Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi,...

72
1 Curs 6 Volumetria prin reacţii de de oxido-reducere REDOX

Transcript of Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi,...

Page 1: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

1

Curs 6

Volumetria prin reacţii de de oxido-reducere

REDOX

Page 2: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

2

OBIECTIVE

� Notiuni fundamentale cu privire la proceseleredox

� Potential electrochimic� Echilibre redox� Indicatori redox� Aplicatii generale ale volumetriei redox� Aplicatii ale volumetriei redox in controlulalimentelor

Page 3: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

3

Reacţii de oxido-reducere.

Potenţial redox

� Reacţiile care au loc cu acceptare sau cedare de electroni se numesc reacţii de oxido-reducere.

� Reducerea are loc prin acceptare de electroni, iar substanţa se numeşte agent oxidant.

Ag+ + 1e → AgI20 + 2e → 2I-

� Oxidarea are loc prin cedare de electroni, iar substanţa se numeşte agent reducător.

Fe2+ - 1e → Fe3+2I- - 2e → I20

Page 4: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

4apbiologydodd.wikispaces.com

Page 5: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

5

� Deoarece în soluţie nu există electroni liberi, întotdeauna electronii cedaţi de o specie sunt acceptaţi de o alta şi de aceea o reacţie de oxidare este întotdeauna urmată de una de reducere.

� Reacţiile de oxidare şi de reducere se denumesc reacţii redox.

Page 6: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

6

� În formă generală, ecuaţia chimica ce descrie un proces redox poate fi scrisă astfel:

aOx1 + bRed2 ↔ cRed1 + dOx2

Page 7: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

7

ACTIVITATE INDEPENDENTA

� In reactiile de mai jos identificati Ox1, Red2, Red1,,Ox2:

1. 6FeSO4 +K2Cr2O7 +7H2SO4 ↔ 3Fe2(SO4)3 +Cr2(SO4)3+K2SO4 + 7H2O

2. 10FeSO4 + 2KMnO4 + 8H2SO4 = Fe2(SO4)3 + MnSO4 + 8H20

3. I2 + 2 Na2S2O3 = Na2S4O6 + 2 NaI

Page 8: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

8

Potenţialul redox - E

Reprezinta tendinţa substanţelor de a ceda sau de a accepta electroni

Definitie� E reprezinta diferenţa de potenţial între un electrodinert şi o soluţie ce conţine cele două forme ale sistemului redox studiat (oxidata si redusa).

� Valoarea absolută a potenţialului nu poate fimăsurată� Se masoara valoarea relativă faţă de un electrod de

referinţă a cărui potenţial este definit ca fiind egal cu 0.

Page 9: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

9

Electrod de referinta – Electrodul de hidrogen

� Cel mai utilizat este electrodul de hidrogen: 2H+ + 2e- → H2

� este format dintr-un electrod de platină imersat într-o soluţie de HCl 1M prin care se barbotează H2 la P= 1 atm şi t = 250C.

flatworldknowledge.lardbucket.org

Page 10: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

10

� Prin măsurarea potenţialului unui sistem redox în aceste condiţii se obţine valoarea potenţialului normal sau standard notat E0.

Hydrogen Electrode, measuring standard electrode potential ...www.docbrown.info

Page 11: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

11

Cu cât potenţialul standard al unui sistem este:

� mai pozitiv, cu atât sistemul este mai oxidant

� mai negativ, cu atât sistemul este mai reducător.

Page 12: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

12

wps.prenhall.com

Page 13: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

13

Ecuaţia lui Nernst - calculul potentialului redox E

E = E0 + RT/nF• ln aox/ared ,

� E = potenţial redox, V� E0 = potenţial standard, V� R = constanta generală a gazelor = 8,314 J/kmol� T = temperatura absolută, 0K� n = numărul de electroni schimbaţi� F = constanta lui Faraday = 96500 C� aox = activitatea formei oxidate� ared = activitatea formei reduse

Page 14: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

14

� Descrie relaţia dintre potenţialul redox şi concentratiile (activităţile) speciilor chimice implicate aplicată la forma generală a reacţiei redox.

