Mathcad - RCBV1505

29
 Dat e ini tiale: Puterea motorului electric: P m  5.55 :=  kW Turatia motorului electric: n m  2200 :=  rot/min Rap ortul total de transmitere: i tot  5.85 := Consider ăm rapor tul de transmit ere a transmisiei prin curele( preliminar ): i tc  1.6 := Se adoptă:  ψ a  0.3 := i 12 i tot i tc := Raportul real de transmitere: i 12  3.656 = Se adoptă: i 12STAS  3.55 := (conform STAS 822) u 12teoretic  i 12STAS := u 12teoretic  3.55 = Materiale: pinion 41MoCr1 1 HB = 3000 MPa  roată 40Cr10 HB = 2700 MPa Se adoptă:  z 1  27 := dinti z 2  z 1  u 12teoretic := z 2  95.85 = dinti

description

awda

Transcript of Mathcad - RCBV1505

Page 1: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 1/29

Date initiale:

Puterea motorului electric:

Pm   5.55:=   kW

Turatia motorului electric:

nm   2200:=   rot/min

Raportul total de transmitere:

itot   5.85:=

Considerăm raportul de transmitere a transmisiei prin curele(preliminar):

itc   1.6:=

Se adoptă:   ψa   0.3:=

i12

itot

itc

:=

Raportul real de transmitere:

i12   3.656=

Se adoptă:

i12STAS   3.55:= (conform STAS 822)

u12teoretic   i12STAS:=

u12teoretic   3.55=

Materiale: pinion 41MoCr11 HB = 3000 MPa

  roată 40Cr10 HB = 2700 MPa

Se adoptă:   z1   27:= dinti

z2   z1  u 12teoretic⋅:=

z2   95.85= dinti

Page 2: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 2/29

 Adoptăm:   z2   96:= dinti

Raportul real de transmitere al angrenajului:

u12

z2

z1

:=   u12   3.556=

Verificarea abaterii de la raportul de transmitere:

εu12

u12teoretic   u12−

u12teoretic

100⋅:=

εu12   0.156−= % este în intervalul -2,5%....2,5%

Recalculăm raportul de transmitere a transmisiei cu curele trapezoidale:

itc

itot

u12

:=

itc   1.645=

Calculul turaţiilor arborilor :

n1

nm

itc

:=   n1   1.337 103

×=   rot/min

n2

nm

itc  u 12⋅

:=   n2   376.068=   rot/min

P

Calculul puterilor:

Se adoptă:   ηc   0.96:=   ηtc   0.92:=   ηrul   0.99:=

P1   Pm η tc⋅   ηrul⋅:=   P1   5.055=   kW

P2   Pm η tc⋅   ηc⋅   ηrul2

⋅:=   P2   4.804=   kW

Page 3: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 3/29

Calculul momentelor de torsiune:

T1

3 107

⋅   P1⋅

π  n 1⋅:=   T1   3.61 10

4×= N*mm

T2

3 107

⋅   P2⋅

π  n 2⋅:=   T2   1.22 105

×= N*mm

Predimensionarea angrenajului

Parametrii de referinta se calculeaza conform STAS 821.

αn

20 π⋅

180:=   αn   0.3490659= radiani unghiul de angrenare in plan normal

has   1:= coeficientul inaltimii capului de referinta in plan normal

cns   0.25:= coeficientul jocului de referinta la capul dintelui, in plannormal

σFlim1   580:=   MPaσHlim1   760:=   MPa

σFlim2   560:=   MPaσHlim2   720:=   MPa

Calculul lui z 1 critic 

ZE   189.8:=

β  8  π⋅

180:=   Zβ   cos  β( ):=   Zβ   0.995=

ZH   2.49 Zβ⋅:=   ZH   2.478=

Durata de functionare impusa:

Lh1   8000:=   ore Lh2   8000:=   ore

Page 4: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 4/29

Numărul de roţi cu care vine în contact pinionul, respectiv roata:

