Biochimie

128
Metabolismul lipidic Generalităţi Lipidele sunt biomolecule organice, insolubile în apă ce se pot extrage din celule şi ţesuturi cu solvenţi organici nepolari. Lipidele au câteva funcţii biologice importante, servind drept: componente structurale ale membranelor forme de depozitare şi de transport al combustibililor înveliş protector al multor organe drept componente ale suprafeţei celulare impliate în recunoaşterea celulară, în specificitatea de specie şi imunitatea tisulară. Unele substanţe din clasa lipidelor, cum sunt unele vitamine şi hormoni au o importantă activitate biologică. Clasificarea lipidelor Dpdv structural lipidele se împart în: I. Lipide simple : - esteri ai acizilor graşi cu glicerina (triacilgliceroli) - esteri ai acizilor graşi cu alcooli superiori monocarboxilici (ceruri) II. Lipide complexe: - glicerofosfolipide: esteri ai glicerinei cu acizi graşi, compuşi azotaţi şi un rest de acid fosforic - sfingolipide: conţin un alcool (sfingozina), acizi graşi, compuşi azotaţi şi un rest de acid fosforic Exemple: fosfolipide glicolipide sulfatide aminolipide lipoproteine 1

Transcript of Biochimie

Page 1: Biochimie

Metabolismul lipidic

Generalităţi

Lipidele sunt biomolecule organice, insolubile în apă ce se pot extrage din celule şi ţesuturi cu solvenţi organici nepolari.

Lipidele au câteva funcţii biologice importante, servind drept: componente structurale ale membranelor forme de depozitare şi de transport al combustibililor înveliş protector al multor organe drept componente ale suprafeţei celulare impliate în recunoaşterea celulară, în

specificitatea de specie şi imunitatea tisulară. Unele substanţe din clasa lipidelor, cum sunt unele vitamine şi hormoni au o importantă activitate biologică.

Clasificarea lipidelor

Dpdv structural lipidele se împart în:I. Lipide simple : - esteri ai acizilor graşi cu glicerina (triacilgliceroli) - esteri ai acizilor graşi cu alcooli superiori monocarboxilici (ceruri) II. Lipide complexe: - glicerofosfolipide: esteri ai glicerinei cu acizi graşi, compuşi azotaţi şi un rest de acid fosforic - sfingolipide: conţin un alcool (sfingozina), acizi graşi, compuşi azotaţi şi un rest de acid fosforicExemple:

fosfolipide glicolipide sulfatide aminolipide lipoproteine

III. Derivaţi ai lipidelor sunt compuşi rezultaţi prin hidroliza lipidelor simple şi complexe.Exemple: - acizii graşi: - saturaţi - nesaturaţi - glicerina - steroizi - aldehide grase - corpi cetonici Dpdv funcţional lipidele se împart în : I. Lipide de rezervă. Acestea sunt localizate în ţesutul adipos şi sunt constituite în special din trigliceride de provenienţă exogenă (alimentară) II. Lipidele citoplasmatice sunt lipide complexe care alcătuiesc elementul constant care variază numai în funcţie de natura ţesutului.

Structura şi proprietăţile acizilor graşi saturaţi

1

Page 2: Biochimie

Acizii graşi sunt elemente constitutive ale diferitelor clase de lipide.În stare liberă acizii graşi se întâlnesc în cantităţi mici în celule şi ţesuturi.Acizii graşi conţin -un lanţ de hidrocarbură saturată sau nesaturată

-grupare carboxilică terminală. Acizii graşi din lipidele plantelor şi animalelor superioare cuprind un număr par

de atomi de C, în majoritate lanţuri formate din 14-22 atomi de carbon.Acizii graşi saturaţi pot exista într-un număr infinit de conformaţii datorită

faptului că legătura simplă permite rotaţia liberă a atomilor de carbon. Forma cea mai probabilă este cea extinsă, cu un conţinut minim de energie.

1. Acizii graşi nesaturaţi prezintă conformaţia cis. În cazul acizilor polinesaturaţi dublele legături nu sunt niciodată conjugate.

2. Acizii graşi sunt insolubili în apă, dar solubili în solvenţi nepolari, de asemenea ei se solubilizează în NaOH şi KOH cu formare de săruri numite săpunuri.

3. Acizii graşi saturaţi sau nesaturaţi nu absorb lumina nici în vizibil nici în UV.4. Prin încalzire cu KOH acizii graşi polinesaturaţi pot fi izomerizaţi în acizi graşi

cu duble legături conjugate, formă sub care absorb lumina UV între 230-260 nm.5. Acizii graşi nesaturaţi dau reacţii de adiţie la legătura dublă. Adiţia de halogeni

(iod) are utilitate practică în determinarea numărului de duble legături din acizii graşi liberi sau din acizii graşi care alcătuiesc lipidele.

Acizi graşi saturaţi:

H3C ( CH2)2 COOH acid butiric

H3C (C H2)6 C O O H acid capr ilic

H3C ( CH2)4 COOH acid capronic

H3C (C H2)8 C OOH acid caprinic

H3C (C H2)10 C O O H acid laur ic

H3C (C H2)12 C O O H acid mir istic

H3C (C H2)14 C O O H acid palmitic

H3C (C H2)16 C O O H acid stearic

H3C (C H2)18 C O O H acid arahidic

H3C (CH2)22 COOH acid lignoceric

Acizii graşi nesaturaţi acizi monoenoici

2

Page 3: Biochimie

H3C (CH2)5 CH CH (CH2)7 COOH acid palmitoleic

H3C (CH2)7 CH CH (CH2)7 COOH acid oleic Acizi polienoici

H3C (CH2)4 CH CH CH2 CH CH (CH2)7 COOH acid linoleic

H3C CH2 CH CH CH2 CH CH CH2 CH CH (CH2)7 COOH acid linolenic

H3C (CH2)4 CH CH CH2 CH CH CH2 CH CH CH2 CH CH (CH2)3 COOH acid arahidonic Acizii linoleic, linolenic şi arahidonic sun acizi graşi esenţiali.

Metabolismul acizilor graşi saturaţi

Digestia şi absorbţia lipidelor Grăsimile ingerate constau într-o varietate de lipide din care majoritare sunt

fosfolipidele şi triacilglicerolii. Circa 15% din triacilgliceroli sunt hidrolizaţi în stomac de către o lipază secretată

de către celulele secretoare gastrice. Ceea ce rămâne din triacilgliceroli şi fosfolipide, este hidrolizat în intestinul

subţire de către enzime secretate de celulele acinare ale pancreasului. Acestea includ o fosfolipază şi o triacilglicerol lipază.

Lipaza pancreatică acţionează asupra micelelor de triacilgliceroli şi săruri biliare. Sărurile biliare acţionează asupra picăturilor mari de lipide pentru a le transforma

în micele de mici dimensiuni. Lipaza este o proteină de 46 kDa care se inserează ea însăşi în interfaţa de pe

suprafaţa micelelor, împreună cu colipaza, un cofactor proteic de 10 kDa care este esenţial pentru activitatea enzimatică.

În imaginea A, în absenţa lipidelor, regiunea „capac” a lipazei („lied”) acoperă centrul activ dar, în prezenţa lipidelor (imaginea B), capacul este retras spre procolipaza.

Acţiunea colipazei

3

Page 4: Biochimie

Lipaza îndepărtează cei doi acizi graşi dinspre exterior, dând naştere la monoacilglicerol.

Acizii graşi şi monoacilglicerolul sunt transportaţi în celulele ce căptuşesc peretele intestinal.

După absorbţie, acizii graşi sunt convertiţi în acid gras CoA prin reacţie. Acid gras CoA poate apoi reacţiona cu monoacilglicerolul pentru a reforma triacilglicerol care este apoi încorporat în chilomicroni.

Triacilglicerolul se formează deasemenea şi în celulele intestinale, din glicerol-3-fosfat şi acid gras CoA.

Acţiunea lipazelor

Catabolismul acizilor graşi

Acizii graşi se degradează prin cedarea succesivă a unor fragmente de 2 atomi de C, în urma unui proces de oxidare ce ar avea loc la nivelul carbonului din poziţia β în raport cu gruparea carboxil.

Catabolismul acizilor graşi presupune activarea şi transportul acizilor graşi saturaţi în mitocondrie unde are loc oxidarea propriu-zisă (β-oxidarea).

Activarea acizilor graşi se face cu consum de ATP şi participarea CoA cu formare de tioesteri, ce nu penetrează membrana internă.

Pentru traversarea barierei are loc o transesterificare de pe CoA pe o moleculă carrier numită carnitină.

(C H3)3N + C H2 C H C H2 C O O H carnitina

O H

Activarea şi transportul acizilor graşi saturaţi

Pentru activarea şi transportul acizilor graşi saturaţi sunt necesare anumite enzime: tiokinaze (acil CoA -sintetaze) şi acil CoA-transferaze.

4

Page 5: Biochimie

Aceste enzime se găsesc în membrana mitocondrială externă, intramitocondrial precum şi în microzomi.

Activarea acizilor graşi se realizează în membrana mitocondrială externă, după care are loc transferul acidului gras activat cu ajutorul canitinei în mitocondrie, unde pune în libertate carnitina şi acidul gras intră în procesul de β-oxidare propriu-zis.

internamitocondrialamembrana

mitocondriemembrana mitocondriala externa

oxidarea

aciltransferaza aciltransferaza

R CO SCoA

CoASH

carnitina

acilcarnitinaCoA acilcarnitina

carnitinaSCoACOR

PP+AMP

tiokinazaCoASH+ATP +R COOH

Oxidarea propriu-zisă (β- oxidarea)

Procesul de β-oxidare sau ciclul lui Lynen se desfăşoară în mitocondrie. Etapele procesului de β-oxidare sunt următoarele:

dehidrogenarea de tip α- β aditia stereospecifică a moleculei de apă dehidrogenare clivare α- β (tioliză)

acil_CoA_dehidrogenaza

dehidrogenaza

tiolaza

12 ATPTCA + LRH3C CO SCoA

CoASH

R CO SCoA

SCoACO

O

R C CH2

LR2ATPFADH2

FAD

SCoACO

OH

CH CH2R

H2OSCoACOCHCHR

LR3 ATPH+

+NADH

NAD+

R CH2 CH2 CO SCoA

5

Page 6: Biochimie

Degradarea acizilor graş prin β-oxidare are loc pe o cale alcătuită din 2 reacţii de dehidrogenare, întrerupte de o hidratare şi o scindare prin tioliză, când se pierd 2 atomi de C sub formă de acetil- CoA.

Restul obţinut, mai scurt cu e atomi de C repetă calea până este integral degradat la acetil- CoA.

Acidul gras se oxidează total până la CO2, apă şi energie.

Exemplu: Pentru oxidarea acidului palmitic care este format din 16 atomi de C, acesta trece

de 7 ori prin procesul de β-oxidare propriu-zisă, rezultând la final 7 molecule de acetil-CoA.

Bilanţul energetic pentru oxidarea aciduli palmitic este următorul: Din cele 8 Ac-CoA ----- 8 x 12 ATP = 96 ATP În fiecare tur de β-oxidare se formează 5 ATP---- 7 x 5ATP = 35 ATP În procesul de activare se consumă 1 ATP Total: 130 ATP / moleculă de acid palmitic oxidat. Pe lângă procesul de β-oxidare se mai cunosc şi alte procese de oxidare a acizilor

graşi cum ar fi: α-oxidarea şi Ω- oxidarea.

Catabolismul acizilor graşi cu număr impar de atomi de carbon

Oxidarea acizilor graşi cu număr impar de atomi de carbon se realizează după acelaşi model ca şi β-oxidarea

Presupune aceleaşi etape:-activarea, -transportul în mitocondrie, -integrarea în β-oxidare.

În final se ajunge la un rest cu 5 atomi de carbon. Acesta se scindează la acetil –CoA şi propionil-CoA. Propionil-CoA se transformă în succinil-CoA, care intră în TCA.

mutazacarboxilazapropionil

TCASCoACO

COOH

CH2

CH2

CO SCoA

COOHCHH3C

CO2

CH2

CO SCoA

CH3

Biosinteza acizilor graşi

Biosinteza acizilor graşi saturaţi se realizează din acetil-CoA (precursorul principal)

Procesul are loc în toate organismele Predominant în- ficat

-ţesutul adipos -glandele mamare ale animalelor superioare.

Procesul de biosinteză diferă de cel al oxidării acizilor graşi Biosinteza acizilor graşi are loc în citosol, iar oxidarea lor are loc în mitocondrii.

6

Page 7: Biochimie

Prezenţa citratului este necesară pentru obţinerea unor viteze maxime de sinteză, dar nu este cerută pentru oxidarea lor.

CO2 este esenţial pentru sinteza acizilor graşi în extractele celulare, deşi nu este încoporat în acizii nou sintetizaţi.

Aceste observaţii au dus la concluzia că sinteza acizilor graşi se realizează au un grup de enzime total diferit de cel folosit la oxidarea acizilor graşi.

Reacţia de sinteză a acizilor graşi este catalizată de un sistem multienzimatic complex din citosol, numit complexul sintetazei acizilor graşi.

Biosinteza acidului palmitic

Precursorul esenţial al acizilor graşi este acetil-CoA. - din cele 8 unităţi acetil necesare pentru biosinteza acidului palmitic,numai una

este furnizată de acetil-CoA, restul sunt furnizate sub formă de malonil-CoA, formată din acetil-CoA şi HCO3- într-o reacţie de carboxilare.

-Restul acetil şi cele 7 resturi malonil sunt supuse unor trepte succesive de condensare care eliberează 7 CO2 formând acidul palmitic.

Ac_CoA + 7 malonil_CoA + 14 NADPH +H+ H3C (CH2)14+7 CO2+ 8 CoA + 14NADP+ + 6H2O

Singura moleculă de Ac-CoA necesară procesului serveşte ca iniţiator, cei doi atomi de C ai acestei grupări acetil devenind atomii de C terminali ai acidului format.

Creşterea lanţului acidului gras începe la gruparea carboxil a acetil-CoA şi continuă prin adiţia succesivă a resturilor acetil la capătul carboxil al lanţului care creşte.

Fiecare rest acetil este obţinut dintr-un rest de acid malonic, care pătrunde în sistem sub formă de malonil-CoA.

Al 3-lea atom de C al acidului malonic este eliminat sub formă de CO2. Intermediarii acil al procesului de alungire a lanţului sunt tioesteri, dar nu ai CoA,

ca în cazul oxidării acizilor graşi, ci ai unui conjugat proteic, numit proteină acil-transportoare (PTA).

Această proteină poate forma un complex cu cele 6 enzime implicate pentru sinteza completă a acidului palmitic. În majoritatea celulelor eucariotelor, toate proteinele complexului sintetazei acizilor graşi sunt asociate într-un grup multienzimatic.

Sursa de atomi de carbon

Principala sursă de carbon este acetil-CoA, formată în mitocondrii prin decarboxilarea oxidativă a piruvatului

prin degradarea oxidativă a unor aminoacizi prin oxidarea acizilor graşi cu lanţuri lungi

Acetil-CoA nu poate trece ca atare din mitocondrie în citosol. Citratul format în mitocondrii din acetil-CoA şi oxalil-acetat, poate să treacă prin

membrana mitocondrială în citoplasmă pe calea sistemului de transport tricarboxilat.

7

Page 8: Biochimie

În citosol acetil-CoA este regenerată din citrat sub acţiunea ATP-citrat liazei, care catalizează reacţia:

Citrat + ATP + CoA = acetil-CoA + ADP + Pa + oxalil-acetat

Formarea de malonil-CoA

Malonil-CoA se formează din acetil-CoA şi bicarbonat în citosol, prin acţiunea acetil-CoA carboxilazei.

carboxilazaacetil- C oA A DP + P a +

C O O H

C H2

C O SC oA

H3C C O SC oA + HC O 3- + A T P

Atomul de C al bicarbonatului devine carbonul carboxilic distal sau liber al malonil-CoA.

Acetil-CoA carboxilaza este o enzimă ce conţine biotină ca grupare prostetică Biotina legată covalent este transportor intermediar al unei molecule de CO2, într-

un ciclu de reacţii în două trepte.HCO3

- H+ ATP biotin_enzima

carboxi_biotin_enzimaADP Pa

malonil_CoA

acetil_CoA

Reacţia catalizată de acetil-CoA carboxilaza (enzimă allosterică) este etapa reglatoare care limitează viteza în cadrul biosintezei acizilor graşi.

Citratul este modulatorul pozitiv al acestei reacţii deplasând echilibrul între monomerul inactiv şi polimerul activ, în favoarea celui din urmă.