� Prin înlocuirea constantelor, c ≈ a şi trecerea la logaritmul zecimal, se obţine:

E = E0 + 0,059/n • log cox/cred

� n = numărul de electroni schimbaţi

Page 15: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

15

Calculul constantei de echilibru în reacţiile redox

Ox1 + Red2 ↔ Red1 + Ox2

[Red1] [Ox2]K = -----------------

[Ox1][Red2]

� E1 = E01 + 0,059/n • log {[Ox1]/[ Red1]}� E2 = E02 + 0,059/n • log {[Ox2]/[ Red2]}

log K = n(E01 - E02)/0,058

� constanta de echilibru K este cu atât mai mare cu cât:� nr de electroni schimbaţi este mai mare (n)� diferenţa de potenţiale normale dintre cele două sisteme este mai

mare. (E01 - E02z)

� O reacţie redox este cantitativă dacă K ≥ 104.

Page 16: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

16

Echilibre în reacţii redox

� Condiţiile pe care trebuie să le îndeplinească o reacţie redox pentru a fi utilizată în chimia analitică sunt:� să fie rapidă� totală � să se poată stabili uşor sfârşitul, adică PE

� Proprietatea care se urmăreşte în timpul titrării este potenţialul chimic exprimat prin ecuaţia lui Nernst.

Page 17: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

17

� Variaţia potenţialului în timpul titrării redox se poate reprezenta grafic similar cu reprezentările de la titrarea acido-bazică şi reprezintă curba de titrare redox.

� La echivalenţă are loc saltulde potenţial ce se sesizeazăprin intermediul unorindicatori.

� Calculul concentraţiilor la PE se face prin intermediul K

Page 18: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

18

Titration of a iron (II) ammonium sulfate solution with 0.02 M potassium permanganate solution (manganometry)

Sample (analyte): 95 mL of approx. 0.02 M iron (II)

ammonium sulfate solution + 5 mL of conc. sulfuric acid

Page 19: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

19

Indicatori redox

� Indicatorii redox sunt substanţe care îşi modifică o proprietate în funcţie de potenţialul soluţiei în care se găsesc şi pot astfel să indice finalul titrării.

� Tipuri:� 1 – Indicatori redox de culoare� 2 - Indicatori redox de fluorescenţă� 3 - Indicatori redox turbidimetrici� 4 – Indicatori metalocromici

Page 20: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

20

1 – Indicatori redox de culoare

� substanţe care îşi modifică culoarea într-un anumeinterval de potenţial ce se poate calcula.

∆E = E1 – E2 = 2 • (0,059/n)

Exemple: � Difenilamina (diphenylamine)� Difenilbenzidina (diphenylbenzidine) � Sulfonat de dimetilamina (diphenylamine sulfonate) � Albastru de metilen (Methylene blue)

Page 21: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

21

wwwchem.uwimona.edu.jm

diphenylamine sulfonate indicator

redox titrations of dichromate ions

Titration of Fe 2+ with K2Cr2O7.

Page 22: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

22

ACTIVITATE INDEPENDENTA

� Cautati un exemplu de utilizare a albastrului de metilen ca si indicator redox

Page 23: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

23

� Methylene blue is an aromatic compound that produces a blue solution when dissolved in water.

� It is a redox indicator and relies on electron transfer rather than changes in hydrogen ion concentration to change colour.

� Glucose (an aldohexose) in an alkaline solution is slowly oxidised by oxygen, forming gluconic acid:

CH2OH-(CHOH)4-CHO + ½O2 → CH2OH-(CHOH)4-COOH

� In the presence of sodium hydroxide, gluconic acid is converted to sodium gluconate. As glucose is oxidised by the dissolved oxygen, methylene blue itself is reduced, forming the colourless methylene white, and the blue colour of the solution disappears.

ww.rsc.org/Education/EiC/issues/2006Nov/Exhibitionchemistry.asp

Page 24: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

24

2 - Indicatori redox de fluorescenţă → substanţe care îşi schimbăfluorescenţa în funcţie de potenţial şi se utilizează în soluţii colorate unde alţi indicatori nu sunt utilizabili.

