaţia de fuziune este o tehnologie bazată pe fuziunea nucleară în locul fisiunii

nucleare. Există şi alte instalaţii în care au loc reacţii nucleare într-o manieră controlată,

incluzând generatoarele termoelectrice radioizotope şi bateriile atomice, care generează căldură

şi putere exploatând dezintegrările radioactive pasive, cum ar fi, de exemplu, instalaţiile

Farnswoth-Hirsch de producere a radiaţiilor neutronice.

În figura 3 este prezentată schema simplificată a unui reactor nuclear:

20

Page 21: Poluarea radioactiva

Fig. 3. Schema simplificată a unui reactor nuclear

1. bară pentru oprire de urgenţă

2. bare de control

3. combustibil

4. protecţie biologică

5. ieşirea vaporilor

6. intrarea apei

7. protecţie termică

III.4. Tipuri de reactoare

21

Page 22: Poluarea radioactiva

Deşi s-au dezvoltat diferite tehnologii de realizare a reactoarele nucleare de fisiune,

acestea pot fi împărţite riguros în două clase, depinzând de energia neutronilor utilizată pentru a

susţine reacţia de fisiune în lanţ:

Reactoarele termice (lente) folosesc neutroni termici. Acestea sunt caracterizate ca având

materiale de moderare care sunt destinate încetinirii neutronilor până când aceştia ajung la

nivelul mediu al energiei cinetice al particulelor din mediul înconjurător. Neutronii termici au o

probabilitate mare de ciocnire cu nucleele fisionabile de 235U şi, comparativ cu neutronii rapizi

rezultaţi din fisiune, o probabilitate mică de captură din partea nucleelor de 238U. Pe lângă

moderator, reactoarele termice au combustibil încapsulat, vase sub presiune, scuturi şi

instrumentaţie de monitorare şi control pentru toate sistemele reactorului. Multe reactoare de

putere de acest tip, ca şi primele reactoare de producere a plutoniului au fost reactoare termice

având moderator de grafit. Unele reactoare sunt mai termalizate decât altele. Centralele moderate

cu grafit (de exemplu reactoarele ruseşti RBMK) şi apă grea (de exemplu reactorul canadian

CANDU) tind să fie mult mai termalizate decât cele de tip PWR şi BWR, acestea din urmă

utilizând ca moderator apa uşoară; datorită gradului mai înalt de termalizare, reactoarele de acest

tip trebuie să folosească uraniu natural (neîmbogăţit).

Reactoarele rapide (FBR) folosesc neutroni rapizi pentru a întreţine reacţia de fisiune în

lanţ şi sunt caracterizate prin lipsa materialului de moderare. Ele funcţionează cu combustibil

(uraniu) puternic îmbogăţit sau plutoniu, pentru a reduce procentul de U-238 care ar captura

neutronii rapizi. Unele reactoare sunt capabile să producă mai mult combustibil decât au

consumat, în mod uzual convertind U-238 în Pu-239. Unele staţii de putere timpurii au folosit

reactoare rapide, cum ar fi cele folosite la propulsia unor submarine şi vase ruseşti, altele se află

încă în construcţie, dar acest tip de reactor nu a egalat succesul reactoarelor termice în nici un

domeniu.

Reactoarele termice de putere pot fi împărţite şi ele în trei tipuri şi anume: cu vas de

presiune, cu canale combustibile presurizate, respectiv cu răcire cu gaz.

Reactoare cu vase de presiune se întâlnesc în multe centrale comerciale dar şi în propulsia

unor nave. În acest tip de reactor termic, vasul de presiune joacă, în acelaşi timp, şi rolul de scut

de protecţie şi, respectiv, de container pentru combustibilul nuclear.

22

Page 23: Poluarea radioactiva

Canalele presurizate sunt folosite în reactoarele de tip RBMK şi CANDU. Reactoarele de

acest tip prezintă avantajul de a putea fi aprovizionate (încărcate) cu combustibil proaspăt chiar

în timpul funcţionării.

Reactoarele răcite cu gaz folosesc (prin recirculare) un gaz inert, de obicei heliu, dar pot

utiliza şi azot sau bioxid de carbon. Utilizarea căldurii variază de la reactor la reactor. Unele

reactoare trimit căldura în turbine cu gaz, direct sau prin intermediul unui schimbător de căldură.