 χ 1   1:=   χ 2   1:=

 NL1   60 n1⋅   Lh1⋅   χ 1⋅:=   NL1   6.418 108

×= rezultă   Z N1   1:=   Y N1   1:=

 Z N2   1:=   Y N2   1:= NL2   60 n2⋅   Lh2⋅   χ 2⋅:=   NL2   1.805 10

8×= rezultă

Zw   1:=

Tensiunile admisibile:

σHP1   0.87  σHlim1⋅   Z N1⋅   Zw⋅:=

σHP1

  661.2=   MPa

σHP2   0.87  σHlim2⋅   Z N2⋅   Zw⋅:=

σHP2   626.4=   MPa

σHP   σHP1   σHP1   σHP2<if 

σHP2   otherwise

:=σHP   626.4=   MPa

σ021   800:=   MPa   σ022   750:=   MPa

zn1

z1

cos  β( )( )3

:=   zn1   27.804=   zn2

z2

cos  β( )3

:=   zn2   98.858=

YSa1   1.59:=   YSa2   1.79:= pentru x1 = 0 si x2 = 0

Yδ1   0.997:=   Yδ2   1:=

σFP1   0.8 σFlim1⋅   Y N1⋅   Yδ1⋅:=   σFP1   462.608=   MPa

Page 5: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 5/29

σFP2   0.8 σFlim2⋅   Y N2⋅   Yδ2⋅:=   σFP2   448=   MPa

σFP   σFP1   σFP1   σFP2<if 

σFP2   otherwise

:=σFP   448=   MPa

Fz1cr    1.25 ZE Zβ⋅   ZH⋅( )2⋅

  σFP1

σHP2

⋅  u12   1+

u12

⋅  1

cos  β( )⋅:=   Fz1cr    417.636=

z1critic este foarte mare, de aici rezulta ca solicitarea principala este de presiune de contact.

K A   1.25:=

Distanta axiala si modulul necesar:

awnec   0.875 u12   1+( )⋅

3

T1  K A⋅   ZE ZH⋅   Zβ⋅( )2⋅

 ψa σHP2

⋅   u12⋅

⋅:=   awnec   114.361=   mm

mnnec

2 awnec⋅   cos  β( )⋅

z1   z2+:=   mnnec   1.841=   mm

Din STAS 822-82 se alege:

mn   2:=   mm

amn   z1   z2+( )⋅

2 cos  β( )⋅:=   a 124.209=   mm

Page 6: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 6/29

Se alege din STAS 655-82

aw   125:=   mm

aw   a−

mn

0.396=

Latimea rotilor dintate

 b   ψa aw⋅:=

 b 37.5=   mm

Unghiul de presiune de referinta in plan frontalȘ

αt   atantan  αn( )cos  β( )

 

 

 

 :=

αt   0.352=   αtgrade   αt

180

π⋅:=   αtgrade   20.181= grade

Unghiul de angrenare in pan frontal:

αwt   acos  a

aw

cos  αt( )⋅ 

 

 

 :=   αwt   0.369=   αwtgrade   αwt

180

π⋅:=   αwtgrade   21.145=

Ecuatiile fundamentale ale angrenajului:

invαwt   tan  αwt( )   αwt−:=

invαwt   0.01772174=

invαt   tan  αt( )   αt−:=

invαt   0.01532644=

Page 7: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 7/29

Suma coefic ientilor deplasarilor de profil in plan normal:

xsn

invαwt   invαt−( )   z1   z2+( )⋅

2 tan  αn( )⋅:=

xsn   0.405=

Coeficientii deplasarilor de profil in plan frontal:

xst   xsn cos  β( )⋅:=

xst   0.401=

xn1

xsn

20.5

xsn

2−

 

 

 