Rhodamine B, illuminated by green laser light (532nm) - shows fluorescence(appears yellow - red and green combined)

www.rhodamine.eu

Rodamina B

Page 25: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

25

� Fluoresceina - 3H-xanthene-3-one

� Un indicator (solutie galbena) care estevizibil chiar la concentratii foarte mici

� used as an absorption indicator when silver nitrate solution is added to sodium chloride in order to precipitate silver chloride (turns pink when no chloride ions are left in solution and negative fluorescein ions are then absorbed).

http://fr.academic.ru/

Page 26: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

26

ACTIVITATE INDEPENDENTA

� Gasiti utilizarea fluoresceinei traducandslide-ul anterior

Page 27: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

27

3- Indicatori redox turbidimetrici

� sunt în general compuşi anorganici în formă oxidată, care la un anumit potenţial se reduc trecând în sisteme coloidale sau formează sisteme heterogene de precipitare odată cu schimbarea culorii.

Exemple:AuCl3 + 3H+ + 3e- ↔ Au (coloidal, roşu purpuriu) + 3 HCl

Page 28: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

28

4 – Indicatori metalocromici (reactivi ai ionilor)

� sunt combinaţii complexe colorate ale unui ion metalic cu un reactiv organic, în care ionul metalic este un component al unui sistem redox reversibil.

� Culoarea se modifică din cauza variaţiei starii de oxidare a ionului metalic in solutie.

Exemplu: feroina (o-fenentrolina feroasă)

http://www.thrivechem.com/ferroin-solution-redox-indicator

Page 29: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

29http://www3.syngenta.com/

[Fe(o-fen)3] 2+ - e- ↔ [Fe(o-fen)3]

3+

roşu albastru

Page 30: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

30

Aplicaţii ale titrimetriei (volumetriei) redox

1 - Manganometria

� Se utilizeaza solutii de permanganat de potasiuKMnO4 de conc cunoscuta

� nu este un standard primardar este o substanţă cu un caracter puternic oxidant, drept pentru care este multutilizată în volumetria redox.

www.intherabbithole.com

Page 31: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

31

� culoarea intensă la concentraţii mici o face uşor de utilizat si in lipsaindicatorilor

� Deoarece solutia nu este stabila i se determina factorul inaintea utilizarii, ZILNIC

www.ehow.com -

Page 32: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

32

Variantele manganometrieiÎn funcţie de aciditatea soluţiei, ionul permanganat [MnO4] - se reduce în

următoarele trei variante:

1. Mediu puternic acid, pH≈0, ionul permanganat se reduce la saruri manganoase (Mn2+)

MnO4- + 5e- + 8H+ ↔ Mn2+ + H2O

Mn7+ + 5e → Mn2+

� Situatia cea mai des intalnita in determinarile analitice

Page 33: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

33

2. Mediu slab acid, neutru ionul permanganat se reduce la bioxid de mangan MnO2

MnO4- + 3e- + 8H+ ↔ MnO2 ↓ + H2O

Mn7+ + 3e → Mn4+

3. Mediu alcalin - ionul permanganat se reduce la ionul manganat [MnO4] 2-

MnO4- + e- ↔ [MnO4] 2-

Mn7+ + 1e → Mn6+

Page 34: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

34

Aplicatii in industria alimentara

Alimente

1. Determinarea glucidelor reducatoare (zaharuluidirect reducator) prin metoda Bertrand la legume, fructe, lapte

� se foloseşte pentru determinarea tuturor monoglucidelor şi diglucidelor direct reducătoare, cum sunt glucoza, fructoza, maltozaşi lactoza.

� Celelalte zaharuri trebuie mai întâi transformate în zaharuri simpleprin hidroliză.

� Principiul metodei� se bazează pe proprietatea zaharurilor de a reduce CuSO4

(soluţia Fehling) la oxid cupros ( Cu2O). Aceasta se tratează cu soluţie acidă de sulfat feric, iar sulfatul feros format se titrează cu soluţie de permanganat de potasiu 0,1 N până la coloraţia roz pal.