Reacţia acetil-CoA carboxilazei este de fapt mai complexă . Unitatea monomerică a enzimei conţine 4 subunităţi diferite. Una dintre aceste subunităţi, biotin-carboxilaza (BC), catalizează prima treaptă a

reacţiei totale şi anume carboxilarea resturilor de biotină legată de a doua subunitate, care se numeşte proteina transportoare biotin-carboxil (PTBC).

transferazacarboxil

subunitatea CT

sububitatea BC

CH2

CO SCoA

COOHbiotin_PTBCCO SCoAH3Ccarboxibiotin_PTBC

PaADPcarboxi_biotin_PTBC ATPH+ HCO3-Biotin_PTBC

Resturile de biotină ale proteinei transportoare de carboxil servesc ca pârghii în transportul ionului bicarbonat de pe subunitatea biotin-carboxilzei la acetil-CoA, care este legată la situsul activ al subunităţii carboxil-transferazei.

Trecerea de la forma monomerică inactivă a acetil-CoA carboxilazei la forma polimerică activă a enzimei are loc când citratul este legat de cea de-a patra subunitate a fiecărui monomer.

8

Page 9: Biochimie

Reacţiile sistemului sintetazei După formarea malonil-CoA, urmează sinteza acizilor graşi într-o secvenţă de 6

trepte succesive, catalizate de 6 enzime ale complexului sintetazei acizilor graşi. Cea de-a şaptea proteină din sistem, nu are activitate enzimatică, ea este proteină

transportoare de acil, de care este ataşat covalent lanţul de formare a acidului gras. Complexul acid gras-sintetazei este un dimer fiecare monomer conţine 2 grupări – SH

-una aparţine 4-fosfopantoteinei din ACP (Acyl-Carrier-Protein) -alta unei cisteine din β-cetoacilsintetazei

Cei 2 monomeri sunt astfel aranjaţi încât în apropierea ACP-SH dintr-un monomer se găseşte o grupare Cis-SH din cetoacilsintetaza.

Biosinteza acidului gras începe prin legarea unei molecule de acetil-CoA de gruaprea Cis-SH, catalizată de acetil-transacilaza.

Malonil-CoA se combină cu gruparea –SH a 4-fosfopantoteinei legată de ACP din celălalt monomer în prezenţa malonil-transacilazei.

În continuare acetilul atacă gruparea metilen din malonil, reacţie catalizată de β-cetoacil-sintetaza cu eliberarea de Co2 şi formarea de β-cetoacil enzima.

Gruparea SH a cisteinei rămâne liberă. Prin reacţia de decarboxilare se eliberează energie necesară condensării şi desfăşurării secvenţei de reacţii.

Gruparea cetoacil legată de enzimă este redusă, deshidratată, redusă din nou pentru a forma acil enzima saturată.

Reacţiile sunt analoage celor din β-oxidare, cu deosebirea că β-hidroxiacidul este izomerul D(-), iar donorul este NADPH.

În continuarea a nouă grupare malonil atacă gruparea SH a fosfopantoteinei deplasând restul acil saturat la gruparea SH liberă a cisteine.

Secvenţa de reacţii se repetă de 7 ori, de fiecare dată fiind încorporat un rest malonil, până la formarea acidului palmitic.

Reacţiile procesului de biosinteză sunt următoarele:

tioesteraza COOH(CH2)14H3C

Pan_SH

Cis_SH

(2)

(1)

Pan_S CO (CH2)14 CH3

Cis_SH

(2)

(1)

CO CH2 COOH

CH3

Pan_S

Cis_S CO CH2 CH2malonil- transferaza

(2)

(1)

CoASHmalonil-CoA

CO CH2 CH2 CH3Pan_S

Cis_SH

(2)

(1)enoil- reductaza

NADP+H+NADPHH

HC C CH3

hidrataza

Pan_S CO

Cis_SH

(2)

(1)

H2O

- cetoacilreductaza

OH

CH3CO CH2 CHPan_S

Cis_SH

(2)

(1)

NADP+H+NADPHCO CH3Pan_S CO CH2

Cis_SH

(2)

(1)

CO2

sintetazabetacetoacil

maloniltransacilaza

acetiltransacilaza

2CoASH

COOHCO CH2SPan

Cis S CO CH3

(2)

(1)

HOOC CH2 COSCoA

COSCoAH3C

Pan_SH

Cis_SH

(2)

(1)

9

Page 10: Biochimie

Ecuaţia globală de obţinere a acidului palmitic este:8H3C CO SCoA 14 NADPH 14 H+ 7ATP H2O

COOH(CH2)14H3C 8CoASH 14NADP+7ADP 7Pa

Acidul palmitic format pentru a putea fi încorporat într-o cale metabolică este activat în prezenţa de tiokinază şi ATP la palmitil-CoA.

Moleculele de NADPH necesare reacţiilor de reducere se formează prin oxidarea glucozo-6-fosfatului pe calea fosfogluconatului.

Etapele ce conduc la biosinteza acizilor graşi diferă de cele implicate în oxidarea acizilor graşi astfel:

localizarea intracelulară tipul de transportor de grupări acil forma sub care sunt adăugate sau îndepărtate unităţile cu 2 atomi de carbon specificitatea faţă de NADP+ a reacţiei β-cetoacil β-hidroxiacilului configuraţia stereoizomerică a intermediarului β-hidroxiacil sistemul acceptor-donor de e- ai etapei crotonil-butiril răspunsul la citrat şi HCO3-.

Metabolismul lipidelor simple

Biosinteza acilglicerolilor

Acilglicerolii sunt sintetizaţi de organismul animalelor şi plantelor superioare. Sinteza are loc în majoritatea ţesuturilor, dar importanţă practică prezintă ficatul

şi ţesutul adipos. Precursorii pentru sinteză sunt glicerol-3-fosfatul şi acizii graşi activaţi sub formă

de acil-CoA. Glicerina este activată prin fosforilare la glicerol-3-fosfat în prezenţă de

glicerolkinază şi ATP. Enzima este prezentă în ficat, rinichi, mucoasa intestinală, glanda mamară în

lactaţie şi este absentă în muşchi şi ţesutul adipos.

În ţesuturile în care enzima este absentă sursa de glicerină o formează dihidroxiacetonfosfatul, intermediar din glicoliză.

Transformarea dihidroxiacetonfosfatului în glicerin-3-fosfat se face în prezenţă de NADH şi glicerin-3-fosfat dehidrogenaza.

glicoliza

CH2

C O

CH2 OH

OP

dehidrogenazaglicerin-3- fosfat

NADH H+NAD+OP

CH2 OH

CH OH

CH2

glicerolkinaza

ADPATPCH OH

CH2 OH

CH2 OH

Acizii graşi sunt activaţi prin transformarea lor în derivaţi de CoA în prezenţă de ATP şi CoASH,reacţie catalizată de tiokinază.

10

Page 11: Biochimie

Astfel în prezenţă de acil-CoA, glicerin-3-fosfat şi transferaze specifice se formează ca intermediar 1,2-diacilglicerolfosfatul (acidul fosfatidic).

Reacţia are loc în 2 trepte (acidul fosfatidic este intermediar atât în sinteza acilglicerolilor cât şi a fosfolipidelor).

Pentru a fi convertit în triacilglicerină acidul fosfatidic este hidrolizat în prezenţa unei fosfataze.

În mucoasa intestinală există a cale alternativă care pleacă de la 2-monoacilglicerină.

Aceasta în prezenţa unui acil-CoA şi a monoacilglicerinaciltransferazei este convertit la 1,2-diacilglicerină.

Triacilglicerina se formează cu participarea diacilglicerintransferazei şi a unei molecule de acil-CoA.

diacilglicerilaciltransferaza

CO R3

R2 CO

CH2

CO H

O

CH2 O CO R1

CoAR3 COSCoA

CH2 O CO R1

CH2 OH

CO HCOR2fosfohidrolaza

PH2OR2 CO

CH2

CO H

OP

CH2 O CO R1

acid lizofosfatidic

R2 COSCoA CoA

acil- transferazaglicerol-3- fosfat

CH2 O CO R1

CH2

C H

OP

HOCoAR1 COSCoA

HO

CH2

C H

OP

CH2 OH

În ţesuturile în care este absentă glicerina se porneşte de la dihidroxiacetonfosfatul rezultat din glicoliză.

CH2 OH

C O

CH2 OPNADH H+

NAD+

CH2 OH

C H

CH2 OP

HO TAG

R1 SCoA

CoACH2 OCO R1

C

CH2 OP

ONADH H+

NAD+

CH2 OCO

C HHO

CH2 OP

R1

TAG

11

Page 12: Biochimie

Catabolismul triacilglicerolilor Primul pas în degradarea triacilglicerolilor îl constituie hidroliza legăturii ester

(lipoliza) în prezenţa unor enzime numite lipaze. Se cunosc triglicerolipaze deosebite prin localizare şi funcţie.

Exemplu: lipaza pancreatică este localizată în sucul pancreatic şi ajută la digestia

triacilglicerolilor din alimentaţie lipaza hormon sensibilă este localizată în adipocite şi serveşte la mobilizarea

lipidelor lipoproteinlipaza este localizată în capilare şi ajută la utilizarea triacilglicerolilor

în lipoproteine lipaza hepatică este localizată în ficat şi are rol în catabolismul lipoproteinelor. În ţesutul adipos hidroliza triacilglicerolilor are semnificaţie cantitativă şi

reprezintă procesul de mobilizare a lipidelor cu eliberarea acizilor graşi liberi în plasmă.

Aceştia sunt captaţi de ţesuturi şi utilizaţi în scop energetic sau pentru sinteza lipidelor proprii.

Ţesutrul adipos conţine mai multe lipaze. Hormonii au rol lipolitic (catecolaminele), acţionează prin intermediul c-AMP

printr-un mecanism analog cu cel responsabil de stimularea glicogenolizei Lipoliza este un proces hidrolitic care se desfăşoară în trepte

GlicerolMAGDAGTAG

lipazalipazalipaza

R3COOH

OH

CH2 OH

CH

CH2 OHOH

OH

CH2 OCO R3

CH

CH2 OH

R2COOH

CH2 OH

CH OCO R2

CH2 OCO R3R1COOHCH2 OCO R3

CH OCO R2

CH2 OCO R1

Etapa limitantă de viteză este reacţia de îndepărtare a primului rest de acid gras dinTAG, catalizată de lipaza adipolitică sau lipaza hormon-dependentă.

Metabolismul lipidelor complexe

Biosinteza glicerofosfolipidelor

Acidul fosfatidic este precursor comun pentru două căi separate în biosinteza glicerofosfolipidelor:1. O cale în care acidul fosfatidic se activează cu CTP şi formează CDP-diacilglicerina, care apoi reacţionează cu componenta polară (mioinozitol, serina, fosfatidilglicerina) formând glicerofosfolipidele respective.

12

Page 13: Biochimie

2. O a doua cale în care acidul fosfatidic sub acţiunea fosfohidrolazei pierde fosfatul şi trece în 1,2-diacilglicerol, care reacţionează apoi cu formele activate ale bazelor cu formare de cefaline şi lecitină. În ambele căi citidin-trifosfatul are rol de activator.

1. Biosinteza glicerofosfolipidelor plecând de la acid fosfatidic

Această cale este specifică bacteriilor, dar este utilizată şi de ţesuturile animal în special pentru biosinteza cardiolipinei şi a fosfatidilinozitolului.

Activarea acidului fosfatidic cu citintrifosfat (CTP) are loc sub acţiunea fosfatidil-citidil-transferazei.

fosfatidil- citidiltransferazei

PP

CDP- diacilglicerina

OHOH

O P O

O

citidil

CH2 OCO R1

CHCOOR2

CH2 O P

OCTP

CH2 OPO3H2

R2 CHCOO

OCO R1CH2

În bacterii CDP-diacilglicerina reacţionează cu gruparea OH a serinei şi formează fosfatidilserina.

OHOH

O P O

O

citidil

CH2 OCO R1

CHCOOR2

CH2 O P

OHO CH2 CH COOH

NH2CMP

CH2 O P

O

O CH2 CH COOH

CHCOO

OCO R1CH2

OH NH2

R2

fosfatidilserina

Fosfatidilserina printr-o reacţie de decarboxilare trece în fosfatidiletanolaminei (cefalina), care mai departe în urma unui proces de metilare formează fosfatidilcolina (lecitina).

R2

CH2 O P

O

O CH2 CH COOH

CHCOO

OCO R1CH2

OH NH2

fosfatidilserina

R2

CH2 O P

O

O CH2 CH2 NH2

CHCOO

OCO R1CH2

OH

CO2

PALPO

OH

CH2 OCO R1

CHCOO

CH2 O P

O

O CH2 CH2 N+(CH3)3

R2

3SAM 3SAH

cefalina

lecitina

13

Page 14: Biochimie

CDP-diacilglicerolul reacţionează cu inozitolul în prezenţa CDP-diacilglicerol-inozitol-transferazei formând fosfatidilinozitolul.

CH2 OCO R1

CH

CH2

R2COO

O P O

O

P citidil

O

OH OH

+

OHOH

OHOH

HO

HO

CMP

OH

O P O

OR2COO CH

CH2

CH2 OCO R1

HO

OHOH

OHOH

fosfatidilinozitolul

inozitol

Prin fosforilarea grupărilor OH din inozitol în prezenţă de ATP şi o unei kinaze rezultă formele fosforilate: fosfatidilinozitol-4-fosfat şi fosfatidilinozitol-4,5-bifosfat.

Ultimul este considerat mesager de ordinul II care sub acţiunea unor efectori (hormoni neurotransmiţători) determină răspunsuri specifice la nivel celular.

Cardiolipina se găseşte în mitocondrii, cloroplaste şi bacterii. Se sintetizează de la CDP-diacilglicerol care reacţionează cu glicerin-3-fosfat şi

formează fosfatidilglicerolfosfat. Acesta sub acţiunea unei fosfataze pierde fosfatul formând fosfatidilglicerina care

este precursorul cardiolipinei. Fosfatidilglicerolul reacţionează cu o noă moleculă de CDP-diacilglicerol şi

formează difosfatidilglicerolul.

cardiolipina

fosfatidilglicerol

fosfatidilglicerolfosfat

C H2 O C O R 1

O HO H

O P O

O

C H2 C H C H2 O P O

O

C H2

C H O C O R 2

C H2

R 2 C O O C H

R 1 C O O C H2

O H

C M PC DP _diacilglicerol

O H

R 1 C O O C H2

C HR 2 C O O

C H2 O P O

O

C H2 C H C H2 O H

O H

fosfatidilglicerolfosfataza

H3P O 4H2OO H

O HC H2 O P

O

O H

O P O

O

C H2

C H O H

C H2

R 2 C O O C H

R 1 C O O C H2

C M P

O H

C H2 O P O H

OC H O H

O HC H2

+

O HO H

O P O

O

P citidil

OR 2C O O C H

C H2

C H2 O C O R 1

14

Page 15: Biochimie

2. Biosinteza glicerolfosfolipidelor plecând de la 1,2-diacilglicerol

Pe această cale se sintetizează lecitina şi cefalina în ţesuturile animale. În acest caz acidul fosfatidic pierde radicalul fosfat şi se transformă în

1,2diacilglicerină care este acceptorul de fosforil-bază. Rolul CTP este de a activa bazele azotate.

Biosinteza fosfatidilcolinei şi foafatidiletanolaminei

În prima etapă bazele (etanolamina şi colina) se fosforilează în prezenţă de ATP şi a unei kinaze specifice, apoi reacţionează cu CTP formând CDP-colina, respectiv CDP-etanolamina.

În ultima etapă baza fosforilată este transferată pe diacilglicerol cu formarea fosfolipidei şi eliberarea CMP.

fosfocolin_diacil_transferaza

transferazafosfocolin_citidil_

OH

R2 COO

CH2 O P O

O

CH2 CH2 N+(CH3)3

CH

CH2 OCO R1

CMP1,2- diacilglicerol

OH

P O

O

CH2 CH2 N+(CH3)3

OH

OCDP O P

O

PPCTP

OH

P

O

O CH2 CH2 N+(CH3)3HOcolinkinaza

ADPATP

HO CH2 CH2 N+(CH3)3

Această cale de sinteză a lecitinei se mai numeşte şi cale de recuperare, deoarece lecitina provenită din alimente în urma catabolismului eliberează colina, care poate fi reciclată în acest sens.

În ţesuturile animale lecitina se formează şi prin metilarea succesivă a fosfatidiletanolaminei sub acţiunea unui donor de metil (SAM), care trece în SAH.

Metilarea are loc în ficat având ca substrat unic fosfatidiletanolamina (cefalin) şi depinde de disponnibilitatea faţă de SAM.

15

Page 16: Biochimie

N

N

N

NH2

O

OH

CH2 S+ CH3

OH

(CH2)2

CH NH2

COOH

+

CH2 OCOR1

CH OCOR2

CH2 O P

O

O CH2 CH2 NH2

OH

3

3

COOH

CH NH2

(CH2)2

OH

N

N

N

NH2

O

OH

CH2 S

+

OH

O CH2 CH2 N+(CH3)3P

O

OCH2

OCOR2CH

CH2 OCOR1

SAM

lecitina

SAH

Biosinteza fosfatidilserinei

În ţesuturile animale sinteza fosfatidilserinei constă în înlocuirea enzimatică a etanolaminei din cefalină cu serina.

Reacţia este reversibilă întrucât fosfatidilserina se poate decarboxila şi reface fosfatidiletanolamina.