 

log u12( )

logz1  z2⋅

100 cos  β( )( )6

⋅+:=

xn1   0.316=

xn2   xsn   xn1−:=

xn2   0.088=

Coeficienţii deplasărilor de profil trebuie sa fie mai mari sau egali decât valorile minime

xn1min

14 zn1−

17:=

xn1min   0.812−=

xn1   xn1min−   1.128=

xn2min

14 zn2−

17:=

xn2min   4.992−=

xn2   xn2min−   5.08=

xt1   xn1  cos  β( )⋅:=   xt1   0.313=

xt2   xn2  cos  β( )⋅:=   xt2   0.088=

Page 8: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 8/29

Diametrele cercurilor de divizare:

d1

mn  z 1⋅

cos  β( ):=

d1   54.531=   mm

d2   mn

z2

cos  β( )⋅:=

d2   193.887=   mm

Diametrele cercurilor de bază:

d b1

  d1

 cos  αt( )

⋅:=   d b1

  51.183=   mm

d b2   d2  cos  αt( )⋅:=   d b2   181.984=   mm

Diametrele cercurilor de rostogolire:

dw1   d1

cos  αt( )cos  αwt( )

⋅:=

dw1   54.878=   mm

dw2   d2

cos  αt( )cos  αwt( )

⋅:=

dw2   195.122=   mm

Se verifică:

dw1   dw2+

2125=

Page 9: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 9/29

Diametrele cercurilor de picior:

df1   mn

z1

cos  β( )2 has   cns+   xn1−( )⋅−

⋅:=

df1   50.8=   mm

df2   mn

z2

cos  β( )2 has   cns+   xn2−( )⋅−

⋅:=

df2   189.241=   mm

Diametrele cercurilor de cap:

da1   2 aw⋅   mn

z2

cos  β( )2 has⋅−   2 xn2⋅+

 

 

 

 ⋅−:=

da1   59.759=   mm

da2   2 aw⋅   mn

z1

cos  β( )2 has⋅−   2 xn1⋅+

 

 

 

 ⋅−:=

da2   198.204=   mm

αat1   acosd1

da1

cos  αt( )⋅ 

 

 

 

:=

αat1grade   αat1

180

π⋅:=

αat1   0.542376= radiani

αat1grade   31.076= grade

αat2   acosd2

da2

cos  αt( )⋅ 

 

 

 :=   αat2   0.407374=

αat2grade   αat2180

π⋅:=   αat2grade   23.341=

Page 10: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 10/29

invαat1   tan  αat1( )   αat1−:=

invαat1   0.06028808=

invαat2   tan  αat2( )   αat2−:=

invαat2   0.02413865=

Coarda constanta normala a dintilor:

sn1   0.5 π⋅   2 xn1⋅   tan  αn( )⋅+( )  mn⋅:=

sn1   3.602=   mm

sn2   0.5 π⋅   2 xn2⋅   tan  αn( )⋅+( )  mn⋅:=

sn2   3.27=   mm

st1

0.5 π⋅   2 xt1⋅   tan  αt( )⋅+( )  mn⋅

cos  β( ):=

st1   3.637=   mm

st2

0.5 π⋅   2 xt2⋅   tan  αt( )⋅+( )  mn⋅

cos  β( ):=

st2   3.302=   mm

βa1   atanda1

d1

tan  β( )⋅ 

 

 

 :=

βa1   0.152816= radiani

βa1grade   βa1

180

π⋅:=

Page 11: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 11/29

βa1grade   8.756= grade

βa2   atanda2

d2

tan  β( )⋅ 

 

 

 :=

βa2   0.142694= radiani

βa2grade   βa2

180

π⋅:=

βa2grade   8.176= grade

sat1   invαt   invαat1−( )  mn  z 1⋅

cos  β( )⋅   st1+

cos  αt( )cos  αat1( )

⋅:=

sat1   1.299=   mm

sat2   invαt   invαat2−( )  mn  z 2⋅

cos  β( )⋅   st2+

cos  αt( )cos  α

at2( )