Page 35: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

35

Reacţiile chimice care stau la baza acesteimetode sunt următoarele:

� 1.Reducerea soluţiei Fehling până la oxid cupros, cu ajutorulglucidelor reducătoare:

� 2.Dizolvarea oxidului cupros format cu soluţie ferică (sulfatferic) in mediu acid:

Cu2O + Fe2(SO4)3 + H2SO4 2CuSO4 + 2FeSO4 + H2O

� 3.Determinarea cantitativǎ a sulfatului feros prin titrare cu permanganat de potasiu solutie 0,1 N , in mediu puternic acid :

10FeSO4 +2KMnO4 +8 H2SO4 →5 Fe2(SO4)3 + 2MnSO4 + K2SO4 + 8H2O

Page 36: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

36

PROCESE REDOX:

� 1.Reducerea soluţiei Fehling până la oxid cupros, cu ajutorul glucidelor reducătoare:

C+1 -2 e → C+3 aldehida se oxideaza la acid, agent reducatorCu2+ + 1e → Cu+ se reduce, agent oxidant

2.Dizolvarea oxidului cupros format cu soluţie ferică(sulfat feric):

Cu+ - 1e → Cu2+ se oxideazaFe3+ +1e → Fe2+ se reduce

� 3.Determinarea cantitativǎ a sulfatului feros prin titrare cu permanganat de potasiu solutie 0,1 N :

Fe2+ -1e → Fe3+ se oxideazaMn7+ + 5e → Mn2+

Page 37: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

37

ACTIVITATE INDEPENDENTA

� Cautati care este compozitia solutiei Fehling 1 si Fehling 2 pentru a identifica compusiichimici care participa la reactiile din faza 1 sifaza 2 a metodei

Page 38: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

38

� 2. Determinarea Ca2+ din lapte

� Principiul metodei:� Ca din lapte se precipita cu oxalat de amoniu sub forma de oxalat de calciu.

� Pp format se dizolva la cald cu H2SO4 iar acidul oxalic format (proportional cu cantitatea de Ca din lapte) se determina prin titrare cu permanganat de potasiu panala slab roz

Ca2+ (lapte) + (COO-NH4)2 = (COO)2Ca + 2NH4+

(COO)2Ca + H2SO4 = (COOH)2 + CaSO4

2KMnO4+HOOC–COOH+3 H2SO4= MnSO4+K2SO4+8H20+10CO2

Page 39: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

39

PROCESE REDOX:

2KMnO4+HOOC–COOH+3 H2SO4= MnSO4+K2SO4+8H20+10CO2

C+3 - e → C+4 acidul oxalic se oxideaza la bioxidde carbon

Mn7+ + 5e → Mn2+ se reduce, agent oxidant

Page 40: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

40

Ape uzate in industria alimentara

Determinarea substantelor oxidabile din apele uzate(CCO-Mn)

Principiul metodei� Permanganatul de potasiu (KMnO4) oxidează substanţele organice din

apă în mediu de acid sulfuric la cald, iar permanganatul în exces se determină prin titrare cu acid oxalic.

Mn7+ + 5e → Mn2+

C+n – (m-n)e → C+m

2KMnO4exces+HOOC–COOH+3 H2SO4= MnSO4+K2SO4+8H20+10CO2

Page 41: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

41

ACTIVITATE INDEPENDENTA

� Ce tip de manganometrie este determinareacalciului din lapte?

� Calculati Nr de oxidare al carbonului din aldehide si acizi organici (in relatie cu regulilegenerale cunoscute) pentru a verificaprocesele redox prezentate la metodaBertrand si la determinarea Ca din lapte

Page 42: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

42

2 - Bicromatometria

Bicromatul de potasiu K2Cr2O7 funcţionează ca si agentoxidant conform reacţiei:

[Cr2O7]2- + 6e- + 14H+ ↔ 2Cr 3+ + 7H2O

Cr6+ + 3e → Cr 3+

commons.wikimedia.org

Page 43: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

43

Utilizare:

� Bicromatul de potasiu K2Cr2O7 se foloseşte mai puţin decât permanganatul deoarece� este mai puţin oxidant� puterea sa de colorare este mult mai mică → estenecesară uneori utilizarea indicatorilor pentru sesizareaPE.