Fosfatidiletanolamina în continuare se metilează şi formează lecitina. Toate aceste transformări au drept scop formarea de lecitină pentru sistemul

nervos şi creier, care necesită cantităţi sporite de lecitină.

Catabolismul glicerofosfolipidelor Degradarea glicerofosfolipidelor este un proces complex catalizat de enzime

numite fosfolipaze. Locul de acţiune a fosfolipazelor asupra diferitelor legături din molecula

substratului. Exemplu:

16

Page 17: Biochimie

C H 2 O

C H

C H 2 O

C O R 1

OR 2 O C

P

O

O

O H

b a z a

A 1

D

C

A 2

Fosfolipaza A1 scindează legătura ester din poziţia 1 a fosfolipidei eliberând acidul gras.

Fosfolipaza A2 acţionează asupra legăturii ester din poziţia 2 eliberând acidul gras nesaturat.

Prin îndepărtarea unui acid gras din glicerofosfolipide rezultă lizoglicerofosfolipide, care sunt intermediari în metabolismul glicerofosfolipidelor.

În general se găsesc în concentraţii mici în celule şi ţesuturi, în concentraţii mari sunt toxice şi au acţiune distructivă asupra membranelor datorită proprietăţii lor tensioactive.

Asupra lizofosfolipidelor acţionează fosfolipaza B sau lizofosfolipaza care îndepărtează acidul gras rămas şi formează glicerol-fosforil-baza.

Fosfolipaza C atacă legătura ester din poziţia 3 eliberând 1,2-diacilglicerolul şi baza fosforilată.

Fosfolipza D hidrolizează baza şi eliberează acid fosfatidic. În urma acestei reacţii este posibil schimbul de baze prin transfer între fosfolipide.

Scindarea diferitelor părţi componente ale fosfolipidelor se face cu viteze diferite, astfel că degradarea parţială poate fi urmată de resinteză.

De exemplu, catabolismul lecitinei poate avea loc pe mai multe căi: o cale importantă constă în hidroliza de către fosfolipaza A2 a acidului gras din poziţia 2 cu formare de lizolecitină, care fie că este reciclată, fie că suferă catabolism în continuare până la glicerolfosfat şi colină.

Lizolecitina se poate forma şi pe o cale alternativă care implică lecitin-colesterol-aciltransferaza (LCAT)

Enzima se găseşte în plasmă şi probabil în ficat şi transferă acidul gras din poziţia 2 a lecitinei pe colesterol, formând colesterol esterificat la nivelul lipoproteinelor plasmatice.

Fosfolipaza A2 care scindează acidul gras nesaturat din poziţia 2 furnizează astfel acizi graşi nesaturaţi pentru sinteza prostaglandinelor, tromboxanilor şi leucotrienelor.

În pancreatita acută fosfolipaza A2 trece în sânge unde transformă lecitinele în lizolecitine a căror proprietăţi hemolizante stau la baza anemiilor din pancreatite.

Fosfolipaza B care scindează acizii graşi din poziţia 1 sau 2 a lizofosfolipidelor are rol şi în resinteza fosfatidilcolinei, conform următoarei reacţii:

17

Page 18: Biochimie

Toxinele bacteriene conţin fosfolipaza C care degradează lecitinele la digliceride şi fosfocolină.

lizofosfatidilcolina + acil- CoA fosfatidilcolina + CoA SH

Metabolimul sfingolipidelor

Sfingolipidele sunt lipide complexe care se găsesc în cantităţi mari în creier şi ţesut nervos.

Toate au ca unitate structurală ceramida (formată dintr-un aminoalcool, sfingozina, şi un acid gras) precum şi o componentă polară.

În funcţie de componenta polară se clasifică în:- sfingomieline care conţin ca grupare polară fosforilcolina sau fosforiletanolamina- glicosfingolipide care au ca grupare polară una sau mai multe oze.

Exemplu: Prin acilarea grupării amino din sfingozină cu un acid gras cu catena lungă rezultă

N-acilsfingozina sau ceramida.

H3C (CH2)12 CH CH CH CH

OH

CH2OH

NH2

+ R COSCoA

CH2OH

OH

(CH2)12 CH CH CH CHH3C

NH CO R

+ CoASH

ceramida

sfingozina

Alte exemple de sfingolipide: Sfingomielina, cerebrizidele, sulfatidele şi gangliozidele.

Degradarea sfingolipidelor

Sfingolipidele sunt degradate de către sfingomielinază, o enzimă care îndepărtează restul de fosforilcolină.

Cerebrozidele şi gangliozidele sunt hidrolizate de către hidroxilaze, care îndepărtează câte un rest de oză de la capetele nereducătoiare ale lanţului glucidic.

Arilsulfatazele îndepărtează resturile sulfat din molecule. Toate acestea sunt enzime lizozomale a căror deficit determină boli lizozomale. Aceste boli se caracterizează prin acumularea în ţesuturile substratului de lipide a

căror enzime de degradare sunt deficitare şi se numesc sfingolipidoze.

18

Page 19: Biochimie

Metabolismul colesteroluluiColesterolul

este un sterol major în organism se găseşte în cantitate mare în ficat, piele, creier, sistem nervos,

corticosuprarenală, aortă. intră în structura membranelor celulare şi a lipoproteinelor plasmatice şi este

punct de plecare pentru biosinteza acizilor biliari, a hormonilor steroizi şi a vitaminei D3.

din organism este de origine exogen provine din alimentaţie (0,3g/zi), (gălbenuş de ou, carne, ficat, creier, unt )endogen provine prin biosinteză.

Schema metabolizării colesterolului

colesterol

formarea membranelor hormoni steroizi

colesterol sintetizatalimente

vitamina D3

acizi biliariesteri ai colesterolului(lipoproteine plasmatice)

Din colesterolul sintetizat 50% se transformă în acizi biliari, care sunt excretaţi în bilă.

O parte se transformă la nivelul pielii în vitamina D3, la nivelul corticosuprarenalei în hormoni steroizi şi intră în structura membranelor.

Excesul se excretă ca atare, mai întâi în bilă, apoi în intestin unde sub acţiunea florei bacteriene se tranformă în coprostanol şi colestanol, care se elimină prin fecale.

Biosinteza colesterolului

Toate ţesuturile ce conţin celule nucleate au capacitatea de a sintetiza colesterol, dar cele mai active sunt ficatul, pielea şi aorta. Biosinteza colesterolului este un proces complex, care constă dintr-un număr mare de reacţii ce se transformă în faza solubilă a citoplasmei şi în microzomi. Procesul de biosinteză a colesterolului se desfăşoară în etape, şi anume:

transformarea acetil-CoA în acid mevalonic transformarea acidului mevalonic în scualen transformarea scualenului în colesterol. În biosinteza colesterolului singura sursă de atomi de carbon este acetil-CoA.

19

Page 20: Biochimie

Reacţiile se desfăşoară în faza solubilă a citoplasmei şi reacţiile sunt catalizate de enzime, care în marea lor majoritate sunt ataşate de RE şi necesită prezenţa unor cofactori şi coenzime: NADH, ATP, CoA.

Etapele biosintezei colesterolului

1. Formarea acidului mevalonic din acetil-CoA

Acidul mevalonic se formează prin condensarea a 3 molecule de acetil-CoA. În prima etapă se condensează numai 2 molecule de acetil-CoA în prezenţa β–

cetotiolazei, formând acetoacetil-CoA. În continuare are loc condensarea acetoacetil-CoA cu a treia moleculă de acetil-

CoA în prezenţa β–hidroxi,β-metil-glutaril-CoA-sintetazei (HMG-CoA-sintetaza) şi formează HMG-CoA.

Mai departe gruparea carboxilică legată de CoA este redusă la grupare hidroxilică, cu eliminare de CoA.

Reacţia are loc în prezenţa unui sistem multienzimatic catalizat de HMG-CoA-reductaza, care necesită NADPH + H+, ca donor de hidrogen.

Reacţia catalizată de HMG-CoA-reductaza este etapă limitantă de viteză sau etapă reglatoare în procesul de biosinteză a colesterolului.

Când colesterolul se acumulează în cantitate prea mare în celulă înhibă sinteza de HMG-CoA-reductaza.

2H3C CO SCoA H3C CO CH2 CO SCoA + CoASHtiolaza

CO SCoA + H3C CO CH2 H3C CO SCoAHMG_CoA sintetaza

HOOC CH2 C

OH

CH3

CH2 COSCoA

C

OH

CH3

CH2 COSCoAHOOC CH2 + 2NADPH + 2H+HMG_CoA reductaza

HOOC CH2 C

OH

CH3

CH2 CH2 OH + 2NADP+ + CoASH

20

Page 21: Biochimie

2. Transformarea acidului mevalonic în scualen

Acidul mevalonic se fosforilează în 3 etape.

- în prezenţă de ATP şi mevalonatkinază are loc formarea de acid 5-fosfomevalonic. - a 2-a etapă sub acţiunea fosfomevalonatkinazei, acidul mevalonic trece în acid 5-pirofosfomevalonic.- fosforilare are loc în poziţia 3 şi rezultă acid 3-fosfo-5-pirofosfomevalonic. Acesta este un compus instabil care se decarboxilează şi pierde o grupare fosfat şi rezultă izopentenilpirofosfat.

3-izopentenilpirofosfatul se izomerizează la 3,3-dimetilalilpirofosfat sub acţiunea izopentenilpirofosfatizomerazei.

Dimetilalilpirofosfatul se condensează cu izopentenilpirofosfatul sub acţiunea geranilpirofosfatsintetazei şi formează geranilpirofosfatul(10atomi de C).

În continuare geranilpirofosfatul se condensează cu o nouă moleculă de izopentenilpirofosfat şi rezultă farnezilpirofosfat (15 atomi de C).

Prin condensarea reductivă a 2 molecule de farnezilpirofosfat la capetele pirofosfatice rezultă scualen (30 atomi de C).

C

OH

CH3

CH2 CH2 OHHOOC CH2

ATP ADP

mevalonatkinaza

HOOC CH2 C

OH

CH3

CH2 CH2 OPO3H2

ATP ADPC

OH

CH3

CH2 CH2 O P O P

OH

OH

O O

HOOC CH2

fosfomevalonatkinaza

OHATP ADP

pirofosfomevalonatkinaza (Mg+)

OH

HOOC CH2 C

OPO3H2

CH3

CH2 CH2 O P O P

OH

OH

O O pirofosfomevalonatdecarboxilaza

CO2 + H3PO4

H2C C CH2 CH2 O P

O

CH3

O P OH

O

OH OH

H3C C

CH3

CH CH2 O P O

O

P OH

O

OH OH

21

Page 22: Biochimie

CH3

CH3C CH

CH2 O P O P OH

OHOH

O O+ C

CH3

H2C CH2

CH2 O P O P OH

O O

OH OH PP

geranilpirofosfatsintetaza

C

CH3

CHH3CCH2

CH2

C

CH3

CH

CH2 O P O P OH

O O

OH OH

geranilpirofosfat

OHOH

CH2 O P O P OH

O O

CH2H2CC

CH3

PP

CH2

CH

CH3

CH2

CH2

CH3C

C

CH3

CH

farnezilpirofosfatsintetaza

CH2

C

CH3

CHCH2 O P O P OH

O O

OHOH

farnezilpirofosfat

OH OH

P O P OH

O O

CHCH2 OC

CH3

CH2

C

CH3

CHH3CCH2

CH2

C

CH3

CH

CH22

CCH

CH2CH2

C

CH3

CHCH2

CH2

C

CH3

CH

CH2CH2

CHC

CH2CH2

CHC

CH2CH2

CH

CH3

C

CH3

H3C

CH3

CH3 CH3

scualen

3. Transformarea scualenului în colesterol

Scualenul în urma ciclizării formează primul sterol, lanosterolul. Înainte de închiderea ciclului, scualenul se hidroxilează în poziţia 3 sub acţiunea

unei monooxigenaza formând 2,3-epoxidul scualenului.

22

Page 23: Biochimie

O

O2

scualen 2,3_epoxidulscualenului

HO

lanosterolul

Lanosterolul conţine 3 grupări metil în plus faţă de colesterol. Grupările metil sunt oxidate de către un sistem hidroxilazic microzomal ce

necesită O2 şi NADPH şi sunt îndepărtate sub formă de CO2. Compusul rezultat este zimosterolul (C27 ), care diferă de colesterol prin poziţia

legăturii duble din nucleul B şi printr-o legătură dublă la catena laterală. Prin dehidrogenare şi deplasarea dublei legături, zimosterolul trece în 7-

dehidrodesmosterol, care este precursorul desmosterolului şi a 7-dehidrocolesterolului, care sunt precursorii colesterolului.

HO HOHO

lanosterol zimosterol7_dehidrodesmosterol

23

Page 24: Biochimie

HO

HOHO

HO

7_dehidrodesmosterol

desmosterol7_dehidrocolesterol

colesterol

NADPH +H+

NADP+

NADPH +H+

NADP+

NADPH +H+

NADP+NADPH +H+

NADP+

Reacţiile de transformare ale scualenului în colesterol sunt catalizate de enzime microzomale prezenţa a două proteine din faza solubilă a citoplasmei, numite proteine

transportoare de scualen, respectiv de steroli. Rolul lor este de a forma complecşi solubili cu sterolii facilitând astfel reacţiile din mediul apos din celulă.

-bilanţul biosintezei colesterolului -este un proces consumator de energie şi echivalenţi reducători.

-pentru sinteza unui mol de colesterol se consumă 18 moli de acetil-CoA, 16 moli NADPH şi 36 legături macroergice de ATP.

Colesterolul eliberat este utilizat de către celulă sinteze de membrane, iar în celulele specializate este utilizat sinteza de acizi biliari în ficat hormoni steroizi în corticosuprarenală, hormoni sexuali în gonade.

Cantitatea de colesterol eliberată de LDL determină viteza metabolismului colesterolului, reglarea la nivel celular, astfel, excesul de colesterol acumulat în celulă acţionează prin 3 mecanisme importante:1. Înhibă sinteza de novo, adică reduce capacitatea celulei de a sintetiza colesterol, prin înhibarea sintezei enzimei HMG-CoA reductaza, în lipsa căruia celula va utiliza numai colesterol extracelular introdus prin receptori.

24

Page 25: Biochimie

2. Colesterolul extras din LDL facilitează stocarea lui în celulă prin activarea enzimei acil-colesterol-aciltransferazei(ACAT), care esterifică colesterolul în exces în vederea depunerii lui sub formă de picături în citoplasmă.3. Acumularea colesterolului înhibă prin mecanism feed-back sinteza de noi receptori pentru LDL. Înhibarea are loc la nivelul biosintezei proteinelor în etapa transcrierii.

Absorbţia şi transportul colesterolului

Colesterolul exogen provine din alimente de natură animală în care se găseşte liber şi esterificat.

Raţia zilnică a unui adult conţine 0,6-1,2g colesterol, din care se absoarb 0,3-0,4g/zi.Când concentraţia lui din hrană este mai mică, absorbţia este mai eficientă şi invers.

Spre deosebire de colesterol, sterolii vegetali nu se absorb, ei sunt total excretaţi de lumenul intestinal.

In lumenul intestinal colesterolul din hrană este încorporat în agragate micelare mixte formate din acizi biliari, fosfolipid şi colesterol.

Colesterolul esterificat la nivelul micelelor este hidrolizat de către colesterol-esteraza pancreatică, deoarec numai colesterolul liber este absorbit de către celulele mucoasei intestinale.

O parte din colesterolul este reexcretat în intestinul subţire şi eliminat prin fecale. Cea mai mare parte din colesterolul absorbit împreună cu cel sintetizat în intestin,

se esterifică în celulele mucoasei intestinale sub acţiunea ACAT (acil-colesterol-aciltransferazei), enzimă ce transferă un acid gras activat pe colesterol.

Colesterolul liber şi esterificat este integrat în chilomicroni, lipoproteine mari, încărcate cu trigliceride.

Chilomicronii ajung în sânge şi la nivel extrahepatic (ţesut adipos şi muscular) descarcă trigliceridele cu ajutorul lipoprotein-lipazei din endoteliul capilar.

Chilomicronii reziduali ce conţin esteri ai colesterolului şi colesterol sunt captaţi de către ficat unde esterii sunt hidrolizaţi.

Ficatul sintetizează probeta-lipoproteinele sau VLDL, care conţin trigliceride şi colesterol esterificat.

Când VLDL traversează vasele capilare ale ţesutului adipos şi muscular cedează trigliceridele, iar particulele rămase, de talie mică, ce conţin esteri ai colesterolului sunt aşa-numitele lipoproteine cu densitate intermediară (IDL).

IDL dispar rapid din circulaţie, în aproximativ 2-6 ore de la formarea VLDL, în urma interacţiunii lor cu ficatul.

Acesta extrage colesterolul din IDL şi-l utilizează pentru sinteza de VLDL şi acizi biliari.

Lipoproteinele IDL care nu sunt utilizate de către ficat rămân în circulaţie şi după un timp apoi se disociază şi devin beta-lipoproteine.