Reactorul de tip PBMR, de exemplu, este răcit cu gaz.Atâta timp cât apa serveşte ca moderator,

ea nu poate fi folosită ca fluid de răcire în reactoarele rapide. Cele mai multe reactoare rapide

sunt răcite cu metal lichid, de obicei sodiu topit. Ele sunt de două tipuri: cu piscină, respectiv cu

buclă.

Familii actuale de reactoare

- Pool type reactor = reactor cu piscină

- Pressurized Water Reactor (PWR) = reactor cu apă sub presiune

- Boiling Water Reactor (BWR) = reactor cu apă fierbătoare

- Fast Breeder Reactor (FBR) = reactor rapid reproducător

- Pressurized Heavy Water Reactor (PHWR) sau CANDU = reactor cu apă grea sub

presiune

- United States Naval reactor = reactor utilizat de marina Statelor Unite

Tipuri vechi aflate încă în funcţiune

- Magnox reactor = reactor Magnox

- Advanced Gas-cooled Reactor (AGR) = reactor avansat răcit cu gaz

- Light water cooled graphite moderated reactor (RBMK) = reactor răcit cu apă uşoară şi

moderat cu grafit

Alte tipuri de reactoare

23

Page 24: Poluarea radioactiva

- Aqueous Homogeneous Reactor = reactor omogen cu apă

- Liquid Fluoride Reactor = reactor cu floruri lichide

Reactoare rapide

Există mai mult de o duzină de proiecte de reactoare avansate, aflate în diferite stadii de

dezvoltare. Unele sunt îmbunătăţiri ale proiectelor anterioare PWR, BWR şi PHWR, altele sunt

radical diferite. Primele includ reactoarele avansate cu apă în fierbere (Advanced Boiling Water

Reactor = ABWR) dintre care două sunt deja operaţionale şi altele în construcţie, respectiv

reactoarele cu securitate pasivă ESBWR şi AP1000. Cel mai radical şi nou proiect este reactorul

modulare cu strat modular (PBMR) ce face parte din categoria reactoarelor de înaltă temperatură

răcite cu gaz (HTGCR). De menţionat este faptul că se află în stare de proiect noul tip de reactor,

CAESAR (Clean And Environmentally Safe Advanced Reactor = reactor avansat, curat şi sigur

pentru mediul înconjurător), ce foloseşte aburul pe post de moderator.

Reactoare de generaţia a IV-a

Cele mai avansate proiecte de reactoare nucleare sunt cunoscute sub denumirea de

Generaţia a IV-a şi sunt împărţite în şase clase:

Gas cooled fast reactor = reactor rapid răcit cu gaz

- Lead cooled fast reactor = reactor rapid răcit cu plumb

- Molten salt reactor = reactor cu sare topită

- Supercritical water reactor = reactor supercritic cu apă

- Very high temperature reactor = reactor cu temperatură foarte înaltă

- Fission fragment reactor = reactor cu fragmente de fisiune

III.5. Reîncărcarea reactoarelor nucleare

24

Page 25: Poluarea radioactiva

Cantitatea de energie din rezervorul unui combustibil nuclear este frecvent exprimată prin

numărul de „full-power days” (zile la putere maximă), adică numărul perioadelor de 24 de ore

(numărul de zile) cât este reactorul planificat să opereze la putere maximă pentru generarea

energiei termice. Acest ciclu, cu alte cuvinte, numărul de zile de operare la putere maximă (între

două încărcări / aprovizionări ale reactorului cu combustibil proaspăt) depinde de cantitatea de

U-235 conţinut în combustibilul nuclear la începutul ciclului. Evident, cu cât procentajul de U-

235 este mai mare la începutul ciclului, cu atât mai multe zile la putere maximă va lucra

reactorul până la următoarea reîncărcare. La sfârşitul ciclului de operare, combustibilul din unele

configuraţii este „consumat” şi este descărcat şi înlocuit cu combustibil nou, proaspăt. Cu toate

că, în practică, reacţia de otrăvire din combustibilul nuclear este cea care determină durata de

viată a combustibilului într-un reactor.Nu toate reactoarele trebuie oprite pentru reîncărcare cu

combustibil proaspăt; de exemplu, reactoarele de tip PBMR, RBMK, MSR, MAGNOX şi

CANDU permit alimentarea cu combustibil proaspăt chiar în timpul funcţionării. Într-un reactor

CANDU se permite de asemenea mutarea elementelor combustibile în diferite poziţii din centrul

acestuia, convenabile din punctul de vedere al cantităţii de U-235 din element.Cantitatea de

energie extrasă din combustibilul nuclear se numeşte „burn up” (arsă complet) şi este exprimată

în termeni de energie termică produsă pe unitatea iniţială de masă de combustibil. „Burn up” se

mai exprimă şi prin MW / tone de metal greu.