⋅:=

sat2   1.629=   mm

san1   sat1 cos  βa1( )⋅:=

san1   1.284=   mm

san2   sat2 cos  βa2( )⋅:=

san2   1.613=   mm

grosimea dintelui pe cercul de cap trebuie sa fie san >= coef * mn , unde coef = 0.25  pentru

danturi imbunatatite si coef = 0.4 pentru danturi cementate.

san2   0.25 mn⋅−   1.113=

san1   0.25 mn⋅−   0.784=

Gradul de acoperire:

εαda1

2d b1

2−   da2

2d b2

2−+   2 aw⋅   sin  αwt( )⋅−

2  π⋅   mn⋅   cos  αt( )⋅

 

 

 

 cos  β( )⋅:=

εα   1.611=

Page 12: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 12/29

εα   1.3−   0.311=

εβ b sin  β( )⋅

π mn⋅:=

εβ   0.831=

εγ   εα   εβ+:=

εγ   2.442=

β b   atand b1

d1

tan  β( )⋅ 

 

 

 :=   β bgrade   β b

180

π⋅:=   β bgrade   7.515=

β b   0.131156=

βw   atandw1

d1

tan  β( )⋅ 

 

 

 :=

βw

  0.140504= radiani

βwgrade   βw

180

π⋅:=

βwgrade   8.05= grade

Elementele angrenajului echivalent

zn1

z1

cos  β b( )( )2cos  β( )⋅

:=

zn1   27.74=

zn2

z2

cos  β b( )( )2cos  β( )⋅

:=

zn2   98.63=

dn1   mn  zn1⋅:=

dn1   55.48=   mm

dn2   mn  zn2⋅:=

dn2   197.261=   mm

d bn1   dn1  cos  αn( )⋅:=

Page 13: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 13/29

d bn1   52.134=   mm

d bn2   dn2  cos  αn( )⋅:=

d bn2   185.364=   mm

dan1   dn1   da1+   d1−:=   dan1   60.708=   mm dan2   dn2   da2+   d2−:=   dan2   201.578=   mm

αwn   acoscos  αwt( )  cos  β b( )⋅

cos  βw( ) 

 

 

 :=

αwn   0.365738= radiani

αwngrade   αwn

180

π⋅:=

αwngrade   20.955= grade

awn

a

cos  β b( )( )2

cos  αn( )cos  αwn( )

⋅:=

awn   127.159=   mm

εαn

dan12

d bn12

−   dan22

d bn22

−+   2 awn⋅   sin  αwn( )⋅−

2  π⋅   mn⋅   cos  αn( )⋅:=

εαn   1.639=

Dimensionarea şi verificarea angrenajului

Viteza periferica a rotilor:

v1

π  d 1⋅   n1⋅

60000:=   v1   3.818= m/s

Clasa de precizie: 8; danturare prin frezare cu freza melc,

Ra1,2 = 0.8 pentru flanc si Ra1,2 = 1.6 pentru zona de racordare.

Tip lubrifiant: TIN 125 EP STAS 10588-76 avand vascozitatea cinematica 125-140 mm2/s (cSt) [

