Baze de calcul incinte de afumare calda

7
BAZELE DE CALCUL TEHNOLOGIC ŞI TERMIC AL INCINTELOR PENTRU AFUMARE CALDĂ Indiferent de tipul incintei de afumare caldă, trebuie cunoscute următoarele date tehnologice: numărul de stelaje (rame), durata totală a procesului şi numărul celulelor de afumare. Determinarea numărului de stelaje (rame) se face cu relaţia: (10.60) în care: M reprezintă masa în kg a fiecărui component iar m încărcătura specifica a unei rame, kg/ramă. În funcţie de această valoare se determină durata totală a procesului: , [min.] (10.61) în care: 1 este durata zvântării, min., 2 – durata afumării calde, min. iar 3 – durata manipulării ramelor, min./ramă. Astfel rezultă că numărul celulelor de afumare devine: , (10.62) în care: reprezintă durata totală a procesului, min., K – numărul de schimburi de lucru, s - durata unui schimb, min. iar n rs numărul de rame introduse simultan în celula de afumare. Calculul termic al unei afumătorii cu focar pleacă de la ecuaţia bilanţului caloric: , [kJ] (10.63) în care: Q 1 reprezintă căldura consumată pentru încălzirea sistemului de susţinere a produselor, kJ, Q 2 – căldura cedată pereţilor şi uşilor metalice ale incintei, kJ, Q 3 – pierderile de căldură în mediul ambiant, kJ iar Q 4 – căldura cedată produsului supus afumării, kJ. Pentru determinarea căldurii cedate sistemului de susţinere a produselor se va avea în vedere că acesta poate fi alcătuit din:

description

Afumare

Transcript of Baze de calcul incinte de afumare calda

Page 1: Baze de calcul  incinte de afumare calda

BAZELE DE CALCUL TEHNOLOGIC ŞI TERMIC AL INCINTELOR PENTRU AFUMARE CALDĂ

Indiferent de tipul incintei de afumare caldă, trebuie cunoscute următoarele date tehnologice: numărul de stelaje (rame), durata totală a procesului şi numărul celulelor de afumare. Determinarea numărului de stelaje (rame) se face cu relaţia:

(10.60)

în care: M reprezintă masa în kg a fiecărui component iar m încărcătura specifica a unei rame, kg/ramă. În funcţie de această valoare se determină durata totală a procesului:

, [min.] (10.61)

în care: 1 este durata zvântării, min., 2 – durata afumării calde, min. iar 3 – durata manipulării ramelor, min./ramă. Astfel rezultă că numărul celulelor de afumare devine:

, (10.62)

în care: reprezintă durata totală a procesului, min., K – numărul de schimburi de lucru, s- durata unui schimb, min. iar nrs – numărul de rame introduse simultan în celula de afumare. Calculul termic al unei afumătorii cu focar pleacă de la ecuaţia bilanţului caloric:

, [kJ] (10.63)

în care: Q1 reprezintă căldura consumată pentru încălzirea sistemului de susţinere a produselor, kJ, Q2 – căldura cedată pereţilor şi uşilor metalice ale incintei, kJ, Q3 – pierderile de căldură în mediul ambiant, kJ iar Q4 – căldura cedată produsului supus afumării, kJ. Pentru determinarea căldurii cedate sistemului de susţinere a produselor se va avea în vedere că acesta poate fi alcătuit din: profile simple din cornier pe care se aşează beţele suport, cărucioare metalice cu suporturi din lemn sau rame metalice suspendate pe care se aşează suporturile din lemn, inclusiv calea de rulare a transportorului suspendat. Pentru cazul cel mai frecvent, adică cel în care se folosesc cărucioarele din oţel, expresia consumului de căldură la încălzirea acestora este:

, [kJ] (10.64)

în care: mc reprezintă masa cărucioarelor metalice introduse în celula de afumare, kg; ml – masa suporturilor din lemn pe care se suspendă produsele, kg; cc şi cl – căldurile specifice ale oţelului şi respectiv lemnului, kJ/kg.grd.; t2 şi t1 temperatura finală şi respectiv iniţială a cărucioarelor, grd. ( temperatura t2 se consideră aceeaşi cu cea a mediului din celulă). O relaţie similară se poate utiliza şi pentru determinarea căldurii cedate pereţilor şi uşilor:

, [kJ] (10.65)

Page 2: Baze de calcul  incinte de afumare calda

în care: mu şi mp este masa părţii metalice a uşii , respectiv masa peretelui afumătoriei, kg; cu şi cp- căldura specifica a metalului din care este confecţionată uşa, respectiv căldura specifică a zidăriei, kJ/kg.grd.; t2’ şi t1’- temperatura finală, respectiv iniţială a pereţilor, grd; Pentru determinarea pierderilor de căldură în mediul ambiant, se au în vedere suprafeţele pereţilor, plafonului şi ale pardoselii:

,[kJ] (10.66)

în care: reprezintă durata totală a procesului, ore; k1, k2, k3 – coeficienţii totali de transmitere a căldurii pentru perete, pardosea, respectiv plafon, kJ/m2.h.grd; t1, t2 şit3 – diferenţele de

temperatură dintre interior şi exterior, grd. În cazul unui perete izolat, se impune calculul izolaţiei. Dacă peretele are mai multe straturi, putem considera aplicabile condiţiile de contact care exprimă faptul că suprafaţa de contact dintre două solide nu modifică valoarea fluxului termic, deci exprimă tot o lege de conservare. Astfel, densitatea fluxului termic ce străbate primul corp prin conducţie termică şi ajunge la suprafaţa de separaţie, este preluată integral tot prin conducţie termică de către cel de-al doilea corp. Această afirmaţie este echivalentă cu aceea că suprafaţa de separaţie nu conţine izvoare de căldură care să modifice valoarea densităţii fluxului termic. De asemenea se ştie că liniile de flux termic se frâng la suprafaţa de separaţie, frângerea fiind legată de spectrul de izoterme şi de modificările acestuia. În figura 10.27 este dată schema de calcul pentru cazul unui perete cu mai multe straturi. În aceste condiţii se pot scrie ecuaţiile fluxului termic pentru fiecare strat în parte:

[J]

(10.67)

în care: t, iz şi zid sunt coeficienţi ai conducţiei termice pentru tablă, izolaţie şi respectiv zid iar 1, 2 – coeficienţii de transfer termic pentru suprafaţa interioară şi cea exterioară a incintei. Din ecuaţiile scrise , rezultă temperaturile pentru fiecare zonă în parte:

(10.68)

Fig.10.27 Schimbul de căldură la un perete cu mai multe straturi

Page 3: Baze de calcul  incinte de afumare calda

În acelaşi timp, temperatura t4 poate fi exprimată şi în funcţie de temperatura externă text:

. (10.69)

Din ecuaţiile de mai sus, rezultă că diferenţa de temperatură dintre interior şi exterior este:

(10.70)

respectiv: (10.71)

Această relaţie permite punerea în evidenţă a coeficientului specific total de transfer termic:

, (10.72)

de unde rezultă grosimea stratului izolator:

, [m] (10.73)

în care coeficienţii de transfer termic au valorile: 1 = 125 kJ/m2.h.grd., respectiv 2 = 58,6 kJ/m2.h.grd. Consumul de căldură pentru încălzirea produsului se determină în funcţie de consumul specific de căldură:

, [kJ] (10.74)

în care: q reprezintă consumul specific de căldură, kJ/kg iar mp – masa produselor aflate în afumătorie, kg. Consumul specific, la rândul său se determină cu expresia:

, [kJ/kg] (10.75)

în care: ma este masa apei din produsul supus afumării, kg/kg de produs; tf – temperatura finală din interiorul produsului, grd.; ti – temperatura iniţială a produsului, grd.; ca – căldura specifică a apei, kJ/kg.grd; a0 – procentul de apă care se evaporează din produs, %; r – căldura latentă de vaporizare a apei la temperatura finală a produsului, kJ/kg; g – cantitatea de grăsime din produs, kg/kg produs; tt – temperatura de topire a grăsimii, grd.; a1- procentul de grăsime care se topeşte, %; r1 – căldura latentă de topire a grăsimii, kJ/kg; csu – căldura specifică a substanţei uscate, kJ/kg.grd; (1-ma-g) – conţinutul de substanţă uscată, kg/kg de produs; Consumul de combustibil pentru afumare caldă se determină din expresia cantităţii de căldură necesare afumării:

Page 4: Baze de calcul  incinte de afumare calda

, [kJ] (10.76)

de unde: , [kg] (10.77)

în care: mc reprezintă consumul de combustibil, kg sau m3N pentru gaz; qpi – puterea calorică

inferioară a combustibilului, kJ/kg sau kJ/m3N; qcomb,, qaer – căldura fizică a combustibilului, respectiv a aerului, kJ/kg; q2 ,q3 ,q4 – pierderi de căldură odată cu gazele de ardere evacuate prin coş, pierderi cauzate de arderea incompletă a combustibililor şi de arderea mecanică incompletă a lor, kJ/kg. Componentele expresiei consumului de combustibil se pot determina după cum urmează: Căldura fizică a combustibilului care intră în focar: , [kJ/kg sau kJ/m3N] (10.78)

în care: ccomb. este căldura specifică a combustibilului folosit, kJ/kg.grd sau kJ/m3N.grd iar tcomb – temperatura combustibilului, grd. Căldura fizică a aerului care intră pentru arderea combustibilului:

, [kJ/kg combustibil sau kJ/m3N combustibil] (10.79)

în care: maer –reprezintă cantitatea de aer necesară arderii unui kilogram de combustibil sau a 1 m3N de combustibil gazos, kg/kg; caer – căldura specifică a aerului, kJ/kg.grd.; taer – temperatura aerului la intrarea în focarul afumătorii, grd. Pierderile de căldură sunt:

, [kJ/kg]

- pentru combustibili solizi, [kJ/kg]

- pentru combustibili gazoşi [kJ/m3N] (10.80)

, [kJ/kg] sau [kJ/m3N]

în care: Vg – volumul gazelor de ardere ce părăsesc celula de afumare, m3N/kg combustibil sau m3N/m; cg – căldura specifică a gazelor la tg, kJ/m3N.grd; pcen.- conţinutul în cenuşă al combustibilului, %; pcarb.- conţinutul de carbon nears din cenuşă, în raport cu masa cenuşii uscate , %. În situaţia în care combustibilul folosit este lemnul în amestec cu rumeguşul, respectiv gaz cu rumeguş, în raportul n kg/kg, rezultă că masa reală a combustibilului este:

. [kg sau m3N] (10.81)

Consumul de aer la afumarea caldă. Se ştie că pentru arderea completă a unui kilogram de amestec din lemn şi rumeguş, se consumă o cantitate de aer dată de relaţia:

, [kg] (10.82)

în care: C reprezintă procentul de carbon; H – cel de hidrogen iar O – de oxigen.

Page 5: Baze de calcul  incinte de afumare calda

Datorită faptului că gazele de ardere din focar au o temperatură ridicată şi se amestecă cu o cantitate de aer proaspăt pentru a fi răcite de la temperatura tg la temperatura t1, cantitatea de aer necesară realizării amestecului la temperatura finală t1, este:

, [kg aer uscat /kg combustibil] (10.83)

în care: cg reprezintă căldura specifică a gazelor de ardere umede obţinute în focar la temperatura t g, kJ/kg.grd; c1 – căldura specifică a amestecului format din gazele de ardere şi aerul proaspăt introdus la temperatura t1, kJ/kg.grd iar c0 – căldura specifică a aerului proaspăt la temperatura t0, kJ/kg.grd. Pentru reglarea şi menţinerea parametrilor necesari procesului de afumare precum şi reglarea acestora în limitele impuse se folosesc o serie de traductoare de temperatură, umiditate, presiune şi aparatură specifică controlului compoziţiei gazelor de ardere. Incintele de afumare devin astfel din ce în ce mai compacte din punct de vedere constructiv, fiind dotate cu o gamă diversă de echipamente de comandă şi control.