� Avantaje:� este deosebit de stabil chiar la fierbere� se utilizează mai ales pentru dozarea substanţelororganice

� Factorul soluţiilor de bicromat se păstrează ani de zile.

Page 44: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

44

� La control alimente: determinarea factorului solutiei de tiosulfat de sodiu

� Principiu:

Solutia etalon de bicromat este titrata cu tiosulfat de sodiu inprezenta iodurii de K, sfarsitul reactiei fiind indicat de schimbarea culorii amidonului (albastru – incolor).

aK2Cr2O7 +bH2SO4 + cKI → dI2 + eK3 CrO3 + fH2O + gK2SO4

Tiosulfat de sodiu + iod = iodura de potasiu + tetraationat de sodiu

SCRIETI ECUATIA REACTIEI!!!

Page 45: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

45

https://www.google.ro/search?q=starch+iodine+blue&biw

hemwiki.ucdavis.edu/Biological_Chemistry/Carbohydrates/Case_Studies/Starch_and_Iodine

Page 46: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

46

Cr6+ + 3e → Cr3+ se reduce2I- -1e→ I20 se oxideaza

Pe scurt:

[Cr2O7]2- + 14H+ + 6I- → 3I2 + 2Cr 3+ + 7H2O

Page 47: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

47

Determinarea factorului solutiei de tiosulfat de sodiu

Solutia de bicromat

Formarea iodului din KI in prezenta acidului sulfuric

Formarea complexului albastru in prezenta amidonului

Titrarea iodului format cu tiosulfat de sodiu

Page 48: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

48

ACTIVITATE INDEPENDENTA

� Calculati echivalentul gram al tuturorsubstantelor implicate in sistemul redoxprezentat la Bicromatometrie!

� Gasiti coeficientii din reactie (a, b, c …..) pentru a stabili stoichiometria

Page 49: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

49

3 – Iodatometria(Iodometrie)

Soluţia de iod dizolvat in iodura de potasiu (iod-iodură) [I3]- se utilizează în două variante:

1 - Titrarea directă a unui reducător, după ecuaţia:

[I2-I]- + Red ↔ 3I- + Ox

Page 50: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

50

Determinarea factorului solutiei de iod

Titrarea solutiei de iod cu tiosulfat de sodiu

Formarea complexului albastru in prezenta amidonului

Decolorarea solutiei la momentul consumarii integrale a iodului (PE)

Page 51: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

51

Aplicatie: determinarea SO2 din vin si produse de legume/fructe

Principiu: bioxidul de sulf este oxidat de catre solutia de iod. Echivalenta este sesizata cu ajutorul amidonului care in prezenta iodului este albastru iar in prezenta iodurii este incolor

SO2 + I2 +2H2O→ H2SO4 +2 HI

Page 52: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

52

SO2 + I2 +2H2O→ H2SO4 +2 HI

-2e

S4+ → S6+ sulful se oxideaza, deci SO2 este agent reducator+2e

I20 → 2I- iodul se reduce, deci I2 este agent oxidant

Page 53: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

53

Determinareabioxidului de sulf

2 -Titrarea cu solutie iod 0,01N

1 -Suc de fructe

3 - PE – formarea complexuluialbastru la iod in exces

Page 54: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

54

Determinarea vitaminei C din produse vegetale

CC O

HOCHOCHCHO H

H2C OH

O CC O

OCOCHCHO H

H2C OH

O

Acid ascorbic Acid dehidroascorbic

+ 2HI+ I2

chem.ubbcluj.ro/files/Vitamina_C.doc

C +1 - 1 e → C +2 , C pierde 1 e, deci se oxidează, este agent oxidant

2I0 + 2e →2 I- , iodul acceptă e, deci se reduce, este agent oxidant

Principiu: Solutia de iod, in mediu acid va oxida acidul ascorbic (vit C) laacid dehidroascorbic; excesul de iod va duce la colorarea solutiei in albastru,in prezenta amidonului