Page 14: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 14/29

Zβ   cos  β( ):=   Zβ   0.995=Yβmin   1 0.25  εβ⋅−( )   εβ   1≤if 

0.75 otherwise

:=Yβmin   0.792=

Yβ   1   εβ3  β⋅

2  π⋅⋅−:=   Yβ   0.945=

Yβ   Yβmin   Yβ   Yβmin<if 

Yβ   otherwise

:=Yβ   0.945=

ZH

2 cos  β b( )⋅

cos  αt( )( )2tan  αwt( )⋅

:=ZH   2.412=

YFa1   2.15:=

YFa2   2.08:=

zn1   27.74=

xn1   0.316=

zn2   98.63=

xn2   0.088=

YSa1   1.82:=

YSa2   1.95:=

Yδ1   1:=

Yδ2   1.02:=

Page 15: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 15/29

4   εα−

31   εβ−( )⋅

  εβ

εα+   εβ   1<if 

1

εαotherwise

:=

Zε   0.806=

Yε   0.25  0.75

εαn

+:=

Yε   0.708=

v1  z 1⋅

1001.031= treapta de precizie 8

K vα   1.06:=

K vβ   1.04:=

K v   K vβ   εβ   K vβ   K vα−( )⋅−   εβ   1<if 

K vβ   otherwise

:=

K v   1.057=

 ψd

 b

d1

:=   ψd   0.688=

K Hβ   1.1:=

K Fβ   1.17:=

Page 16: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 16/29

f  pbr    21:=

Ft

2 T1⋅

d1

:=

Ft   1.324 103

×=   N

qα   4 0.1f  pbr    4−

Ft

 b

 

 

 

⋅:=

qα   2.326=

K Hα   1 2 qα   0.5−( )⋅   1

Zε2

1− 

 

 

 

⋅+:=

K Hα   2.963=

K Fα   qα  εα⋅:=

K Fα   3.747=

ZL   1.05:=

Pentru flancuri

R a1   0.8:=   R a2   0.8:=

R z1   4.4 R a10.97

⋅:=   R z1   3.544=

Page 17: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 17/29

R z2   4.4 R a20.97

⋅:=   R z2   3.544=

R z100

R z1   R z2+

2

100

aw

⋅:=   R z100   3.17=

ZR    0.98:=

Pentru razele de racordare:

R a1   1.6:=   R a2   1.6:=

R z1   4.4 R a10.97

⋅:=   R z1   6.941=

R z2   4.4 R a20.97

⋅:=   R z2   6.941=

YR1   1.02:=   YR2   1.02:= [Anexa 11]

v1   3.818=   Zv   0.92:= [Anexa 13]

Zx   1:=

Yx1   1:=   Yx2   1:= [Anexa 14]

SHmin   1.15:=   SFmin   1.25:=

σHP1

σHlim1  Z N1⋅   ZL⋅   ZR ⋅   Zv⋅   Zw Zx⋅

SHmin

:=

σHP1   625.632=   MPa

σHP2

σHlim2  Z N2⋅   ZL⋅   ZR ⋅   Zv⋅   Zw Zx⋅

SHmin

:=

σHP2   592.704=   MPa

Page 18: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 18/29

σHP   σHP1   σHP1   σHP2<if 

σHP2   otherwise

:=

σHP   592.704=   MPa

σFP1

σFlim1  Y N1⋅   Yδ1⋅   YR1⋅   Yx1⋅

SFmin

:=

σFP1   473.28=   MPa

σFP2

σFlim2  Y N2⋅   Yδ2⋅   YR2⋅   Yx2⋅

SFmin

:=

σFP2   466.099=   MPa

σFP   σFP1   σFP1   σFP2<if 

σFP2   otherwise

:=

σFP   466.099=   MPa

Recalcularea lăţimii:

 ψa

z2

z1

1+ 

 

 

 

3

aw3

T1  K A⋅   K v⋅   K Hβ⋅   K Hα⋅   ZE ZH⋅   Zε⋅   Zβ⋅( )2⋅

2  σHP2

⋅  z2

z1

⋅  cos  αt( )

cos  αwt( ) 

 

 

 

2

⋅:= ψa   0.412=

 b   ψa aw⋅:=   b 51.467=  Adoptam :   b2   54:=   b1   58:=

Page 19: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 19/29

Recalcularea gradului de acoperire axial ş i total:

εβ b2  sin  β( )⋅

π  mn⋅:=

εβ   1.196=

εγ   εα   εβ+:=

εγ   2.807=

Verificarea la solicitarea de încovoiere

σF1

T1  z 1⋅   z2

z1

1+  

  

2

⋅   K A K v⋅   K Fβ⋅   K Fα⋅( )⋅   Yε⋅   Yβ⋅   YFa1⋅   YSa1⋅

2 b1⋅   aw2

⋅   cos  β( )⋅

cos  αt( )cos  αwt( )