IDL reprezintă fracţiunea care conţine cea mai mare proprţie de colesterol. Transportul colesterolului de la ţesuturile extrahepatice la ficat se face de către α–lipoproteine (HDL), care se sintetizează în ficat şi intestin.

25

Page 26: Biochimie

La nivelul HDL are loc esterificarea colesterolului din plasmă printr-o reacţie de transesterificare între acidul gras din poziţia 2 a lecitinei şi colesterol. Reacţia este catalizată de LCAT.

Esterii colesterolului de pe HDL sunt transferaţi pe LDL, apo pe IDL pentru a fi reciclaţi.

HDL sunt apoi catabolizate de către ficat şi intestin. HDL şi LCAT au rolul de a purifica ţesuturile extrahepatice de colesterol.

În final, tot colesterolul este destinat excreţiei în ficat, apoi excretat în bilă, fie ca atare, fie ca acizi biliari.

Concentraţia normală de colesterol plasmatic la adult este în medie de 200mg%. Există variaţii în funcţie de vârstă, sex (mai crescută la bărbaţi decât la femei până la menopauză), în funcţie de alimentaţie şi variază de la un individ la altul.

Aproximativ 65% din colesterolul plasmatic se găseşte sub formă esterificată. Determinările de colesterol se fac άjeun, adică la 12-14 ore de la ultima masă,

când în mod normal în plasmă nu există chilomicroni şi există puţine probeta-lipoproteine (VLDL).

În aceste condiţii colesterolul este conţinut în cea mai mare parte în fracţiunea LDL şi HDL.

Creşterea colesterolului plasmatic sau hipercolesterolemia apare în diferite boli cum sunt: hipercolesterolemia familială şi aterosclerpoza.

Hipercolesterolemia familială este o boală genetică ce se caracterizează prin creşterea beta-lipoproteinelor şi a colesterolului în plasmă.

Ateroscleroza este o boală ce se caracterizează prin depunerea de colesterol esterificat pe pereţii arterelor sub formă de plăci numite ateroame. Acest fapt duce la îngustarea lumenului capilarelor şi în cele din urmă la apariţia infarctului.

Catabolismul colestrolului

Degradarea nucleului steranic în compuşi simpli nu are loc în organism, el se elimină sub formă de derivaţi ai steranului, inactivi biologic.

Astfel, în funcţie de ţesut, colesterolul suferă următoarele transformări:

colesterol

intestin

ficat

piele

corticosuprarenale

steroli neutri

acizi biliari

7- dehidrocolesterol

hormoni steroizi

coprostanol

colestanol

(provitamina D3)

Sterolii neutri

O parte din colesterolul exogen se excretă ca atare prin intestin, fără să fie absorbit.

O altă parte se transformă în intestinul gros sub acţiunea florei bacteriene în steroli neutri: coprostanol şi colestanol, care se elimină prin fecale.

26

Page 27: Biochimie

Acizii biliari

Formarea acizilor biliari primari are loc în ficat, prin introducerea grupelor hidroxil în molecula colesterolului şi scindarea catenei laterale.

În urma acestei transformări (hidroxilare nşi scindarea catenei laterale) rezultă acizii biliari sub formă activată cu CoA şi anume: colil-CoA şi chenodezoxicolil-CoA.

Urmează apoi conjugarea cu glicocolul şi taurina cu formarea de acizi biliari primari: glicocolic, glicochenodezoxicolic taurocolic, taurochenodezoxicolic

Acizii biliari sunt excretaţi în bilă unde datorită mediului alcalin vor forma săruri biliare de Na şi K.

COOH

OH

OHHO HO

COOH

OH

acid colic acid chenodezoxicolic

Din bilă acizii biliari sunt deversaţi în intestin. La nivelul intestinului o parte din acizii biliari primari sunt transformaţi sub

acţiunea florei bacteriene în acizi biliari secundari. Aceste transformări constau din conjugarea prin hidroliza glicocolului şi a taurinei şi îndepărtarea grupării OH din poziţia 7.

Astfel acidul colic trece în acid dezoxicolic, iar acidul chenodezoxicolic trece în acid litocolic.

COOH

OH

HO HO

COOH

7 7

acid dezoxicolic acid litocolic

În condiţii normale un om sintetizează 200-500mg acizi acizi biliari pe zi. Rata sintezei este reglată de cantitatea de acizi biliari care se reîntorc din intestin

în ficat, pentru a se înlocui pierderile de acizi biliari eliminaţi prin intestin. În acest fel, rezervorul de acizi biliari rămâne constant.

27

Page 28: Biochimie

Acizii biliari primari şi secundari din intestin sunt reabsorbiţi în proprţie de 99% şi se reîntorc prin circulaţia portală la ficat.

De la ficat sunt reexcretaţi în bilă, apoi în intestin, efectuând aşa-numitul ciclu enterohepatic.

În condiţii normale zilnic parcurg acest ciclu 3-5g acizi biliari din care numai 1% sunt excretaţi prin fecale.

Funcţiile acizilor biliari sunt următoarele: Datorită proprietăţilor tensioactive, acizii biliari au rol în emulsionarea grăsimilor

la nivelul intestinului, favorizând digestia şi absorbţia lor, precum şi a vitaminelor liposolubile: A, D, E şi K.

Acizii biliari activează lipaza pancreatică şi colesterolesteraza pancreatică. Deasemenea împreună cu lecitinele contribuie la solubilizarea colesterolului sub formă de micele din bilă.

Acizii biliari au acţiune coleretică, de stimulare a secreţiei biliare şi acţiune colagogă, de contracţie a vezicii biliare.

Biotransformarea colesterolului în vitamina D3

Colesterolul la nivelul pielii se transformă în 7-dehidrocolesterol sau provitamina D3, care sub acţiunea radiaţiilor UV formează vitamina D3.

Vitamina D3 sau colecalciferolul face parte din grupul vitaminelor D, substanţe liposolubile care au acţiune antirahitică la copil şi previn osteomalacia la adult.

Vitamina D se formează prin iradiere cu lumina UV a sterolilor nesaturaţi din plante şi animale. Astfel, din ergosterol rezultă ergocalciferolul sau vitamina D2, iar din 7-dehidrocolesterol rezultă colecalciferol sau vitamina D3.

HO HO

ergosterol vitamina D2

HO HO

UV

UV

7_dehidrocolesterol vitamina D3

28

Page 29: Biochimie

Omul are 2 surse de vitamine: una exogenă din alimente şi una endogenă din fotoliza 7-dehidrocolesterolului din piele.

Vitaminele D2 sau D3 din alimente se absorb la nivelul intestinului sub formă de micele, apoi este transformată în sânge de o globulină specifică şi ajunge la ficat.

În ficat vitamina D3 este hidroxilată în poziţia 25 de către o hidroxilază specifică, rezultând calciferol, care este metabolitul principal din circulaţie.

Acizii graşi esenţiali (AGE) Importanţa acizilor graşi esenţiali în alimentaţie a fost subliniată de la începutul secolului prin experienţe pe animale. Carenţa se manifestă prin tulburări de creştere, reproducere, dermatite, rezistenţa scăzută la stres şi unele deficienţe în transportul lipidelor.

Acizii graşi esenţiali îndeplinesc în organismun rol multiplu: -surse de eicosanoide, ei se găsesc în lipidele structurilor celulare -sunt implicaţi în menţinerea integrităţii membranei mitocondriale -se găsesc în cantitate mare în organele de reproducere -intră în structura fosfolipidelor.

Eicosanoidele- grup de compuşi ce derivă din acizii graşi eicosanoidici. Cuprind:

1. prostanoidele prostagladinele (PG) tromboxanii (TX) prostaciclinele (PC).

2. leucotrienele (LT).

Biosinteza prostaglandinelor

Prostaglandinele au fost descoperite prima dată în plasma seminală, de unde şi numele, iar ulterior au fost găsite în toate ţesuturile. Prostaglandinele sunt :-compuşi foarte activi biologic-în concentraţie de numai 1 μg/l produc contracţia musculaturii netede.-dpdv structural derivă din acizi graşi cu 20 de atomi de carbon, care pot avea în moleculă 3,4 sau 5 duble legături. Din aceşti precursori derivă prostaglandinele primare (seria E, PGE), care prezintă la carbonul C9 o grupare cetonică, iar la carbonul C11 o grupare hidroxilică sau seria F, când au în ambele poziţii C şi C grupări hidroxilice. Prostaglandinele secundare derivă prin modificări enzimatice din prostaglandinele din seria E.

29

Page 30: Biochimie

COOH

O

HOOH

PGE1

COOH

O

HOOH

PGE2

COOH

HOOH

HO

PGF1

COOH

HOOH

HO

PGF2

30

Page 31: Biochimie

COOH

O

HOOH

PGE3

COOH

O

HOOH

PGE3

Cel mai frecvent precursor al prostaglandinelor este acidul arahidinic, care este foarte răspândit în ţesuturi.

Acesta sub sub acţiunea unei ciclooxigenaze se transformă într-un endoperoxid ciclic (PGG2) care este precursorul imediat al prostaglandinelor, tromboxanilor şi al prostaciclinelor.

COOH COOH

acid eicosatrienoic acid arahidonic

PGE1, PGF1PGE2, PGF2

COOH

acid eicosapentaenoic

PGE3, PGF3

Obţinerea prostaglandinelor din acidul arahidonic se face pe calea ciclooxigenazei.

31

Page 32: Biochimie

Sub influenţa acestei enzime acidul arahidonic se transformă într-un endoperoxid ciclic (PGG2).

fosfolipide membranare

fosfolipazaA2

COOH

acid arahidonic

O2 ciclooxigenza

COOH

OOH

O

O

PGG2

endoperoxid ciclic

prostagladinsintetaza

COOH

O

OH

HO

PGE2

HO

OH

COOH

HO

PGF2

Cicloxigenaza poate să fie înhibată de aspirină şi indometacin, care sunt antiinflamatori nesteroidieni. Blocând ciclooxigenaza, antiinflamatoarele nesteroidiene opresc biosinteza prostaglandinelor, dobândind astfel eficienţa terapeutică în tratamentul proceselor inflamatorii. Acidul arahidonic necesar sintezei prostaglandinelor este rezultat din fosfolipidele membranare sub acţiunea fosfolipazei A2, care poate să fie înhibată de corticosteroizi cu efect antiinflamator. Tot din acid arahidonic se pot sintetiza şi alte eicosanoide cum ar fi: prostaciclinele, tromboxanii şi leucotrienele.

32

Page 33: Biochimie

inhibata de AINS

inhibata de indometacin, aspirina (AINS)

c.lipooxigenazei c.ciclooxigenazei

PG2, PGI2, TX2LT4

acid arahidonic

activata de adrenalina, angiotensina II

fosfolipaza A2lizofosfolipide

fosfolipide

Acţiunea biologică a prostaglandinelor este extrem de complexă. Uneori diferitele prostaglandine au efecte opuse şi din interacţiunea lor rezultă echilibrele biologice ale anumitor funcţiuni ale organismului Prostaglandinele acţionează atât asupra adenilatciclazei cât şi asupra guanilatciclazei, influenţând biosinteza AMPc şi GMPc

Prin intermediul acestor mesageri secunzi influenţuază secreţia unor glande endocrine cum sunt: tiroida, suprarenalele, ovarul, paratiroidele. Alţi hormoni cum sunt: bradikinina, acetilcolina, histamina stimulează şi ei sinteza de prostaglandine.

Deasemenea o excitare sau o lezare a membranelor celulare declanşează biosinteza de prostaglandine prin eliberarea de acizi graşi nesaturaţi din fosfolipide. Principalele efecte ale prostaglandinelor sunt: efectul lipolitic, efectul asupra apei şi electroliţilor, de unde decurge intervenţia prostaglandinelor şi asupra metabolismului Ca, stimulând activitatea osteoclastelor şi producând hipercalcemie. Prostaglandinele influenţează contracţia musculaturii netede, îndeosebi a uterului gravid, precum şi a aparatului respirator şi a tractului gastro-intestinal. Efectele metabolice multiple ale prostaglandinelor deschid căi variate de utilizare a lor în terapeutică. în tratamentul astmului bronşic, a ulcerelor, a bolilor cardiovasculare sunt utilizate pentru declanşarea travaliului în sarcinile ajunse la termen. sunt implicate în procesele inflamatorii unele medicamente antiinflamatoare nesteroidiene, cum este de exemplu aspirina care îşi datoreză acţiunea farmacodinamică capacităţii lor de a inhiba sinteza prostaglandinelor. Procesul de degradare a prostaglandinelor se realizează rapid prin oxidare la carbonul 15 şi prin β–oxidarea acidului gras, începând de la capătul ce conţine gruparea carboxilică, -COOH.

33

Page 34: Biochimie

Metabolismul corpilor cetonici

Corpii cetonici sunt produşi în cantităţi mari în ficat, de unde trec prin difuziune în sânge. În anumite condiţii metabolice ficatul produce cantităţi mari de acid acetilacetic şi acid β–hidroxibutiric. Acidul acetilacetic suferă o decarboxilare spontană şi trece în acetonă. Aceşti 3 compuşi sunt cunoscuţi sub denumirea de corpi cetonici.

CH3

C O

CH3 CO2

CH3

C

CH2

O

COOH

NADH + H+NAD+

CH3

CH

CH2

COOH

OH

acetonaacid acetilacetic acid betahidroxibutiric

Acidul acetilacetic şi hidroxibutiric sunt în echilibru, acesta fiind controlat de raportul NAD+/NADH din mitocondrie. În sânge raportul acid betahidroxibutiric/acid acetilacetic este cuprins între 1:1 şi 1:10. Concentraţia normală de corpi cetonici din sânge este de sub 1mg%, iar eliminarea lor prin urină este de sub 1mg/24 de ore. Cantităţi peste valorile normale în sânge (cetonemia) şi eliminarea lor în urină (cetonuria) reprezintă o stare cunoscută sub numele de cetoză. Condiţia de cetoză este asociată cu deplasarea hidraţilor de carbon utilizabili, cuplată cu mobilizarea acizilor graşi liberi. Deoarece acidul acetilacetic are caracter acid pronunţat, excreţia prin urină poate duce la la cetoacidoză, care poate să fie fatală într-un diabet netratat. În vivo, ficatul pare să fie singurul organ care produce cantităţi semnificative de corpi cetonici, iar ţesuturile extrahepatice le utilizează ca substrate respiratorii. Fluxul de corpi cetonici de la ficat spre ţesuturile extrahepatice se datoreşte unui mecanism enzimatic de producere în ficat, cuplat cu o activitate scăzută a enzimelor responsabile în utilizarea lor; în schimb în ţesuturile extrahepatice situaţia se inversează. Enzimele responsabile de formarea corpilor cetonici sunt localizate în mitocondrie. Substratul cetogenezei este acidul acetilacetic, care rezultă din fragmentul C4 terminal rezultat prin oxidarea acizilor graşi în ficat, fie prin reversarea reacţiei catalizată de tiolază. Dezactivarea acetoacetil-CoA la acetoacetat se poate realiza pe două căi. Prima cale este deacilarea acetoacetil-CoA în prezenţa acetoacetil-CoA deacilazei, conform reacţiei:

H3C CO CH2 CO SCoA

CoASH

H3C CO CH2 COOH

A doua cale este aceea prin care are loc condensarea unei molecule de acetoacetil-CoA cu o moleculă de acetil-CoA cu formare de β–hidroxi-β-metilglutarilCoA, catalizată de HMG-CoA sintetaza.

34

Page 35: Biochimie

Acesta este scindat în prezenţa β–hidroxi-β-metilglutaril-CoA liazei mitocondriale cu formare de acetoacetat.

H3C CO CH2 CO SCoA + H3C CO SCoA

CH2 COOH

H3C C

OH

CH2 CO SCoA

H3C CO CH2 COOH + H3C CO SCoA

HMG_CoAsintetaza

HMG_CoAliaza

Ambele enzime sunt localizate în mitocondriile hepatice, locul de formarea a corpilor cetonici. Acetoacetatul format poate fi transformat în beta-hidroxibutirat în prezenţa beta-hidroxibutirat-dehidrogenazei. Ficatul dispune de echipamentul enzimatic necesar sintezei corpilor cetonici, dar nu dispune de cel necesar în reactivarea lor pentru a putea fi metabolizaţi.

Acest proces are loc în ţesuturile extrahepatice şi se poate realiza pe două căi. Una din căi presupune reacţia acetoacetatului cu succinil-CoA în prezenţa

succinil-CoA-acetoacetat-CoA transferazei.

CH3

C

CH2

COOH

O+

COOH

CH2

CH2

CO SCoA

C

CH2

CO

O

SCoA

CH3

+ CH2

CH2

COOH

COOH

transferaza

Cea de-a doua cale activează acetoacetatul în prezenţă de ATP şi CoA şi acetoacetatkinază.

În mod normal corpii cetonici sintetizaţi în ficat reprezintă substrate uşor metabolizabile pentru ţesuturile extrahepatice unde sunt scindaţi în acetil-CoA în prezenţa tiolazei şi oxidaţi prin ciclul citric.