III.6. Aplicaţii ale reactoarelor nucleare

Principalele aplicaţii ale reactoarelor nucleare sunt:

- în centrale nuclearo-electrice cu producţie de căldură pentru generare de electricitate,

producţie de căldură pentru încălzire domestică şi industriala, producţie de hidrogen, la

desalinare;

- în propulsia nucleară marină există propuneri pentru rachete termonucleare si pentru

rachete propulsate prin puls nuclear;

- în transmutaţie de elemente la producţia de plutoniu, adesea pentru utilizarea în arme

nucleare;

25

Page 26: Poluarea radioactiva

- la obţinerea diverşilor izotopi radioactivi, cum ar fi americiu pentru detectorii de fum,

respectiv cobalt-60, molibden-99 şi alţii, folosiţi în medicină.

- în cercetare: pentru asigurarea unei surse de radiaţie cu neutroni şi pozitroni (cum ar fi

pentru analiza cu activare neutronică şi datarea cu potasiu-argon);

III.7. Securitatea centralelor nucleare

În regim de funcţionare normală, cantităţile de substanţe radioactive eliberate de centrala

nucleară sunt nesemnificative. Pericolul specific, pentru populaţie şi mediul ambiant, constă în

eliberarea necontrolată de substanţe radioactive. Sistemele tehnice de securitate sunt destinate să

limiteze distrugerile zonei active a reactorului.

S-a emis ipoteza că orice reactor poate exploda oricând ca o bombă nucleară. În principiu,

nici un reactor nuclear nu poate exploda ca o bombă. Sunt însă posibile accidente în care

reactoarele să se supraîncălzească, iar componentele lor, depinzând de materialele din care sunt

realizate, să se topească sau să ardă. Creşterea presiunii agentului de răcire poate deveni cauza

unor explozii "mecanice" care ar deteriora învelişul reactorului sau al sistemului de răcire. Astfel,

pot fi împrăştiate în spaţiu materiale radioactive, care să contamineze mediul înconjurător.

Centralele nucleare actuale sunt proiectate astfel încât probabilitatea unor accidente de acest tip

să fie minimă.

Toate reactoarele nucleare moderne sunt închise în containere extrem de sigure. Acestea

sunt proiectate astfel încât să prevină orice scurgeri radioactive care ar putea rezulta în urma unor

accidente de operare.

În România, a intrat în funcţiune, pe 2 decembrie 1996, centrala nucleară de la Cernavodă,

care funcţionează cu apă grea ca moderator, foloseşte uraniu îmbogăţit şi produce cu un singur

reactor, aproximativ 10% din totalul energiei electrice produse în ţară. Centrala de la Cernavodă

se bazează pe sistemul canadian CANDU şi are o putere instalată de 706 MW în prezent(figura

4). Structura unui reactor CANDU constă într-un recipient cilindric orizontal, cu tuburi pentru

barele de combustibil şi pentru lichidul de răcire (apă grea) plasate orizontal.

26

Page 27: Poluarea radioactiva

Fig. 4 Structura unui reactor CANDU

În jurul acestor tuburi se află apă grea, care acţionează ca moderator. Apa grea conţine doi

atomi de deuteriu (un izotop neradioactiv al hidrogenului) şi un atom de oxigen. Apa grea este

mult mai eficientă ca moderator decât apa obişnuită şi permite folosirea uraniului natural drept

combustibil. În condiţiile normale de funcţionare, prin folosirea unei proiectări şi tehnologii

moderne, cât şi datorită existenţei a cinci bariere de protecţie, reactoarele CANDU sunt

considerate printre cele mai sigure şi mai puţin poluante din lume, având un impact minim

asupra mediului înconjurător.