 

 

 

 

2

⋅:=

σF1   172.858=   MPa

σFP1   473.28=   MPa

σF2   σF1

 b1

 b2⋅

  YFa2

YFa1⋅

  YSa2

YSa1⋅:=

σF2   192.447=   MPa

σFP2   466.099=   MPa

Elementele de control

αWt1   acosz1  cos  αt( )⋅

z1   2 xn1⋅   cos  β( )⋅+

 

 

 

 :=

Page 20: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 20/29

αWt1   0.409= radiani

αWt1grade   αWt1

180

π⋅:=

αWt1grade   23.462= grade

αWt2   acosz2  cos  αt( )⋅

z2   2 xn2⋅   cos  β( )⋅+

 

 

 

 :=

αWt2   0.357=

αWt2grade   αWt2

180

π⋅:=

αWt2grade   20.463=

 N1prov   0.5z1

π

tan  αWt1( )

cos  β( )( )2

2 xn1⋅   tan  αn( )⋅

z1

−   invαt−

⋅+:=

 N1prov   4.099=

 N1   floor N1prov( )   N1prov   floor N1prov( )−   0.5<if 

floor N1prov( )   1+( )   otherwise

:=

 N1   4=

 N2prov   0.5z2

π

tan  αWt2( )

cos  β( )( )2

2 xn2⋅   tan  αn( )⋅

z2

−   invαt−

⋅+:=

 N2prov   11.639=

 N2   floor N2prov( )   N2prov   floor N2prov( )−   0.5<if 

floor N2prov( )   1+( )   otherwise

:=

 N2   12=

Page 21: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 21/29

W Nn1   2 xn1⋅   mn⋅   sin  αn( )⋅   mn  cos  αn( )⋅   N1   0.5−( )  π⋅   z1  invαt⋅+⋅+:=

W Nn1   21.875=   mm

W Nn2   2 xn2⋅   mn⋅   sin  αn( )⋅   mn  cos  αn( )⋅   N2   0.5−( )  π⋅   z2  invαt⋅+⋅+:=

W Nn2   70.785=   mm

W Nt1

W Nn1

cos  β b( ):=

W Nt1   22.065=   mm

W Nt2 W Nn2

cos  β b( ):=

W Nt2   71.398=   mm

ρWt1   0.5 W Nt1⋅:=

ρWt1   11.032=   mm

ρWt2   0.5 W Nt2⋅:=

ρWt2   35.699=   mm

ρAt1   aw sin  αwt( )⋅   0.5 d b2⋅   tan  αat2( )⋅−:=

ρAt1   5.828=   mm

ρEt2   aw sin  αwt( )⋅   0.5 d b1⋅   tan  αat1( )⋅−:=

ρEt2   29.669=   mm

ρat1   0.5 da1⋅   sin  αat1( )⋅:=

ρat1   15.423=   mm

Page 22: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 22/29

ρat2   0.5 da2⋅   sin  αat2( )⋅:=

ρat2   39.264=   mm

Pentru măsurarea cotei peste dinţi trebuie să fie îndeplinitecondiţiile:

 diferenţele de mai jos trebuie să fie pozitive

cond1   b1   W Nn1 sin  β b( )⋅−   5−:=

cond1   50.139=

cond2   b2   W Nn2 sin  β b( )⋅−   5−:=

cond2   39.743=

cond3   ρWt1   ρAt1−:=

cond3   5.205=

cond4   ρat1   ρWt1−:=

cond4   4.391=

cond5   ρWt2   ρEt2−:=

cond5   6.03=

cond6   ρat2   ρWt2−:=

cond6   3.565=

Coarda constantă şi înalţimea la coarda constantă:

scn1   mn   0.5 π⋅   cos  αn( )( )2⋅   xn1 sin 2  αn⋅( )⋅+⋅:=

scn1   3.181=   mm

Page 23: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 23/29

scn2   mn   0.5 π⋅   cos  αn( )( )2⋅   xn2 sin 2  αn⋅( )⋅+⋅:=

scn2   2.888=   mm

sct1   scn1

cos  β( )

cos  β b( )( )2⋅:=

sct1   3.205=   mm

sct2   scn2

cos  β( )

cos  β b( )( )2⋅:=

sct2   2.909=   mm

hcn1   0.5 da1   d1−   scn1   tan  αn( )⋅−( )⋅:=

hcn1   2.036=   mm

hcn2   0.5 da2   d2−   scn2   tan  αn( )⋅−( )⋅:=

hcn2   1.633=   mm

hct1   0.5 da1   d1−   sct1 tan  αt( )⋅−( )⋅:=

hct1   2.025=   mm

hct2   0.5 da2   d2−   sct2 tan  αt( )⋅−( )⋅:=

hct2   1.624=   mm

Stabilirea si verificarea ungerii

Vitezele roţii conduse:

v2

π d 2⋅   n2⋅

60000:=   v2   3.818= m/s

Page 24: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 24/29

Distantele de la suprafata liberă a uleiului la axa roţilor:

k 3 v2   2≤if 

6 otherwise

:=k 6=

Hmin

k 2−

3

da2

2⋅:=

Hmin   132.136=   mm

Hmax   0.95df2

2⋅:=

Hmax   89.889=   mm

Forma constructiva a rotii conduse

d 45:= mm

δ   3 mn⋅   6=:= mm

δ1   0.5 52⋅   26=:= mm

Se adopta:

δ1   18:= mm

dc   1.6 d⋅   72=:= mm

l 1.1 d⋅:=

l 50:= mm

de   df2   2  δ⋅−   177.241=:= mm

de   176:= mm

dg

de   dc+( )2

124=:= mm

d0   32:= mm

Page 25: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 25/29

Calculul fortelor din angrenaj

 NFt2   2

T2

dw2

⋅   1250.405=:=   Ft1   Ft2:=

Fr1

  Ft1

  tan αwn( )

⋅   478.865=:=   N Fr1

  Fr2

:=   Fr2

Fa1   Ft1  tan  βw( )⋅   176.852=:=   N Fa2   Fa1:=

Fn1

2

Ft12

478.862

+   Fa12

+   1350.592=:=   N Fn2   Fn1:=

Calculul reactiunilor si momentelor incovoietoare

l1   52:= mm S 18:=   mm

l2   52:= mm

V2

Ft1

2625.203=:=

H2

487.865 l2⋅   Fa1

dw1

2⋅−   S l1⋅−

l2

376.545=:= N

H1

487.865 l2⋅   S l1   2 l2⋅+( )⋅−   Fa1

dw1

2⋅+

2 l2⋅  263.593=:=   N

V1

Ft1

2625.203=:=   N

FR1   H12

V12

+   678.498=:=   N FR2   H22

V22

+   729.839=:=   N

MiH2   S l1⋅   936=:=   NmmMiH32   H2−   l2⋅   19580.321−=:=   Nmm

MiH31   S l1   l2+( )⋅   H1  l 2⋅−   11834.819−=:=   NmmMiV3   V1  l 2⋅   32510.542=:=   Nmm