Oxidarea corpilor cetonici în ţesuturile extrahepatice se face proprţional cu concentraţia lor în sânge.

Până la o concentraţie de 70mg% ei sunt oxidaţi, peste această valoare, capacitatea oxidativă a sistemului de degradare este depăşită, concentraţia va creşte şi vor fi eliminaţi prin urină.

35

Page 36: Biochimie

Hormonii steroizi

Generalitati

Principalii hormoni si glande (tesuturi) care ii produc:Glanda endocrina sau tesutul Hormon

Tiroida -tetraiodtironina T4-triiodtironina T3

Paratiroida -parathormonul

Medulosuprarenala -adrenalina

Testicul -testosterona

Ovar -estradiol-progesterona

Adenohipofiza -hormon de creştere-prolactina-gonadotropine-tireotropina

Neurohipofiza -vasopresina-oxitocina

Glanda endocrina sau tesutul Hormon

Hipotalamus -hormon eliberator ( RH, TRH, CRH)-hormon inhibitor (RIH, GH-RIH)

Pancreas -insulina-glucagonul

Creier -neuropeptide diverse

Epifize -melatonina

Stomac -gastrina

Intestin -secretina-colecistokinina

Placenta -gonadotropina corionica-hormonul lactogen placentar

Imuno -peptide natriuretrice

Sistemul nervos şi sistemul hormonal, fiecare prin mijloacele proprii dar interdependente au rolul de a coordona răspunsurile celulelor, ţesuturilor la semnalele venite din mediul extern sau intern

36

Page 37: Biochimie

În sistemul hormonal comunicarea moleculară se face între o celulă (endocrină) care produce şi secretă o moleculă semnal (hormon) şi o altă celulă situată la distanţă (celula ţintă), hormonul fiind transportat între celula secretorie şi celula ţintă prin sistemul circulator.

Sistemul hormonal e alcătuit din glande endocrine, hormoni circulanţi şi ţesuturile ţintă.

De regula hormoni sunt produşi de celule sau grupuri de celule specializate unuia sau a mai multor hormoni (glande endocrine).

Totuşi toate celelalte ţesuturi (ficat, rinichi, inimă etc.) au capacitatea de a elibera molecule semnal pentru alte celule. 

O celulă aptă să răspundă la un semnal hormonal e denumit celula ţinta pentru acel hormon.

Unii hormoni acţionează în mod specific numai asupra unui tip de celule, pe când alţi constituie semnale externe pentru o varietate mai mare de celule.

Transportul hormonilor e pe cale sanguină. Hormoni peptidici şi catecolaminele circulă în plasmă în stare liberă. Hormoni steroidici, hormoni tiroidieni şi vitamina D şi formele sale active sunt

liposolubile şi sunt transportaţi de proteine specifice din plasmă. Proteinele de transport au specificitate înaltă pentru un hormoni sau un grup de

hormoni.

Reglarea secretiilor hormonale

Secreţia unui hormon suferă fluctuaţii în raport cu diverşi factori. Eliberarea hormonului dintr-o celulă secretoare este controlată prin funcţionarea

unor mecanisme de feed-back. Majoritatea glandelor endocrine ( tiroida, gonadele, cortexul andrenalelor ) sunt

controlate prin intermediul hipofizei anterioare care produce hormoni, tropine, cu funcţie de reglare a activităţii glandei periferice.

Nivelurile plasmatice ale hormonilor periferici variază în mod invers cu cele ale tropinelor hipofizare.

Relaţiile feed-back între adenohipofiza şi glandele endocrine aflate sub controlul acesteia se stabilesc atât direct cât şi prin intermediul hormonilor hipotalamici care stimulează eliberarea de tropine sau inhibă eliberarea acestora.

Secreţia hormonilor hipotalamici este controlat prin feed-back negativ atât de hormonul glandei periferice, cât şi de tropina hipofizară.

Hipotalamusul primeşte impulsuri pentru secreţia hormonilor proprii din regiunile învecinate ale sistemului nervos central, realizându-se o interconectare neuroendocrina.

Activitatea secretorie a paratiroidei a pancreasului endocrin este reglată de parametrul biologic pe care îl controlează, glicemia, calcemia.

Creşterea glicemiei declanşeaza eliberare de insulină cu acţiune hipogilcemiantă. Parathormonul este eliberat cu răspuns la

hipocalcemie, că prin acţiunea sa hipercalcemiantă să redreseze calcemia.

37

Page 38: Biochimie

Mecanismul de actiune a hormonilor steroizi

 Caracteristici: substanţe apolare traverseaza uşor membranacelulară în citoplasmă se fixează de structuri proteice receptoare specifice

peptide monocatenare . capătul polar -hormoni

bazic N-terminal( lizină,arginină,histidină)- ADN-ul nuclear.

Pentru manifestarea efectelor, complexele formate sunt: activate-fosforilarea peptidului receptor (proteinkinaza). inactivate-defosforilare (fosfoproteinfosfataza).Ionii molibdenici inhibă

activitatea enzimei,ca urmare prelungesc activitatea hormonilor steroizi. În urma fosforilării lor complexele receptor-hormon se transportă prin intermediul

canalelor reticulului endoplasmatic în nucleu,unde se fixează de ADN. Cuplarea este inhibată competitiv de vitamina B6. Prin această translocaţie hormoni steroizi îşi exercită efectele asupra materialului

genetic. Aceste acţiuni se manifestă prin: depresare a unor gene temporar modificarea funcţiilor unor gene în acţiune. Moleculele hormonilor se eliberează din complexul fixat pe ADN,peptidele

vehiculate se descompun.

Hormoni care regleaza metabolismul calciului

Concentraţia Ca în lichidul extracelular este mentinut la valori constante în ciuda fluctuaţiilor în aport, excreţia şi depozitarea Ca în oase.

Homeostaza Ca extracelular este asigurat de hormonul paratiroidian, calcitonina şi 1,25-dihidroxi-colecalciferolul, care acţionează asupra osului, rinichiului şi intestinului.

1,25-dihidroxi-colecalciferol: -derivat al vitaminei D3. -un hormon liposolubil cu o structură înrudită cu a

steroizilor şi mecanismul de acţiune la nivel celular este similar.

-ţesutul ţintă este intestinul unde promovează absorbţia Ca şi a fosfatului, translocarea din lumen în spaţiul extracelular.

Hormonii steroizi sunt secretaţi de: Corticosuprarenală (mineralocorticoizi, glucocorticoizi hormonii sexuali) testicol (hormonii androgeni) ovar (hormonii estrogeni) placentă (hormonii luteali)

38

Page 39: Biochimie

Glandele suprarenale sunt alcătuite din două regiuni distincte cu origini embriologice, având structuri şi funcţii diferite.

Porţiunea- corticală ( 90% din glandă) se dezvoltă din mesoderm şi produce hormoni de natură steroidică. - medulara este de origine nervoasă elaborează substanţe numite catecolamine: dopamine noradrenalina (norepinefrina) şi adrenalina (epinefrina)

Hormoni glucocorticoizi

Cortexul suprarenalei, la adult este alcătuit din trei zone distincte histologic:-un strat exterior (zona glomerulară)secretă mineralocorticoizi.-unul median (zona fasciculată)-zona reticulară

Zona fasciculata şi zona reticulară produc glucocorticoizi şi hormonii sexuali. Zona externă şi cele două zone interne se comportă ca două unităţi separate prin

produsele secretate şi prin mecanisme reglatori.

Biosinteza Hormonii steroizi au la bază, ca şi colesterolul scheletul

ciclopentanoperhidrofenantrenic. Catena laterală este mai scurtă decât la colesterol sau lipseşte complet,molecula

formată din 21,19,18 atomi de C. Hidrocarbura policiclică cu - 21 atomi de C de la care derivă hormonii CSR şi

luteali se numeşte pregnan. - 19 atomi de C de la care derivă hormonii androgeni se numeşte androstan.Au în poziţia 17 o grupare ceto(17 cetosteroizi ). -18 atomi de C de la care derivă hormonii estrogeni se numeşte estran.

Sinteza porneşte de la colesterol. Sub acţiunea unei hidrolaze din colesterol esterificat se desprinde colesterolul

liber. Un cărăuş proteic îl transporta în mitocondrii.Sub acţiunea unei colesterol-

desmolaze se transformă în pregnenolon. Pregnenolonul în REN trece în progesteron printr-un proces de dehidrogenare. Progesteronul în- zona glomerulară formează aldosteron.

- zona fasciculată şi reticulară formează cortizoli şi androgeni În cortexul suprarenal se află un număr mare de steroizi, dar aceia care sunt

secretaţi în cantităţi suficiente pentru a exercita acţiuni hormonale sunt: - glicocorticoizi -cortisolul efecte asupra metabolismului glucidic lipidic, proteic - mineralocorticoizi- aldosteronul metabolismului mineral - hormonii sexuali -dehidroepiadrenosterona -androstendiona -estrogeni cu influenţă redusă asupra procesului de reproducereStructura

39

Page 40: Biochimie

Structura

Hidrocortizon

O=C

O

HO OH

CH2 OH

Dehidroepiandrosterona

HO

Androstendiona

HO

=O

O

Actiune Cortizolul exercită asupra metabolismului intermediar multiple acţiuni, anabolice

şi catabolice după:- natura ţesutului

40

Page 41: Biochimie

- a stării organismului - în funcţie de concentraţiile altor hormoni.

Acţiunea cea mai clară este: stimularea gluconeogenezei hepatice asupra proteinelor hepatice are acţiune anabolică. inhibă trecerea glucozei sanguine în ţesutul adipos, în muschi, ceea ce

duce la hiperglicemie. la nivelul ţesutului adipos, cortizolul exercită actiune lipolitică, cu

eliberare de glicerol şi acizi graşi în sânge. creşterea ratei metabolismului proteic determină sporirea excreţiei azotului

rezultat şi inducţia enzimelor din ciclul ureogenetic Cortizolul în sângele circulant este aproape în totalitate legat proteic.

mică parte este fixat de albumină 90% vehiculat de transcortina(CBP cortisol binding protein produs în principal în celulele zonei fasciculate şi modic la nivelul zonei

reticulate. poate fi transformat reversibil în cortizon, produs cu activitate biologică

mică În afara efectelor metabolice, la concentraţii mai mari decât cele fiziologice,

cortizolul (hidrocortizona) exercită acţiuni antiinflamatoare şi imunosupresive care stau la baza utilizării terapeutice a corticosteroizilor sau a compuşilor înrudite obţinuţi prin sinteză.

Hormoni mineralocorticoizi

Aldosteronul

Participă la menţinerea homeostazei hidrice şi electrolitice. Ţesutul principal, ţintă, pentru aldosteron, este rinichiul, la nivelul tubilor renali

(distali şi colectori). Se produce în zona glomerulară ,dar intermediarii sintezei acestui hormon,

DOC ,corticosteron,18 hidrocortizon este posibil să fie produşi şi în zonele fasciculată şi reticulată.

Creşte - absorbţia activă de sodiu - reabsorbţia pasivă a clorului - eliminarea potasiului

Retenţia de sodiu antrenează şi retenţia osmotică de apă. Controlul secreţiei de aldosteron are loc prin mecanisme distincte de acelea care

operează în cazul glucocorticoizilor. Acest control se realizează prin sistemul renină-angiotensină care are un rol

deosebit în reglarea fluidului extracelular şi al presiuni sanguine. Aldosteronul creşte reabsorbţia Na+ în tubii renali, cu eliminarea ionilor K+ şi

H+.

41

Page 42: Biochimie

El stimulează în condiţii normale retenţia de Na+ în glandele sudoripare şi în celulele mucoase ale colonului.

Secreţia de aldosteron este stimulată de volumul lichidului extracelular. Hiposodemia, hipovolemia, şi reducerea consecutivă a presiunii de distensie la

nivelul unor receptori renali aparatul juxtaglomerular localizat în pereţi arteriolelor aferente determină secreţia de renină.

Renina acţionează asupra angiotensinogenului, o globulină produsă în ficat şi eliberează angiotensina I.

Sub acţiunea enzimei de conversie se transformă în angiotensină II. Aceasta acţionează direct asupra zonei glomerulare a cortexului suprarenal şi

determină secreţia de aldosteron. Efectul este cel de creştere a retroresorbţiei de sodiu pe tot traiectul tubilor renali

şi de favorizare a eliminării ionilor de potasiu şi de hidrogen.

Aldosterona

O=HC C=O

O

CH2-OH

HO

O CH

HO

C=O

CH2-OH

Hormoni sexuali

Sunt hormoni steroizi reprezentaţi de : - testiculari-androgeni - ovarieni- estrogeni -progesterona.

Sunt transportaţi în plasmă sub formă legată de proteine transportoare specifice proteine fixatoare a hormonilor sexuali(sex hormon binding protein ).

42

Page 43: Biochimie

Hormoni androgeni

Principalul hormon androgen testicular este testosteronul, dar testiculul mai secretă cantitate mică de dihidrotestosteronă

Sunt hormoni sexuali masculini sintetizaţi de celulele interstiţiale (Leydig) din testicul.

Testosterona

Dihidrotestosterona

OH

OH

OH

Alţi steroizi produşi de cortexul suprarenalei intermediari în sinteza testosteronei din testicul sunt :

- dehidroepiandrosterona - androstendiol - androstendiona

Dehidroepiandrosterona

androstendiol

O

=

HO

OH

43

Page 44: Biochimie

androstendiona

Acţiune

Testosteronul controlează: -procesele fundamentale necesare dezvoltării şi funcţionării organelor sexuale -apariţiei şi intreţinerii caracterelor sexuale secundare -spermatogenezei.

Androgenii stimulează sinteza proteică, acţiune deosebit de puternică la pubertate, care duce la dezvoltarea oaselor şi musculaturii scheletice.

Hormonii ovarieni

Aceşti hormoni sunt de două grupe: - estrogeni - progesterone

Pe lângă sinteza ovariană, estrogenii se mai formează în cantităţi mici, testicul, corp galben, placentă.

În timpul gestaţiei unitatea feto-placentară sintetizează cantităţi mari de progesteronă.

Estrogenii sunt steroli cu 18 atomi de carbon (lipseşte gruparea metil din poziţia 10 ).

Estradiol

Estrona

HO

HO

OH

44

Page 45: Biochimie

Progesteronul este un steroid cu 21 atomi de carbon, secretat de

corpul galben şi placentă.

progesterona

CH3

C=O

Hormoni ovarieni controlează: -dezvoltarea aparatului reproducător feminin -apariţia şi menţinerea caracterelor sexuale secundare -reglează, ciclul ovarian, fecundaţia, gestaţia, naşterea şi lactaţia. 

Estrogenii şi progesteronele acţionează fie sinergic fie antagonist.

Pregnenolona: derivă din colesterolprecusorul steroizilor C18, C19 and C21.

Progesterona:produs din pregnenolonă secretată de către corpus luteuminduce faza secretorie a endometrului pregătind mucoasa pentru nidaţie (faza luteală a ciclului ovarian)stimulează creşterea şi dezvoltarea acinilor glandelor mamare

45

Page 46: Biochimie

Aldosterona:principalul hormon mineralocorticoid produs din progesterona în zona glomerulară a corticosuprarenalei,măreşte reabsorbţia de Na

Testosteronul:hormonul androgensecretat de testicolerezultă din progesteronăimprimă şi dezvoltă caracterele sexuale masculine primare şi secundare

Estradiol:hormonul estrogen, produs în ovar determină caracterele sexuale secundare feminine .

Cortizol:hormon sintetizat dinprogesteron în zona fasciculată a corticosuprarenaleiparticipă la reacţiile de adaptare a organismului la condiţiile stres creşte TA şi reabsorbţia de Nanumeroase efecte asupra sistemului imunitar

Sinteza hormoni steroizi adrenali din colesterol.

46

Page 47: Biochimie

Sinteza hormonilor sexuali maxculini de la nivelul celulelor Leydig din testicole. P450SSC, 3β-DH, şi P450c17 sunt aceleaşi enzime necesare sintezei de hormoni steroizi corticoizi

47

Page 48: Biochimie

17,20-liaza are aceeaşi acţiune cu a CYP17A1 Aromataza (denumită şi estrogen sintetaza) este CYP19A1. 17-ketoreductaza denumită şi 17β-hidroxisteroid dehidrogenaza tip 3 (gene symbol HSD17B3).Numele 5α-reductazei este 5α-reductaza tip 2 (gene symbol SRD5A2).

Sinteza hormonilor sexuali feminini din ovar.Producerea testosteronului şi a androstendionei din colesterol urmează acceaşi cale de sinteză cu a hormonilor sexuali maxculini.Aromataza (estrogen sintetaza) este CYP19A1.