Deşeurile radioactive vor fi ţinute timp de 10 ani în bazine special amenajate în incinta

centralei în vederea scăderii radioactivităţii şi a temperaturii, după care vor fi stocate timp de 50

ani într-un depozit intermediar şi apoi transferate într-un depozit definitiv. Pentru alegerea

locului de depozitare definitivă se efectuează încă studii geologice privind structura solului şi

seismicitatea.

27

Page 28: Poluarea radioactiva

III.8. Poluări datorate unor centrale electronucleare (CEN)

În prezent, după interzicerea pe plan mondial a testelor cu armă nucleară, principalele

surse de poluare radioactivă a mediului ambiant se datoresc reactoarelor nucleare de putere

utilizate în centralele electronucleare, la producerea energiei electrice.

Deficienţa acestor tehnologii constă în faptul că, în mod inevitabil, ele sunt însoţite de

acumularea unor uriaşe cantităţi de produse de fisiune în totalitate radioactive, precum şi de

importante cantităţi de 239Pu. Se apreciază că un reactor nuclear cu o putere de 1000 MW, prin

funcţionare timp de un an, produce o cantitate de deşeuri radioactive cu o activitate de 13,52∙109

Ci, dintre care 98% sunt produse de viaţa lungă, iar printre ei se află 90Sr şi 137Cs, precum şi

0,003% produse de fisiune în stare gazoasă (85Kr, 133Xe) sau volatile (131I). Acestora li se mai

adaugă şi produse de activare acumulate sub acţiunea neutronilor cu elemente conţinute în

fluidul de răcire, în materialele de structură ale reactorului, ale circuitului primar sau ale

combustibilului nuclear.

Principalele surse de poluare pot apărea cu ocazia deschiderilor periodice a reactoarelor

pentru schimbarea parţială a combustibilului nuclear uzat, precum şi cu prilejul golirii circuitelor

de răcire a reactoarelor şi a curăţirii cu fluide. Uneori emisiile de efluenţi gazoşi (85Kr, 133Xe, 131I)

pot apărea din crăpăturile din circuitul primar şi din curăţirea acestuia. În sfârşit, o altă sursă de

poluare o constituie îndepărtarea deşeurilor solide provenind de la filtre, răşini schimbătoare de

ioni, de la nămolul de decantare ori a reziduurilor deşeurilor de slabă activitate, care deşi sunt

gestionate şi controlate cu stricteţe, de regulă sunt dispersate în împrejurimi, direct sau după

tratament, sub formă de lichide, gaze sau aerosoli.

În mod curent, resturile lichide, după depozitare în vederea scăderii radioactivităţii, se

elimină în cursul apelor curgătoare sau în mare, astfel încât să nu se ridice în mod semnificativ

radioactivitatea mediului. Se apreciază că resturile lichide eliminate anual de un reactor de tip

echivalentul fizic al roentgenului (REP) de 900 MW sunt sub 185 GBq (5 Ci) pentru alte

elemente decât tritiu şi de 37 TBq (1000 Ci) pentru tritium. În general, resturile gazoase şi

lichide nu reprezintă în medie decât câteva centimi şi zecimi de procente peste nivelul autorizat.

Pentru ansamblul populaţiei ele sunt foarte slabe, respectiv de ordinul a fracţiunilor de milion,

deci minime.

28

Page 29: Poluarea radioactiva

Căderi consecutive de pulberi din accidentarea unor reactoare nucleare. O altă sursă

riscantă de poluare radioactivă a mediului o constituie accidentarea unor reactoare nucleare din

cadrul centralelor electronucleare. Un exemplu recent îl constituie explozia unuia din reactoarele

nucleare ale centralei electronucleare de la Cernobâl (26 aprilie 1986). Sub influenţa vânturilor,

norul de pulberi şi gaze radioactive formate la latitudinea de 1000-1500 m a fost dirijat mai întâi

din Ucraina spre Ţările Scandinave, apoi spre Europa Centrală. Anticiclonul prezent în Franţa l-a

împiedicat să atingă Franţa în primele zile. După ce s-a orientat spre Europa Meridională, în

circa alte două zile a pătruns în partea de Sud a Franţei, unde a rămas aproximativ 5 zile şi apoi

s-a reîntors spre Estul Europei, în cadrul acestor mişcări abordând şi teritoriul ţării noastre. În

imediata apropiere a centralei de la Cernobâl, accidental a provocat 203 iradieri cu doze > 1 Gy,

53 iradieri între 2 şi 4 Gy, 23 iradieri între 4 şi 8 Gy şi 22 de iradieri doze peste 8 Gy. Iradierile

puternice au provocat arsuri grave: 20 de accidentaţi având arsuri de peste 30% din suprafaţa

corporală. În total s-au înregistrat 31 decese. Accidentele de la Windscale din Marea Britanie

(1957) şi de la Harrisburg din S.U.A. (1979) nu s-au soldat cu decese şi nu au provocat nici o

iradiere semnificativă.