Page 55: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

55

Page 56: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

56

Metoda Bodlander-Auerbach -determinarea glucozei din miere

� Principiu:� La tratarea unei solutii de glucidereducatoare cu iod, in mediu bazic, se oxideaza numai glucida care continegrupari aldehidice libere (glucoza) nu si ceacare contine grupari cetonice (fructoza). Iodul in exces se titreaza cu tiosulfat de sodiu in prezenta amidonului

Page 57: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

57

2 Titrarea indirectă a unor agenţi oxidanţi

Etape:1. reacţia oxidantului cu exces de iodură2. urmată de titrarea iodului rezultat (care este echivalent

cu agentul oxidant) cu o soluţie reducătoare standard (se foloseşte tiosulfatul de sodiu Na2S2O3).

Ox + 3I- ↔ Red + [I2-I]-

(exces)

3[I2-I]- + 2[S2O3] 2- ↔ 3I- + [S4O6]2-

(rezultat) (soluţie standard) (tetrationat)

Page 58: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

58

Aplicatii la control alimenteA - Determinarea glucidelor reducatoare prin:

1. Metoda Schoorl: vegetale, vin

� Determinarea glucidelor reducătoare dupa această metodă este mult mai rapidă, nu necesită aparatura specială (filtru G4) însă este mai puţin exactă decât metoda Bertrand.

Principiu

� Prin această metodă, cantitatea de oxid cupros formată dinreducerea sulfatului de cupru se determină indirect, prin dozareaiodometrică a sulfatului de cupru existent în soluţia Fehling, înainteşi după reducere. Diferenţa obţinută reprezintă cantitatea de cupruredusă de către zahărul reducǎtor, conform reacției (1) presentata la metoda Bertrand.

Page 59: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

59

Reacţiile chimice care au loc sunturmătoarele:

2 CuSO4 + 4 KI = 2 CuI + 2 K2SO4 + I2

I2 + Na2S2O3 = 2 NaI + Na2S4O6

Page 60: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

60

PROCESE REDOX

2 CuSO4 + 4 KI = 2 CuI + 2 K2SO4 + 2 I2

Cu2+ + 1e → Cu+

2I- - 2e → I20

I2 + Na2S2O3 = 2 NaI + Na2S4O6

+2eI20 → 2I-

-1e

S2+ → S2+

Page 61: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

61

FI + FII + proba(martor)

Aducerea amestecului de reactie la fierbere

Formarea iodurii cuproase

Titrarea solutiei de iod format ( in prezenta amidonului) cu tiosulfat de sodiu

PE

Page 62: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

62

2. Metoda Elser: miere, lapte –asemanatoare cu metoda Schrool

Page 63: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

63

Determinarea vitaminei CPrincipiu: iodul format prin reactia dintre iodatul de potasiu si iodura de

potasiu in mediu acid (1) va oxida acidul ascorbic (vit C) la acid dehidroascorbic(2)

KIO3 + 5KI + 6 HCl→ 3 I2 + 3 H2O (1)2 IO3− + 10I− + 12 H+ → 6 I2 + 6 H2O

I5+ + 5 e → I0 iodatul acceptă e, se reduce, este agent oxidant 2I- - 1 e → 2I0 iodura pierde e, se oxidează, este agent reducător

(2)

C +1 - 1 e → C +2 , C pierde 1 e, deci se oxidează, este agent oxidant2I0 + 2e →2 I- , iodul acceptă e, deci se reduce, este agent oxidant

CC O

HOCHOCHCHO H

H2C OH

O CC O

OCOCHCHO H

H2C OH

O

Acid ascorbic Acid dehidroascorbic

+ 2HI+ I2

Page 64: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

64

Page 65: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

65

B- Determinarea O2 dizolvat din apeleuzate

Principiu:� Hidroxidul manganos format prin reactia dintre sulfatul

manganos si hidroxidul de sodiu este oxidat de către oxigenul dizolvat în apă la hidroxid manganic.

� Cei doi hidroxizi de Mn formeaza un complex brun-roscat, manganita de mangan

� Aceasta, în mediu acid, formeaza sulfat manganic, care înlocuieşte iodul din iodura de potasiu în cantitate echivalentă cu oxigenul dizolvat.