Metabolismul proteinelor

Digestia şi absorbţia proteinelor

Majoritatea compuşilor cu azot ingeraţi de om sunt proteine. Deci, atunci când discutăm digestia proteinelor, implicit discutăm şi digestia

compuşilor cu azot. Moleculele proteice intacte nu pot fi absorbite ca atare prin tractul gastro-

intestinal la animalele adulte, decât în cazuri excepţionale şi foarte rare. Pentru a putea fi absorbite proteinele sunt hidrolizate la structuri cu molecule mai

mici de aminoacizi sau peptide mici. Cu toate că proteinele au structuri complexe, ele sunt formate de un număr redus

de aminoacizi (cca. 20) diferiţi, legaţi între ei prin legături peptidice.

48

Page 49: Biochimie

Legătura peptidică se rupe uşor conducând la un amestec de aminoacizi liberi. Teoretic, o singură enzimă specifică poate asigura scindarea legăturilor peptidice

şi deci digestia proteinelor. În realitate situaţia este mai complexă, deoarece enzimele digestive prezintă a

mare specificitate pentru localizarea respectivei polipeptide, localizarea punctului de hidroliză şi natura aminoacizilor, care intervin în legătura peptidică respectivă.

Cu toate că în alimentaţie există în mod obişnuit milioane de proteine, el pot fi digerate de un număr redus de enzime proteolitice, ce pot fi clasificate în 2 mari grupe: exopeptidaze şi endopeptidaze.

Exopeptidazele au rolul de a îndepărta un aminoacid de la capătul lanţului prin hidroliza unei legături peptidice cu obţinerea unui aminoacid şi a unei polipeptide cu un aminoacid mai puţin în moleculă.

De exemplu: carboxipeptidaza, aminopeptidaza, dipeptidaza, tripeptidaza. Endopeptidazele au rolul de a hidroliza în general legături peptidice din interiorul

lanţului, dând naştere unor lanţuri polipeptidice mai mici. De exemplu: pepsina, tripsina, chimotripsina, elastina. Proteinele pătrunse în tractul digestiv suferă acţiunea diferitelor enzime

degradându-se până la stadiul de aminoacizi, care la rândul lor sunt apoi catabolizaţi pe căi diferite.

O enzimă deosebit de importantă pentru laboratorul clinic, din categoria N-aminoacidpetidazelor este LAP (leucinaminopeptidaza).

Nivelul acestei enzime creşte mult şi specific în afecţiunile căilor biliare, dar rămâne nemodificat în leziunile parenchimului hepatic.

Deasemenea are valoare în diagnosticul diferenţial al icterului mecanic faţă de cel hepatocelular şi cel hemolitic.

În ultimele 2 forme de icter, nivelul rămâne cel normal.

Schema degradării proteinelor

utilizati in biosinteza proteinelor

catabolizati

intestin subtireunde sunt

: N- aminoacidpeptidaza, C- aminoacidpeptidazaexopeptidaze

endopeptidaze: pepsina, tripsina, chimotripsina

utilizati in biosinteza proteinelor

catabolizatitesut enterohepatic - aminoacizii

Ficat

aminoacizi si oligopeptide

oligopetide

Proteine alimentare

49

Page 50: Biochimie

Metabolismul intermediar al aminoacizilor

Aminoacizii sunt: substanţele cele mai importante ale metabolismului azotului în

organismele heterotrofe. servesc ca sursă de energie în special prin intermediul oxidării scheletului

hidrocarbonat. Metabolismul aminoacizilor se găseşte într-o stare dinamică, la fel ca şi cel al

hidraţilor de carbon şi al lipidelor.

Metabolismul aminoacizilor include câteva probleme de interes medical:

sinteza şi degradarea proteinelor conversia scheletului hidrocarbonat al aminoacizilor în intermediari

amfibolici sinteza ureei formarea unor compuşi fiziologici activi( adrenalina, noradrenalina,

DOPA, dopamina, serotonina, acidul-γ-aminobutiric sau GABA, tirozina, creatina, creatinina, nucleul heminic, bazele purinice.

Catabolismul N-aminoacidic

Cei cca 20 de aminoacizi care intră în structura proteinelor prezintă mecanisme: specifice comune de metabolizare

Căile comune de degradare se referă pe de o parte la soarta grupărilor funcţionale, aminice şi carboxilice, iar pe de altă parte la soarta catenelor ternare, care în aceste etape trec prin transformări comune.

Principalele mecanisme generale de transformare ale aminoacizilor sunt: transaminarea decarboxilarea dezaminarea aminoacizilor

Transaminarea

În cel puţin 12 aminoacizi gruparea α-aminică este îndepărtată enzimatic prin transaminare.

În aceste reacţii, gruparea α-aminică este transferată pe atomul de carbon α al unui α–cetoacid, care, de obicei este acidul α–cetoglutaric cu formarea α–cetoacidului analog aminoacidului iniţial şi a acidului L-glutamic.

HOOC CH2 CH COOH

NH2

+HOOC CH2 CH2 C COOH

O

HOOC CH2 C COOH

O

+ CH COOH

NH2

HOOC CH2 CH2

50

Page 51: Biochimie

Enzimele care catalizează acest tip de reacţii se numesc aminotransferaze sau tranaminaze.

Cele mai multe transaminaze folosesc ca acceptor de grupare aminică α-cetoglutaratul, fiind astfel specifice pentru substratul α-cetoglutarat-L-glutamat.

Specificitatea pentru donorul de grupări aminice este mai puţin strictă, decât cea pentru acceptorul de grupări aminice. Totuşi, enzimele manifestă anumite preferinţe şi, astfel anumiţi aminoacizi sunt transaminaţi mai rapid decât alţii.

De exemplu: aspartat transaminaza catalizează reacţia dintre acid aspartic şi acid α-cetoglutaric cu formare de acid oxalilacetic şi acid L-glutamic.

Această enzimă are activitate mai mare atunci când donorul de grupări aminice este acidul L-aspartic, dar poate fi folosită şi pentru alţi aminoacizi ca şi donori.

Ţesuturile animale mai conţin pe lângă aspartat-transaminază şi alte transaminze, ce folosesc tot α-cetoglutaratul ca acceptor de grupări aminice ca : alanin-transaminaza, leucin-transaminaza, tirozin-transaminaza, ce catalizează următoarele reacţii:

alan in _ t r ans am inaza

H3C C C O O H

H3C C H C O O H

HO O C C H2 C H2 C H C O O H

N H2

+

O

O

C C O O HHO O C C H2 C H2+

N H2

leucin_transaminaza

H3C CH CH2

CH3

COOHC

O

H3C CH CH2 CH

CH3

COOH

NH2

HOOC CH2 CH2 CH COOH

NH2

+

O

C COOHHOOC CH2 CH2+

tirozin_tranaminaza

HO CH2 C COOH

O

+ HOOC CH2 CH2 C COOH

O

+ CH COOH

NH2

HOOC CH2 CH2

NH2

CH2 CH COOHHO

Reacţiile de transaminare sunt uşor reversibile, ele se pot desfăşura în ambele direcţii.

Glutamatul, produsul final al majorităţii transaminărilor, cedează apoi gruparea aminică într-o serie de reacţii final, ce duc la formarea compuşilor azotaţi de excreţie.

Tranasaminazele se găsesc atât în mitocondriile, cât şi în citosolul celulelor eucariote.

La mamifere, aspartat transaminaza din citosol catalizează reacţiile de transaminare a diferiţilor aminoacizi cu formarea glutamatului.

51

Page 52: Biochimie

Glutamatul format intră apoi în matricea mitocondrială, printr-un sistem specific de transport prin membrană.

Aici, glutamatul este fie dezaminat direct, fie cedează gruparea aminică oxalilacetatului, într-o reacţie catalizată de aspartat transaminaza mitocondrială, cu formarea aspartatului, donorul imediat de grupări aminice în sinteza ureei.

Transaminazele au drept coenzimă piridoxalfosfatul, care poate fixa aminoacidul formând o cetimină sau baza Schiff, cu următoarea structură:

N

C

CH2 O

N

C

P

H

COOH

O -

O -

HO

H3C

R

O

Hidrogenul de la Cα este eliberat ca proton, ceea ce conduce la restructurarea moleculei, cu deplasarea dublei legături şi a centrului nucleofil la C unde se fixează protonul.

Acest produs este tot o bază Schiff, care prin hidroliză eliberează un cetoacid şi piridoxalfosfatul, care reintră într-un nou ciclu de reacţii.

Procesul are loc în felul următor:

N

C

CH2 O

N

C

P

H

COOH

O-

O-

HO

H3C

R

O O

R

H3C

HO

N

C

CH2 O

N

C

P

COOH

O-

O-

H+

HO

H3C

R

O

C COOH

N

N

CH

CH2 O P O-

O-

C COOH

N

N

CH2

CH2 O P O-

O-

O

R

H3C

HO H2O

R C COOH

O

HO

H3C

O

NH2

N

CH2

CH2 O P O-

O-

52

Page 53: Biochimie

Piridoxal-fosfatul, legat foarte strâns, dar nu covalent de proteina enzimatică este transportorul de grupări aminice.

În cursul ciclului său catalitic el suferă tranziţii reversibile între forma sa liberă de aldehidă (piridoxal-fosfatul) şi forma sa aminată (piridoamin-fosfatul).

Schema completă cu cei doi timpi ai procesului de transaminare este următoarea:

piridoxamin__fosfat_enzima

aldimina cetimina

pir idoxal_fosfat_enzima

O

E C H2 NH2 + R1 C C O O H

H2O

H2O

E

C H2

N

R1 C C O O H

E

HC

N

R1 C H C O O H

H2O

H2O

H

E C O+R1 C H C O O H

NH2

piridoxal_fosfat__enzima

cetimina aldimina

piridoxamin_fosfat__enzima

CH OE+

NH2

COOHR2 CH

H2O

H2O

E

CH

N

COOHR2 CH

E

CH2

N

R2 C COOH

H2O

H2OE CH2 NH2+

O

R2 C COOH

Piridoxal-fosfatul format poate să reintre într-un nou ciclu de transformări. Reacţia de transaminare este un exemplu de dublă dislocare, cu cinetica ping-

pong corepsunzătoare. În enzima liberă, piridoxal-fosfatul se leagă de proteina enzimatică nu numai prin

azotul din ciclu, ci şi prin formarea unei baze Schiff cu gruaparea ε-amino a unei lizine din proteină.

Aminoacidul substrat dislocă gruparea lizil-ε-amino din legătura cu piridoxal-fosfatul, formând o aldimină substrat-piridoxal fosfat.

Acidul glutamic, drept colector universal de grupări aminice joacă un rol central în metabolismulaminoacizilor din două puncte de vedere.

Acesta poate prelua direct sau indirect grupările aminice de la majoritatea aminoacizilor şi poate regenera, prin dezaminarea oxidativă acidul α-cetoglutaric, care devine apt să accepte grupările aminice.

Exemplu:

glutamat dehidrogenazatransaminaza

NH3 + H+ +NADH

H2O+ NAD+cetoacid glutamat

alfa_cetoglutarataminoacid

53

Page 54: Biochimie

Dezaminarea oxidativă

Glutamatul format sub acţiunea transaminazelor poate fi rapid dezaminat oxidativ sub acţiunea glutamat dehidrogenazei, o piridin-enzimă prezentă atât în citosol, cât şi în mitocondriile hepatocitului.

HOOC CH2 CH2 CH

NH2

COOH+ NAD+(NADP+) + H2O HOOC CH2 CH2 COOHC

O

+ NH4+

+ NADH (NADPH)

Grupările aminice colectate de la diferiţi aminoacizi de către glutamat sunt descărcate sub formă de ioni de NH4+ .

În această reacţie are loc şi o dehidrogenare. Se presupune că dehidrogenarea glutamatului are loc în două etape: în prima

etapă se formează α-iminoglutaratul, care în a 2-etapă este hidrolizat la cetoacid.

HOOC CH2 CH2 CH

NH2

COOH+

NAD+

HOOC CH2 CH2 COOHC

NH

+ NADH + H+

C

NH

COOHHOOC CH2 CH2

+ H2O HOOC CH2 CH2 COOHC

O

+NH3

Enzima care catalizează această reacţie se numeşte L-glutamat dehidrogenaza. Aceasta poate folosi ca acceptor de electroni atât NAD+ cât şi NADP+, preferat

fiind NAD+. NADH –ul format este oxidat în lanţul transportor de electroni. L-glutamat dehidrogenaza are un rol cheie în dezaminarea aminoacizilor. Este o

enzimă allosterică, înhibată de ATP, GTP şi NADH şi stimulată de ADP, GDP. Multe oerganisme conţin aminoacid oxidaze flavin-dependente, care şi ele

catalizează dezaminarea oxidativă a aminoacizilor. L-aminoacid axidaza este specifică pentru dezaminarea L-aminoacizilor şi

catalizează reacţia:

L - am ino ac id + H 2O + E - F M N c e to ac id + N H3 + E _ F M N H2

L-aminoacidoxidaza are ca grupare prostetică FMN strâns legată de proteina enzimatică. Se găseşte în reticulul endoplasmatic din ficat şi rinichi.

O altă flavoproteină ce catalizează dezaminarea oxidativă este D-aminoacid oxidaza, prezentă în ficat şi rinichi, care oxideaza D-aminoacizii la α-cetoacizii corespunzători.

D- aminoacid + H 2O + E - F A D cetoacid + NH3 + E _FA DH2

Rolul D-aminoacidoxidazei este de a iniţia degradarea D-aminoacizii proveniţi din degradarea enzimatică a peptidoglicanilor din pereţii celulari ai bacteriilor intestinale, care conţin acid D-glutamic şi alţi D-aminoacizi.

Formele reduse al L- şi D-aminoacidoxidazelor pot reacţiona direct cu O2 formând H2O2 şi regenerând enzimele sub forma lor oxidată.

E_FMNH2 + O2 E_FMN + H2O2

E_FADH2 + O2 E_FAD + H2O2

54

Page 55: Biochimie

Apa oxigenată formată este descompusă de catalază la apă şi oxigen molecular.

H2O 2 H2O + 1/ 2O 2

În celulele eucariote, L-şi D-aminoacidoxidazele precum şi uratoxidaza sunt localizate în microcorpi.

Tot în aceste organite se găseşte şi catalza. Din acest motiv organitele repective se mai numesc şi peroxizomi.

Decarboxilarea aminoacizilor

Un alt mecanism de degradare a aminoacizilor îl constituie decarboxilarea sub acţiunea aminoaciddecarboxilazelor, a căror coenzimă este piridoxal-fosfatul.

În urma procesului de decarboxilare se formează aminele primare corespunzătoare, numite şi amine biogene.

am in o ac idd ec ar b o xilaza

C O 2

C H 2 N H 2R

C O O H

R C H N H 2

Pentru ca reacţia să aibă loc, şi în acest se formează o bază Sciff între aminoacid şi piridoxal-fosfat.

Deplasările electronilor spre N piridinic labilizaează legătura dintre Cα şi gruparea carboxilică.

Are loc eliberarea unei molecule de CO2 urmată de hidroliza bazei Schiff astfel rezultate.

Din hidroliză rezultă piridoxalfosfatul şi se pune în libertate amina respectivă.

Mecanismul reacţiei este următorul:

+HN

CH

O-

CH3

P CH2O

OH

HO

O

O

+R CH2 CH

NH2

COOH

O

HO P CH2O

OH

N

C

O-

CH3H+

N+

HH

CH CO-

OCH2R

H

HN

C

O-

CH3

P CH2O

OH

HO

O

R

NH

C HCH2

..

CO2

R CH2 CH

H NH

N

C

O-

CH3

P CH2O

OH

HO

O

2

++

O

HO P CH2O

OH

N

CH

OH

CH3

O

+R CH2 CH2 NH3

+

55

Page 56: Biochimie

Exemple de reacţii de decarboxilare:

N

N

C H 2 C H N H 2

H

C O O HC O 2 H

N

N

C H 2 C H N H 22

h i s t i d i n a h i s t a m i n a

hidroxilaza

serotonina

HN

CH2 CH2 NH2HO

CO2

HO

N

CH2 CH COOH

NH2

H

O2

HN

CH2 CH COOH

NH2

Din decarboxilarea histidinei, triptofanului, 5-hidroxitriptofanului, tirozinei rezultă histamina, triptamina, serotonina şi tiramina cu rol de hormoni tisulari.

Din decarboxilarea treoninei, cisteinei şi acidului aspartic rezultă propanolamina, cisteamina, β-alanina, care intră în structura cobalaminei şi CoA.

Din decarboxilarea acidului glutamic se formează acidul γ-aminobutiric, important pentru metabolismul ţesutului nervos; iar din decarboxilarea aminoacizilor bazici ca: lizina, ornitina, arginina rezultă cadaverina, putresceina, care sunt produşi de putrefacţie.

Metabolismul amoniacului

Formarea şi eliminarea amoniacului

În afara amoniacului care apare în ţesuturi ca rezultat al metabolismului aminoacizilor (dezaminarea oxidativă), o cantitate considerabilă se mai formează din proteinele alimentare sub acţiunea bacteriilor intestinale şi din ureea prezentă în lichidele secretate din tractul gastro-intestinal.

Acest amoniac este absorbit din intestin în sângele portal venos, care conţine cantităţi mai mari de amoniac decât sângele sistemic.