Prezenţa nefastă a poluării radioactive şi a iradierii datorate acesteia a început să se

manifeste odată cu descoperirea radioactivităţii, în special a celei artificiale şi cu dezvoltarea şi

amplificarea industriei nucleare. Este vorba în primul rând de extracţia şi prepararea uraniului, de

obţinerea plutoniului de fabricare şi instalare a reactoarelor nucleare, a centralelor

electronucleare, de experimentarea şi elaborarea celor mai distrugătoare arme, arma nucleară şi

termonucleară, de reprocesarea combustibililor nucleari uzaţi şi de gestionarea şi depozitarea

deşeurilor radioactive.

Prepararea combustibilului nuclear pe bază de uraniu comportă mai multe etape

importante:

- extracţia minereurilor de uraniu, concentrarea şi rafinarea lor;

- transformarea acestora în săruri de uranil şi obţinerea uraniului metalic;

- eventuala îmbogăţire în 235U prin transformarea în hexaflorura gazoasă (UF6);

- fabricarea barelor combustibile sub formă de uraniu metalic sau de oxid de uraniu.

Una din cele mai serioase probleme de iradiere profesională din cursul ciclurilor de

fabricare, legate de industria electronucleară, constituie extracţia minereurilor de uraniu, când

29

Page 30: Poluarea radioactiva

independent de iradierea externă, minerii sunt supuşi la inhalarea de pulberi minerale radioactive

şi a aerului viciat cu radon 222, gaz produs de filiaţie al 238U.

Retratarea combustibilului nuclear uzat generează cea mai mare cantitate din deşeurile

radioactive provenite din instalaţiile nucleare. Până în prezent, pe planeta noastră s-au acumulat

deja peste 6000 t produse de fisiune şi 155000 m3 de lichide puternic radioactive, urmând ca

până în anul 2000 acestea să crească de circa trei ori.

După uzare, combustibilul nuclear impurificat cu produse de fisiune şi elemente

transuraniene extrem de radioactive se conservă timp de minimum un an în piscine cu apă, până

la dezintegrarea substanţială a acestora, după care mai rămâne circa 2-5% din radioactivitatea

iniţială. De aici se transportă, în condiţii stricte, în instalaţii de prelucrare pe cale chimică unde,

după dizolvare, se recuperează materialele reutilizabile: 96% 238U, 0,85-0,1% 235U şi 1% 239Pu,

prin extracţie cu solvenţi organici sau prin cromatografie cu schimbători de ioni. Totodată se mai

recuperează şi unele radioelemente utilizabile în medicina nucleară, în diferite unităţi industriale

şi în laboratoarele de cercetare.

Pastilele şi barele de combustibil nuclear pe bază de uraniu se dizolvă în acid azotic, după

care sărurile de uranil şi de plutonil se extrag cu solvenţi organici. Circa 97% din uraniu se

recuperează sub formă de azotat de uranil, care poate fi utilizat sub formă de soluţii în

reactoarele nucleare omogene.

În cursul acestor operaţii se eliberează şi o cantitate considerabilă de gaze reziduale cu

conţinut de 85Kr, 129I şi vapori de apă tritiată, care pot contamina atmosfera înconjurătoare.

Capitolul IV. Concluzii și recomandari

Atrași de cantitatea de energie pe care o poate produce fisiunea nucleară, oamenii de

știință s-au grabit să declare centralele nucleare ca principala sursă de energie a viitorului.

Mai mult, odată cu îngrijorările generate de încălzirea globală, susținătorii energiei

atomice au adaugat încă un punct pe lista avantajelor acestui tip de energie considerând-o

nepoluantă și fiind soluția perfectă de reducere a emisiilor de carbon.

Studiile arată că energia nucleară poate reduce poluarea cu până la 2,5 gigatone de dioxid

de carbon pe an, comparativ cu energia produsă din carbune.