Arbies   d2   193.887=

l3   54:=   mm

H4

487.865 l3⋅   Fa2

dw2

2⋅−

2 l3⋅  84.174=:=   N V4

Ft2

2625.203=:=   N

V3

Ft2

2625.203=:=   N

H3

487.865 l3⋅   Fa2

dw2

2⋅−

2 l3⋅  84.174=:=   N

Page 26: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 26/29

FR3   H32

V32

+   630.844=:=   N FR4   H42

V42

+   630.844=:=   N

MiH21   H3  l 3⋅   4545.406=:=   N

MiH22   H4  l 3⋅   4545.406=:=   NMiV2   V3  l 3⋅   33760.948=:=   N

Verificarea arborilor 

Solicitari compuse

Arbint   dint   30:=   T1   36100.491=

α   0.277:= alternantpulsatorie

Mi3   MiH312

MiV32

+   34597.663=:=   Wz

π  d int3

32 2650.719=:=

σech3

Mi32

α T1⋅( )2+

Wz

13.586=:= MPa valoarea este <140.. 150 MPa

Arbies   dies   42:= mm T2   121990.778=

 b pana   10:=   t pana   4.5:=

Mi2   MiH222 MiV22+   34065.56=:=

Wz   πdies

3

32⋅

  b pana  t pana⋅   45 t pana−( )2⋅

2 45⋅−   6453.447=:= mm 3

σech2

Mi22

1.5 T2⋅( )2+

Wz

28.842=:= MPa <140.. 150 MPa

Verificarea penelor 

T1   36100.491=   h pana   5:=   dc   30:=   mm

l pana   50:=   mm b pana   6:=   mm

lc   l pana   b pana−   44=:= mm

σs

4 T2⋅

h pana l c⋅   dc⋅  73.934=:=   τf 

2 T1⋅

 b pana l pana⋅   dc⋅  8.022=:=   MPa

Page 27: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 27/29

T2   121990.778=   h pana   8:=   dc   42:=   mm

l pana   65:=   mm b pana   10:=   mm

lc   l pana   b pana−   55=:=   mm

σs

4 T2⋅

h pana l c⋅   dc⋅  26.405=:=   MPa

τf 

2 T2⋅

 b pana l pana⋅   dc⋅  8.937=:=   MPa

Verificarea la incalzire

P1   5.055=   kW   ηc   0.96=   λ 1   12:=   ψ   0.15:=

t0   20:= gr C   S 1:=

tP1   1   ηc−( )⋅   10

3⋅

λ 1   1   ψ+( )⋅   S⋅  t0+   34.652=:= gr. C

Proiectarea transmisiei prin curele

itc   1.645=D p1   160:=   mm

D p2

D p1

itc

97.246=:=   mm

0.7 D p1   D p2+( )   A p≤   2 D p1   D p2+( )⋅≤   0.7 D p1   D p2+( )   180.072=

2 D p1   D p2+( )⋅   514.492=A p   250:=   mm

γ   2 asinD p2   D p1−

2 A p⋅

 

 

 

 ⋅   0.252−=:=   γg   γ

  180

π⋅   14.42−=:=

β1   180   γg−   194.42=:=

Dm

D p1   D p2+

2128.623=:=

L p   2 A p⋅   π  Dm⋅+  D p2   D p1−( )2

4 A p⋅+   908.019=:=   mm

L 1000:=   cL   0.9:=

 p 0.25 L⋅   0.393 D p1   D p2+( )⋅−   148.902=:=

Page 28: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 28/29

q 0.125 D p2   D p1−( )2⋅   492.259=:=

A p   p p2

q−+   296.142=:=   mm

vπ  D p1⋅   nm⋅

60 1000⋅  18.431=:=

  m

s

cf    1.2:=   cβ   0.96:=   P0   2.11:=

z0

cf   Pm⋅

cL cβ⋅   P0⋅  3.653=:= curele

cz   0.95:=

zz0

cz

3.846=:=   z 4:=

f 2  v

L⋅   10

3⋅   36.861=:=   f 80≤   1=

F 103   Pm

v⋅   301.128=:=

S 2 F⋅   602.257=:=

X 0.03 L⋅   30=:=

Y 0.015 L⋅   15=:=

Curele trapezoidale de tipSPZ

l p   8.5:=   n 2.5:=   m 9:=   f 8:=

e 12:=   r 0.5:=

α   0.277=

Page 29: Mathcad - RCBV1505

7/21/2019 Mathcad - RCBV1505

http://slidepdf.com/reader/full/mathcad-rcbv1505 29/29