În condiţii normale, ficatul îndepărtează prompt amoniacul din sângele portal, astfel încât sângele ce părăseşte ficatul, este în mod virtual liber de amoniac.

Acest lucru este esenţial deoarece cantităţi mici de amoniac sunt toxice pentru sistemul nervos (normal în sânge se găsesc 10-20μg NH3 /100ml).

Simptomele intoxicaţiei cu amoniac sunt rezultatul unei slăbiri ale funcţiilor creierului şi se manifestă prin:

greaţă vărsături letargie ataxie convulsii

56

Page 57: Biochimie

iar în cazuri mai grave comă prin hiperamoniemie (cc 100μg NH3 /100 ml) şi chiar moartea.

Aceste simptome sunt asemănătoare comei hepatice, când nivelul amoniacului din ficat şi probabil din creier este foarte crescut.

Intoxicaţia cu amoniac pare să fie un factor etiologic în coma hepatică. Simptome asemănătoare apar şi în hepatomegalie şi în general, când funcţiile

hepatice sunt puternic alterate, deoarece ficatul este sediul transformării amoniacului în uree.

Mecanismul prin care amoniacul îşi exercită efectul asupra creierului nu se cunoaşte încă.

Se presupune că se datoreşte descreşterii formării de ATP pe calea ciclului citric din cauza transformării unei cantităţi excesive de α-cetoglutarat în glutamat şi glutamină.

Nivelul acestor metaboliţi, la fel ca şi a amoniacului este crescut în creier în decursul intoxicaţiei cu amoniac.

Alterări ale proceselor de transmisie neurală datorită unor formări excesive de acid γ-aminobutiric (GABA) din glutamat pot fi, deasemenea implicate.

Conţinutul de amoniac din sângele din venele renale, mai mare decât în arterele renale, indică faptul că amoniacul este produs în rinichi şi apoi trece în sânge.

Excreţia în urină a amoniacului produs în celulele tubilor renali constituie cel mai semnificativ aspect al metabolismului amoniacului renal.

Producerea de amoniac este un mecanism important al tubilor renali, de reglare a balanţei acido-bazice şi conservare de cationi, fiind foarte crescut în acidoza metabolică şi scăzut în alcaloză.

Amoniacul produs la nivelul rinichilor derivă din aminoacizii intracelulari şi în special din glutamină.

Eliberarea de amoniac este catalizată de glutaminaza renală, conform reacţiei:

glutamina acid glutamic

glutaminaza

NH2

HOOC CH2 CH2 CH COOH

NH3H2ONH2O

H2N C CH2 CH2 CH COOH

Amoniacul poate fi excretat sub formă de săruri de amoniu. Marea majoritate este excretată sub formă de uree, care se formează în ciclul ureogenetic.

Practic amoniacul format în ţesuturi, dar prezent în sângeleperiferic în urme, este îndepărtat rapid din circulaţie sub formă de glutamină şi uree.

Formarea de glutamină este catalizată de glutamin-sintetază, enzimă prezentă în cantităţi mari în ţesutul renal.

57

Page 58: Biochimie

acid glutamic glutamina

glutamin_sintatazaNH2

H2N C CH2

O

CH2 CH COOH

ADP + PaATP

H2ONH3

HOOC CH2 CH2 CH COOH

NH2

Asparaginaza şi glutaminaza sunt utilizate ca agenţi antitumorali, deoarece tumorile necesită cantităţi mari de acid aspartic şi acid glutamic.

În timp ce la nivelul creierului calea majoră de îndepărtare a amoniacului este formarea glutaminei, în ficat calea majoră o constituie transformarea în uree.

Un adult cu o activitate normală, moderată excretă zilnic 16,5g azot. Din acesta 95% se elimină prin rinichi, iar 5% este stocat şi apoi eliminat prin fecale. Ureea constituie 80-90% din azotul excretat.

Interconversia amoniacului şi a glutaminei, catalizată de glutaminsintetază şi glutaminază, poate fi prezentată schematic astfel:

glutaminaza

glutamin sintetaza

acid glutamicH2O

Mg_ADPacid glutamic + Mg_ATP

H2N C CH2

O

CH2 CH COOH

NH2

NH4+

58

Page 59: Biochimie

Ciclul ureogenetic

În cursul reacţiilor ce alcătuiesc un ciclu complet dintr-un mol de amoniac rezultă un mol de uree şi se consumă 3 moli de ATP. Reacţiile succesive sunt catalizate de 5 enzime.

Carbamoil sintetaza prezentă în mitocondriile hepatice ale organismelor ureotelice, inclusiv organismul uman, catlizează sinteza carbamoilfosfatului cu consum de 2 moli de ATP.

car bam oils intetaza

M g+2P a2A D P + +

OO H

P O

O

C N H2HO2A T PN H3 + C O 2 +

Ornitincarbamoilaza se găseşte în mitocondriile hepatice şi catalizează reacţia de sinteză a citrulinei, pentru care are o mare specificitate.

ornitincarbamoilaza

ornitina citrulina

H3P O 4+O

NH2C H2 NH

C H2

C H2

C H NH2

C OOH

C

HO P O

O

C NH2

OH O

+

C H2 NH2

C H2

C H2

C H NH2

C OOH

În continuare citrulina în prezenţă de arginino-succinat-sintetaza formează arginino-succinatul.

citrulina acid aspartic argininosuccinat

arginino_succinatsintetaza

CH2 NH

CH2

CH2

CH NH2

COOH

C

NH2

N CH

COOH

CH2

COOHH2O

AMP+PPATP

COOH

H2N

COOH

CH

CH2+

CH2 NH

CH2

CH2

CH NH2

COOH

C NH2

O

Mai departe, argininosuccinaza, prezentă în ţesutul hepatic şi renal al mamiferelor catalizează reacţia de scindare a argininosuccinatului în arginină şi acid fumaric, care intră în ciclul citric.

59

Page 60: Biochimie

argininosuccinat arginina acid fumaric

argininosuccinaza

HC COOH

HOOC CH

+

CH2 NH

CH2

CH2

CH NH2

COOH

C

NH2

NHCH2 NH

CH2

CH2

CH NH2

COOH

C

NH2

N CH

COOH

CH2

COOH

În continuare acidul fumaric intră în ciclul citric şi va suferi o transformare obişnuită, adică în prezenţă de fumarază trece în acid malic, care la rândul său sub acţiunea malatdehidrogenazei trece în oxalilacetat.

Oxalilacetatul intră într-o reacţie de transaminare la care participă acidul glutamic şi transaminaza glutamico-oxalacetică(GOT), formând acidul aspartic.

acid fumaric acid malic acid oxalilacetic

malatdehidrogenazafumaraza

CH2

COOH

COOH

C O

NADH+ H+NAD+

OH

COOH

CH

CH2

COOHH2OHOOC C H

H C COOH

GOT

COOH

CH2

CH2

C O

COOHCOOH

+

CH2

COOH

COOH

C NH2CH2

CH2

CH NH2

COOH

+

COOH

C O

CH2

COOH

Deasemenea arginina formată este scindată de arginază (enzimă prezentă în ficatul tuturor organismelor ureotelice) la ornitină şi uree.

Arginaza se găseşte în cantităţi mici şi în rinichi, creier, glanda mamară, ţesut testicular şi piele.

Enzima poate fi înhibată competitiv de ornitină şi lizină.

arginina ornitina uree

O

C NH2H2Narginaza+

H2O

CH2 NH2

CH2

CH2

CH NH2

COOH

CH2 NH

CH2

CH2

CH NH2

COOH

C

NH2

NH

60

Page 61: Biochimie

Ornitina rezultată poate să reia un nou ciclu, iar ureea formată este excretată urinar.

Deci, ciclul ureogenetic este o cale metabolică foarte costisitoare pentru organism, deoarece pentru fiecare moleculă de uree ce se formează se consumă 3 legături macroergice.

Cantitatea de uree excretată de un adult normal prin urină este de 25-30g în 24 de ore.

Această cantitate reprezintă 90% din substanţele azotate şi variază proporţional cu cantitatea de proteină ingerată.

În condiţii normale excreţia de amoniac reprezintă numai de 2,5-4,5% din totalul azotului urinar.

Excreţia amoniacului reprezintă o funcţie importantă în menţinerea balanţei acido-bazice.

Amoniacul se formează la nivelul rinichilor unde se combină cu ionii de hidrogen formând ioni de amoniu.

Conţinutul său creşte în acidoză şi scade în alcaloză. Ureogeneza este un proces semiciclic deoarece ornitina consumată în reacţia 2

este regăsită în ultima reacţie.Boli metabolice legate de dereglări apărute în ciclul ureogenetic

Lipsa uneia dintre enzimele care intervin în ciclul ureogenetic determină apariţia unor afecţiuni, care toate sunt cauzate de intoxicaţia cu amoniac. Acesta nu se mai poate transforma în uree, produs netoxic care se elimină.

Deficitul de carbamoilfosfatsintetază este probabil ereditar şi cauzează hiperamoniemia de tip 1.

Deficitul de transcarbamoilază duce la apariţia enzimopatiilor congenitale. Boala se numeşte hiperamoniemie de tip II.

În aceste cazuri în sânge, lichid cerebrospinal şi urină s-au găsit cantităţi mari de glutamină, iar în ţesuturi cantităţi mari de amoniac.

Lipsa activităţii argininosuccinat-sintetazei duce la citrilinemie, o boală foarte rară.

În sângele şi în lichidul cerebrospinal al pacienţilor se găsesc cantităţi mari de citrulină, iar în urină eliminarea este masivă (1-2g citrulină/24 de ore).

Absenţa argininosuccinazei duce la argininosuccinurie. Enzima este absentă în creier, ficat, rinichi, eritrocite şi fibroblastele din piele.Simptomatologia se caracterizează prin hiperamonemie, vărsături,letargie,comă.Tratamentul constă în administrarea de arginină şi benzoat de sodiu.

Absenţa arginazei conduce la hiperargininemie.Aceasta se caracterizează prin creşterea nivelului de arginină în sânge şi în lichid

cerebrospinal,eliminare urinară crescută de arginină,lizină şi ornitină.Tetraplegie spastică progresivă şi retardare mentală.

Arginaza cerebrospinală nu este întotdeauna absentă, uneori este mai scăzută.Tratamentul constă în dieta cu aa.esenţiali (exclusiv arginină) şi regim hipoproteic.

61

Page 62: Biochimie

Utilizarea scheletului de atomi de carbon ai aminoacizilor

Aminoacizii sunt utilizaţi alături de glucide şi lipide la acoperirea necesităţilor energetice ale organismelor animale.

În condiţiile unei alimentaţii echilibrate şi în stare noemală, organismul uman îşi procură cel mult 10% din necesarul de energie prin degradarea aminoacizilor.

Pentru producerea de energie, scheletul de atomi de carbon al aminoacizilor este degradat oxidativ la CO2 şi H2O.

S-a constatat că atomii de carbon din scheletul aminoacizilor se regăsesc nu numai în CO2 ci şi în strucrura glucozei şi lipidelor sintetizate endogen.

Aminoacizii din care se sintetizează glucoză se numesc glucogeni, iar cei din care se sintetizează lipide se numesc cetogeni.

Unii aminoacizi sunt atât glucogenici cât şi cetogenici.

62

NH 4 NH

4

3HCO

+ 3HCO

CPSI

2 ATP 2 ADP + P 1

Carbamoil fosfat

Citrulină

Ornitină

P 1

OTC

ATP

Argininosuccinat sintetază

AMP + PP 1

Argininosuccinat

Argininosuccinat - liază

Fumarat

Arginină

Arginază

H 2 O

UREE

Page 63: Biochimie

Atât în vederea utilizării pentru producerea de energie cât şi pentru sinteza de lipide şi glucoză, aminoacizii sunt transformaţi pe căi mai simple sau mai complexe în intermediari ai ciclulu Krebs sau în compuşi aflaţi în strânsă legătură cu acest ciclu: oxalilacetat, α-cetoglutarat, succinil-CoA, fumarat, piruvat, acetil-CoA.

În cazul unora dintre aminoacizi există căi specifice de trecere apre 2 dintre compuşii menţionaţi: triptofanul la acetil-CoA şi acetoacetil-CoA, tirozina la fumarat şi acetoacetil-CoA.

Schema generală de metabolizare a scheletului de atomi de C ai aminoacizilor

Ile, Met,T hr,Val

Gln, Glu, His,Pro, Arg

T yr, Phe

Asp, Asn

Ile, Leu, T ry

T ry, Leu, Lys,Phe, T yr

Ala, Gly, Cys,Ser, T hr

acetoacetil- CoAacid piruvic

acid malic

acid oxalilacetic

acid fumaric

acid succinnic

succinil- CoA

acid alfa- cetoglutaric

acid izocitric

acid citric

acetil- CoA

Defecte în metabolizarea aminoacizilor

În legătură cu metabolismul aminonoacizilor sunt descrise mai multe afecţiuni cauzate în principal de defecte la sinteza unor enzime cheie.

Fenilcetonuria apare atunci când lipseşte fenilalanin-hidroxilaza. Fenilalanina nu se mai poate transforma în tirozină şi astfel se transformă în acid

acid fenil-piruvic acid fenil-lactic, toxici pentru creiercare se elimină parţial prin urină.

Alcaptonuria apare datorită absenţei homogentizatoxidazei.

63

Page 64: Biochimie

Aceasta duce la pigmentarea anormală a ţesutului conjunctiv, datorită unui pigment negru ce se formează la nivelul ţesutului conjunctiv.

Albinismul apare prin lipsa tirozinazei, enzimă ce iniţiază oxidarea tirozinei pentru formarea pigmenţilor melaninici.

Astfel pielea şi părul sunt decolorate. Histidinemia apare datorită lipsei enzimei histidin-amonio-liazei. Histidina se elimină parţial prin urină, parţial se transformă în acid imidazol-

piruvic. Acestea duc la întârzierea dezvoltării generale şi a vorbirii. Cistinuria apare datorită unei reabsorbţii tubulare defectuoase a cistinei, ceea ce

determină eliminarea ei în cantităţi mari prin urină. Fiind puţin solubilă, cistina formează calculi.

Biosinteza aminoacizilor

Dintre aminoacizii cunoscuţi numai un număr de 20 prezintă importanţă pentru biosinteza proteinelor.

Unele forme de viată (plante, bacterii) sunt capabile să sintetizeze toţi cei 20 de aminoacizi din intermediari amfibolici.

Altele, inclusiv mamiferele şi în special omul, pot sintetiza numai o parte din ei, care au fost numiţi aminoacizi neesenţiali.

Cei ce nu pot fi sintetizaţi şi care trebuie suplimentaţi prin dietă sunt numiţi aminoacizi esenţiali.

Exemplu: Aminoacizi esenţiali: arginina, histidina, izoleucina, leucina, lizina, metionina,

fenilalanina, treonina, triptofan, valina. Aminoacizi neesenţiali: alanina, asparagina, acid aspartic, cisteina, acid

glutamic, glutamina, glicina, hidroxiprolina, prolina, serina, tirizina.

Sinteza de aminoacizi neesenţiali din intermediari amfibolici

Alanina se sintetizează din acid piruvic printr-o reacţie de transaminare. Are rol în sinteza proteică şi de transport a grupării azot de la ţesuturi spre ficat.

H3C C COOH

O

H3C CH COOH

NH2Glu(Asp) KG

transaminaza

64

Page 65: Biochimie

Acidul glutamic se formează din acid α-cetoglutaric printr-o reacţie catalizată de L-glutamat dehidrogenază.

Este o reacţie de fixare de azot.

C O O H

C O

(C H2)2

C O O H

N H 4+ H 2O

N A D P H + H+ N A D P +

C O O H

C H N H2

(C H2)2

C O O H

L _ g lu tam atd eh id r o g en aza

Acidul aspartic se sintetizează din acid oxalilacetic prin reacţia de transaminare.

COOH

C

CH2

COOH

O

Glu KG

COOH

CH NH2

CH2

COOH

transaminaza

Glutamina se sintetizează printr-o reacţie catalizată de către glutaminsintetază, plecând de la acid L-glutamic. Reacţia necesită ATP ca şi donor de energie.

C O O H

C H N H2

(C H2)2

C O O H

+ N H4+

A T P A D P + PM g+2

C O O H

C H N H2

(C H2)2

C O N H2

glutam ins intetaza

Asparagina se sintetizează printr-o reacţie similară plecând de la acid L- aspartic sub acţiunea aparaginsintetazei ATP trece, în acest caz la AMP şi PP.

65

Page 66: Biochimie

C O O H

C H N H 2

C H 2

C O O H

C O O H

C H

C H 2

N H 2

C O N H 2

as p ar ag in s in t et aza

În cazul serinei, în ţesutul mamiferelor coexistă două căi de biosinteză.În ambele cazuri punctul de plecare în sinteză este acidul 3-fosfogliceric,

intermediar din glicoliză.