30

Page 31: Poluarea radioactiva

Datele variază mult de la un studiu la altul. Poziția oficială a ecologistilor este împotriva

producerii energiei atomice. Calculele ecologistilor arată că de la prelucrarea minereurilor și

până la stocarea rezidurilor energia atomică generează de 10 ori mai mult dioxid de carbon decât

indică datele oficiale. În plus, pentru a atinge rata propusă pentru reducerea emisiilor, în lume ar

trebui să se produca 3 terrawați de energie numai din centralele atomice, ceea ce ar însemna să se

construiască câte 4 centrale nucleare în fiecare lună timp de 70 de ani. Dacă mai menționăm și

pericolele legate de accidentele nucleare și de actele de terorism concluzia este ca energia

viitorului va trebui căutată altundeva. Fără măsuri de radioprotecție corespunzătoare, reactorii

nucleari pot produce contaminarea parțială a mediului ambiant și anume:

- a atmosferei prin produsele de fisiune volatile ca 131I,133Xe;

- a apei folosite ca agent de răcire;

- a solului din vecinătatea care se contaminează cu produse de fisiune;

- o mare cantitate de deșeuri radioactive a căror evacuare pune probleme grele pentru a

evita contaminarea mediului în care se face evacuarea.

Având în vedere dezvoltarea previzibilă pentru energetica nucleară este necesar găsirea

unor mijloace tehnice pentru controlul mai strict al circulației substanțelor radioactive în mediul

ambiant:

- interzicerea exploziilor nucleare experimentale cel puțin a celor care pot duce la

contaminarea atmosferei și spațiului cosmic, a solului și a apei;

- interzicerea deversării deșeurilor radioactive în apele de suprafață sau aruncarea lor pe

fundul mărilor și oceanelor;

- ridicarea eficienței sistemelor de purificare a efluenților gazoși și lichizi din centralele

electronucleare;

- perfecționarea sistemelor de detectare a scurgerilor de substanțe radioactive din

instalațiile nucleare;

31

Page 32: Poluarea radioactiva

Această sursă de energie – energia nucleară – a fost adusă la cunoștiința omenirii prin

forța sa distructivă și va fi multa vreme privită cu teama și suspiciune, întâmpinând multe

obstacole în scopul dezvoltării ei în scopuri pașnice. De aceea se impune familiarizarea lumii cu

problemele nucleare, întrucât aplicațiile pașnice ale energiei nucleare se dovedesc esențiale

pentru progresul și evoluția societății umane.

Bibliografie

1. Marcu, GH., - Elemente radioactive. Poluarea mediului şi riscurile iradierii, Editura

Tehnică, Bucureşti, 1996.

2. Ciplea L.I., Ciplea Al., - Poluarea mediului ambiant, Editura Tehnică, Bucureşti,

1978.

3. Gaspar E., Şerban D., - Elemente de radioprotecţie, Editura Tehnică, Bucureşti.

4. Cartaş V., - Curs de fizica nucleară, “Universitatea Dunărea de Jos”, 2004.

5. Dinu V., - Pădurea, apa, mediul înconjurător, Editura Ceres, Bucureşti, 1974.

6. Fitti M., - Acţiunea radiaţiilor ionizante asupra apei şi soluţiilor apoase, Editura

Academiei, Bucureşti, 1967.

7. Fitti M., - Dozimetria chimică a radiaţiilor ionizante, Editura Academiei, Bucureşti,

1973.

8. Furnica Gh., - Procese radioecologice în contaminarea radioactivă a apei, solului şi

vieţuitoarelor, Igiena, nr. 2, 97-113 (1972).

9. Gaspar E., Şerban D., - Elemente de protecţie în tehnica nucleară, Editura Tehnică,

Bucureşti, 1964.

10. Gălăteanu I., - Radiochimia aplicată. Metode şi probleme, Editura Academiei,

Bucureşti, 1976.

32

Page 33: Poluarea radioactiva

11. Racoveanu N., - Iradierea naturală şi artificială a populaţiei în Radiologie, Editura

Academiei, Bucureşti, 1968.

12. Stoici S.D., Tătaru S., - Uraniul şi toriul, Editura Tehnică, Bucureşti, 1988.

13. Dr. Ion Scurtu, Dr. Cristiana Sima – Ecologie şi Protecţia Mediului Înconjurător,

Editura Independenţa Economică – 2003.

33