� Iodul rezultat se determină prin titrare cu tiosulfat de sodiu.

Page 66: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

66

B- Determinarea O2 dizolvat din apele uzate

� Succesiunea reacţiilor chimice care au loc este următoarea :

MnSO4 + 2 NaOH = Mn(OH)2 + Na2SO4

Mn(OH)2 + ½ O2 = MnO3H2

OMnO3H2 + Mn(OH)2 = Mn = O Mn + 2 H2O

OManganită de mangan, brună

OMn = O Mn + 3 H2SO4 = Mn2(SO4)3 + 3 H2O

O

Mn2(SO4)3 + 4 KI = MnSO4 + 2 K2SO4 + 2 I2

I2 + 2 Na2S2O3 = Na2S4O6 + 2 NaI

Page 67: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

67

PROCESE REDOX

Mn2(SO4)3 + 4 KI = MnSO4 + 2 K2SO4 + 2 I2

2I- -2e → I20 se oxideazaMn3+ +1e → Mn2+ se reduce

I2 + 2 Na2S2O3 = Na2S4O6 + 2 NaI

I20 + 2e→ 2I- se reduce

S2+ -1e→ S3+ se oxideaza

Page 68: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

68

Concluzii

� Volumetria redox se bazeaza pe reacţiile care au loc cu acceptare sau cedare de electroni - reacţii de oxido-reducere

� In titrarea redox se urmarește variatia Potentialul redox care reprezinta tendinţa substanţelor de a ceda sau de a accepta electroni

� Indicatorii redox sunt: de culoare, de fluorescenţă, turbidimetrici, metalocromici

� Aplicatiile volumetrie redox (pentru alimente) sunt: MANGANOMETRIA, BICROMATOMETRIA, IODOMETRIA

Page 69: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

69

� MANGANOMETRIA – paternic dependenta de pH� Aplicatiile in control alimente – mediu paterni acid� determinarea glucidelor reducătoare (Bertrand),

calciului din lapte, substanțe oxidabile in ape uzate

� BICROMATOMETRIA – standard primar -determinarea factorilor solutiilor implicate in iodometrie

� IODOMETRIA directa – determinarea bioxidului de sulfdin produse vegetale, determinarea vitaminei C

� IODOMETRIA indirecta - determinarea glucidelorreducătoare (Schoorl, Elser) determinarea vitamineiCM

Page 70: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

70

Test de autoevaluare1. Ce tip de reacții stau la baza volumetriei de oxido-reducere?

2. Definiți fenomenul de reducere, respectiv de oxidare

3. Definiti potentialul redox

4. Ce se masoara in timpul unei titrari redox?

5. Care din urmatoarele reprezinta condiţiile pe care trebuie să le îndeplinească o reacţie redox pentru a fi utilizată în chimia analitică sunt:

1. să fie lenta2. să fie totală 3. să se poată stabili uşor sfârşitul, adică PE

Page 71: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

71

6. Enumerați tipurile de indicatori redox

7. Care din urmatorii sunt indicatori redox:1. Albastru de metilen2. Roșu neutru3. Feroina

8. Ce este manganometria?

9. Care este motivația utilizării permanganatului de potasiu ȋn volumetria redox?

10. Care sunt variantele manganometriei?

Page 72: Ch an Cursul 6 Volumetria redox · 5 Deoarece în solu ţie nu există electroni liberi, întotdeauna electronii ceda ţi de o specie sunt accepta ţi de o alta şi de aceea o reac

72

11. Enumerați aplicațiile manganometriei ȋn controlul alimentelor

12. Care varianta a manganometrie se folosește ȋn metodele utilizate la controlul alimentelor?

13. Care sunt avantajele utilizării bicromatului de potasiu ca și oxidantȋn procesele redox?

14. Care sunt dezavantajele utilizării bicromatului de potasiu ca șioxidant ȋn procesele redox?

15. Care este aplicația bicromatometriei la control alimente?

16. Care sunt variantele iodometriei ȋn volumetria redox?

17. Care este aplicația iodometriei directe la control alimente?

18. Care sunt aplicațiile iodometriei indirecte la control alimente?