CH2 OPO3H2

CH OH

COOHH2O P

CH2 OH

CH

COOH

OHNAD+ NADH + H+

CH2 OH

C O

COOH AA KA

CH2 OH

C

COOH

O

NAD+ NADH + H+

CH2 OPO3H2

C O

COOHAA KA

CH2 OPO3H2

CH NH2

COOH H2OCalea prin intermediul derivaţilor fosforilaţi necesită în prima etapă o dehidrogenază, apoi o transaminază şi o fosforilază.Calea prin intermediari nefosforilaţi, necesită o fosfatază şi o transaminază. Sinteza glicinei în ţesutul mamiferelor poate să se facă pe mai multe căi.În citosolul hepatic se găseşte glicintransaminaza care transformă acidul glioxilic şi acizii glutamic şi aspartic în glicină.La mamifere există două căi importante de sinteză a glicinei, una plecând de la colină şi alta de la serină. Glicina este implicată în multe reacţii anabolice( altele decât sinteza proteică) sinteza bazelor purinice,glutationului,hemului,creatinei şi serinei.În cea de a doua cale serina suferă o reacţie de hidroximetilare în prezenţa tetrahidrofolatului. Betaina şi metiltetrafolatul funcţionează ca donori alternativi de metil în conversia homocisteinei la metionină.

66

Page 67: Biochimie

sarcozinadimetiglicina

betainabetainaldehidacolina

Metilen H4 folatH4 folat

H2N CH2 COOH

NH2

HOH2C CH COOH

sarcozinoxidaza

CH2O

NH CH2 COOHH3Ctransmetilare dimetilglicinoxidaza

CH2O

(H3C)2N CH2 COOH

CH3

betainaldehiddehidrogenaza (H3C)3N+ CH2 COOH

NADH + H+NAD+

(H3C)3N+ CH2 CHOcolinoxidaza

2[H]

(H3C)3N+ CH2 CH2OH

Sinteza de aminoacizi neesenţiali din alţi aminoacizi neesenţiali

La mamifere prolina se sintetizează pornind de la acid glutamic printr-o serie de reacţii reversibile care sunt utilizate şi în catabolismul prolinei.

H2C CH2

CH COOH

NH2

CHO

ONADH + H+ NAD+

O

CH

NH2

COOHCH

CH2H2C

H2O NCOOH

NADH + H+NAD+

NCOOH

HHidroxiprolina se sintetizează din prolină prin acţiunea prolin hidroxilazei.Reacţia necesită oxigen molecular, Fe+2 şi vitamina C.

NCOOH

H HN

COOH

HO

Sinteza de aminoacizi neesenţiali care iau naştere din aminoacizi esenţiali

Cisteina se sintetizează din L-serină şi homocisteină, care provin ca intermediari în metabolizarea metioninei.

În deficientul de folat, homocisteina tinde să se acumuleze.Acest fapt a fost sugerat ca factor de risc în bolile cardiovasculare

67

Page 68: Biochimie

CH2 SH

CH2

CH NH2

COOH

+

HO CH2

CH NH2

COOH H2O

CH2 S CH2

CH NH2CH2

COOHCH NH2

COOH

H2O

HO CH2 CH2 CH COOH

NH2

+ HS CH2 CH COOH

NH2

L_homocisteina

L_serina

cistationina

L_homoserina L_cisteinaTirozina se sintetizează din fenilalanină sub acţiunea fenilalaninhidroxilazei.Mutaţii ale genei enzimei are drept consecinţă imposibilitatea catabolizării fenilalaninei care astfel se acumulează în ficat, ceea ce are ca rezultat procese metabolice minore cum ar fi transaminarea ei la fenilpiruvat.Reacţia este ireversibilă şi necesită prezenţa de NADPH, oxigen molecular şi tetrahidrobiopterina.

fenilalaninhidroxilaza

II

IHO CH2 CH COOH

NH2

NADP + NADPH + H+

H2 biopterinaH4 biopterinaNH2

CH2 CH COOH

Complexul fenilalanin hidroxilazei prezintă două activitaţi distincte: 1 – reducerea oxigenului molecular la apă şi a fenilalaninei la tirozină2 – reducerea dihidrobiopterinei la tetrahidrobiopterină pe socoteala NADPH.

La fel ca şi prolina hidroxilizina este prezentă în fibra de colagen. Hidroxilizina este, însă, absentă din aproape toate proteinele mamiferelor, provine

din lizina alimentară prin hidroxilare, dar numai după încorporarea lizinei în legătura peptidică, analog formării hidroxiprolinei din prolină.

Enzima care catalizează această reacţie este lizinhidroxilaza.

68

Page 69: Biochimie

METABOLISMUL HEMOGLOBINEI

Deoarece există o pierdere permanentă de hemoglobină prin catabolism şi prin îmbătrânirea hematiilor este nevoie de înlocuirea acesteia în mod permanent.

Durata medie de viaţă a eritrocitelor umane este în jur de 120 de zile. Ele sunt apoi lizate şi hemoglobina conţinută în ele, este convertită în produşi de

excreţie. Biosinteza globinei se realizează din aportul corporal de aminoacizi într-o

cantitate de 8 g pe zi. Aproximativ 14% din aminoacizii aparţinând proteinelor ingerate sunt utilizaţi

pentru obţinerea globinei. Procesul de sinteză a globinei are loc în eritrocitele nucleate din măduva osoasă şi

în reticulocite. Sinteza globinei are loc la nivelul ribozomilor într-un mod asemănător cu a altor

proteine. Studii de electronomicroscopie arată că sinteza hemoglobinei în reticulocite are

loc pe structura multiribozomală care conţine cinci ribozomi. Aceşti ribozomi sunt înşiraţi pe un lanţ de ARNm.

Nucleul eritrocitelor nucleate din măduva osoasă umană nu sintetizează cantităţi semnificative de hemoglobină.

Formarea globinei nu pare să implice factori genetici sau mecanism speciale. Necesită o serie de factori nutriţionali ca vit.B12,acid folic,vitamine B1,2,6,

Fe,Cu. Cele două tipuri de lanţuri se formează independent sub controlul diferitelor gene

şi de asemenea, cu viteze egale. Biosinteza porfirinelor şi hemului constă din trei etape succesive: 1 biosinteza acidului δ –aminolevulinic din glicină şi succinil-CoA sub

acţiunea aminolevulinat sintetazei.Procesul are loc în mitocondrii. 2 formarea porfobilinogenului din condensarea a 2 molecule acid δ –

aminolevulinic.Se formează în citosol. 3. conversia porfobilinogenului într-un ciclu tetrahidropirol- porfirinic şi

apoi a hemului.4 molecule de porfobilinogen sunt condensate în două etape şi se formează :-URO III-URO I (nu face parte din procesul de biosinteză a hemului).

URO III şi URO I diferă doar prin ordinea carboximetilului şi carboxietilului în unul din ciclurile pirolice.

URO III este utilizat la biosinteza hemului. Acesta continua cu formarea în citosol a coproporfirinogenului III. Este apoi succesiv transformat în mitocondrii în protoporfirinogen IX,

protoporfirina IX şi hem. 4. În etapa finală fierul este înserat în molecula protoporfirinei sub acţiunea

ferochelazei formând hemul, produsul final de reacţie

69

Page 70: Biochimie

Aproximativ 85% din hemul sintetizat este pentru formarea hemoglobinei, cca 10% este utilizat pentru formarea mioglobinei şi 5% pentru formarea citocromilor sau alte proteine hemice.

Porfirinele care iau naştere în cantităţi mici sunt compuşi colaterali care ies din calea biosintezei hemului.

Aceştia nu pot fi utilizaţi şi se elimină ca atare prin urină. Formarea în cantitate mare a acestor porfirine reprezintă o perturbare în biosinteza

hemului. Această perturbare reprezintă boli genetice, prin deficit enzimatic, cu sau fără

manifestări clinice cunoscute sub numele de porfirii şi caracterizate printr-o eliminare crescută de porfirine prin urină (fotosensibilitate,simptome neurologice şi dureri abdominale).

Porfiriile constituie un grup heterogen de boli caracterizate prin excreţie crescută de porfirine şi precursori ai porfirinelor.Porfobilinogenul se acumulează în urină şi este utilizat în diagnostic.

Principalele tipuri de porfirii sunt:

porfiria hepatică acută intermitentă cea mai frecventă porfirie.Se formează şi se elimină excesiv AAL şi porfobilinogen.Evoluează în crize declanşate de diverşi factori.

porfiria eritropoetică congenitală sau boala Gunther afecţiune rară.Dezechilibru funcţional între URO I-sintetaza şi cea URO III cosintetazei(sinteză crescută de URO I)

70

Page 71: Biochimie

coproporfiria ereditară deficit de coproporfirinogen-oxidază.Evoluează în crize

protoporfiria deficienţă de ferochelatază. porfiria cutanată tardivă deficit de uroporfirinogen-decarboxilaza porfiria toxică(intoxicaţii medicamentoase,hexaclorbenzen,etilism) porfiria dobândită boli hepatice cr.,tumori,boli sanguine porfirii variate.

CATABOLISMUL HEMOGLOBINEI

În condiţii fiziologice la un om adult se distrug 1-2 x 108 eritrocite pe zi. Astfel, un adult de 70 de kg prezintă un turnover de 6 g Hb/zi. Din eritrocitele îmbătrânite hemoglobina este eliberată prin fagocitoză în celulele

reticuloendoteliale, în special în splină. Hemoglobina eliberată în sânge este captată de către o glicoproteină

specifică,incoloră numită haptoglobulină (Hp), care prezintă proprietăţi peroxidice.

Hemoglobinuria apar doar în cazul în care Hb eliberată depăşeşte capacitatea de captare a haptoglobulinei.

Degradarea hemului are loc la nivelul microzomilor hepatici şi implică o oxidare unică a atomului de carbon α din puntea metilenică cu formare de monoxid de carbon.

Reacţia este catalizată de către hemoxigenază, o enzimă microzomală, în prezenţă de oxigen molecular, citocrom c reductază şi NADH.

Descompunerea hemoglobinei constă în desprinderea fierului şi a globinei care sunt reutilizate şi transformarea porfirinei în pigmenţi biliari.

Inelul tetrapirolic al hemului se deschide şi atomul de fier este eliberat. Se formează, probabil ca şi intermediar, verdohemină.

71

Page 72: Biochimie

Se ajunge apoi la biliverdină care sub acţiunea biliverdin oxidazei şi NADPH,(oxidarea punţilor interpirolice) este transformată în bilirubină.

O parte din bilirubină se formează şi la nivelul altor ţesuturi din diferite hemoproteine şi este transportată la ficat şi legată de o albumină plasmatică.

BILIRUBINA ESTE INSOLUBILĂ ÎN MEDIU APOS.

În ficat bilirubina este conjugată cu acid glicuronic formând acid bilirubin diglicuronic care este solubil în apă şi este rapid excretat prin intermediul bilei în intestin.

Glicuroniltransferaza este mai puţin activă la nou născuţi,mai ales la prematuri. După 10-15 zile de viaţă enzima atinge nivelul de activitate întâlnit la adult.

În icterul fiziologic(2-7 zi de viaţă) ar juca un anumit rol deficienţa glicuroniltransferaza.

Bilirubin diglicuronidul este hidrolizat la nivelul intestinelor de către β-glicuronidază.

Bilirubina este redusă de flora bacteriană trecând în D- sau L-urobilinogen incolor.

O parte din el este reabsorbit şi excretat în urină sub forma unui compus de oxidare colorat în galben oraj, L-urobilină.

72

Page 73: Biochimie

Partea rămasă de urobilinogen este redus în intestin la L-stercobilinogen, care este excretat în fecale sub forma unui produs de oxidare de culoare brună L-stercobilină.

BILIRUBIN DIGLICURONIDUL

Compoziţia chimică a organismului uman

- Compoziţia elementară a organismului uman - Compoziţia fundamentală a organismului uman

Compoziţia elementară a organismului uman

Au fost identificate un număr de peste 60 de elemente care intră în compoziţia chimică a organismului uman.

Acestea au fost clasificate în funcţie de proporţia în care se gasesc în organism. Dintre acestea majoritatea se găsesc în urme. Astfel ele au fost clasificate în: macroelemente, oligoelemente şi microelemente.

73

Page 74: Biochimie

Element Procent ( %) Element Procent(%)

carbon 50 Sulf 0.8

oxigen 20 Sodiu 0.4

hidrogen 10 Clor 0.4

azot 8.5 magneziu 0.1

calciu 4.0 Fier 0.01

fosfor 1.0 iod 0.00005

Primele patru ( C,O, H şi N) reprezintă peste 95% şi sunt considerate macroelemente. Ele sunt principalele bioelemente ale majorităţii biomoleculelor datorită tendinţei lor mărite de a forma legături covalente.

Oligoelementele se găsesc în proporţie mai mică în organism şi la fel ca şi macroelementele intră în structura biomoleculelor. Microelementele se găsesc în urme, dar cu toate astea ele au un rol esenţial pentru viaţă.

Compoziţia fundamentală a organismului uman

componenţi organici componenţi minerali.

Componenţii organici

Componenţii organici care intră în compoziţia organismului uman sunt: proteinele, glucidele, lipidele şi acizii nucleici.

Aceşti compuşi sunt molecule complexe, care sunt alcătuite din molecule simple. Astfel, proteinele se formează prin policondensarea aminoacizilor, glucidele sunt formate din monozaharide, lipidele sunt formate din acizi graşi şi alţi componenţi, iar acizii nucleici sunt formaţi din ribonucleotide şi dezoxiribonucleotide.

Principalele biomolecule din organismul uman

74

Page 75: Biochimie

Biomolecula Unităţi strucurale Funcţii

ADN Dezoxiribonucleotide Material genetic

ARN Ribonucleotide Model pentru sinteza proteinelor

Proteine Aminoacizi Funcţii multiple

Glucide monozaharide Rezervă de energie

Lipide Acizi graţi şi alţi componenţi

Funcţii multiple

Componenţii minerali

apa

electroliţii.

Apa

Apa este constituientul major al tuturor organismelor vii. Organismul uman conţine între 58 şi 66% apă. O influenţă remarcabilă asupra conţinutului de apă al organismului o are vârsta. Conţinutul de apă variază şi în funcţie de sex, astfel femeile au un conţinut de apă mai redus în comparaţie cu bărbaţii.

Apa din organism este repartizată în vasele sanguine şi limfatice, spaţiile intercelulare şi celule însăşi. Apa din organism se găseşte repartizată în două compartimente şi anume: compartimentul extracelular, care reprezintă aproximativ 50% din greutatea corpului şi compartimentul intracelular, care reprezintă aproximativ 20% din greutatea corporală.

75

Page 76: Biochimie

Electroliţii

Electroliţii sunt reprezentaţi de cationi şi anioni. Ei îndeplinesc în organism rol fizico- chimic, structural şi catalitic. Distribuţia cationilor în compartimentele intra şi extracelulare este diferită.

Distribuţia cationilor intra- şi extracelular în mEg/l.

cationi intracelular extracelular

Na+ 10 145

K+ 150 5

Ca+2 2 2

Mg+2 15 2

Alte clase de compusi

Vitaminele care sunt indispensabile pentru funcţiile lor biologice, dar pe care organismul nu le poate sintetiza.Ele reprezintă componenţii nutritivi esenţiali.

Hormonii sunt o altă clasă de biomolecule cu rol major în procesele endocrine, care au loc în organism.

76

Page 77: Biochimie

Nucleotide şi structura covalentă a acizilor nucleici

Acidul dezoxiribonucleic (ADN) şi ribonucleic (ARN) sunt macromolecule tip lanţ, care au funcţia de a depozita şi transmite informaţia genetică. Aceştia sunt componente majore în toate celulele, reprezentând 5-15% din masa uscată a acestora.

Acizii nucleici se găsesc şi în virusuri, care sunt complexe infecţioase proteină-acid nucleic, capabile să se autoreplice în celula gazdă.

Structura generală a nucleotidelor

Unităţile monomere ale ADN se numesc dezoxiribonucleotide, iar cele ale ARN se numesc ribonucleotide.

Nucleotidele sunt formate din 3 componente caracteristice şi anume: o bază azotată, o pentoză şi moleculă de acid fosforic.

Bazele azotate

Bazele azotate care intră în structura nucleotidelor sunt de două tipuri: baze purinice baze pirimidinice

BBaze puriniceaze purinice

N

N

N

N

H

N

N

N

N

NH2

H

N

N

N

N

O

H2N

H

H

adeninaguanina

77

Page 78: Biochimie

Bazele Bazele pirimidinice pirimidinice

N

N

N

N

O

NH2

H

N

NO

O

H

H

N

NO

O

CH3H

H

bazăpirimidinică

citozina uracilul timina

N

N

O

O

H

H

N

N

OH

HO

lactam lactimă

78

Page 79: Biochimie

BBazeaze rare sau minorerare sau minore

N

N

N

N

NH

H

CH3

N

N

NH2

CH3

H

O

N

N

N

N

O

H

HN

H

H C3

N

N

NH2

CH2

H

O

OH

N6 –metiladenina 5 – metilcitozina

N3 – metilguanina 5 – hidroximetilcitozina

PentozePentoze

OH

OHH

OH

H

OH

C

H

H2HOO

H

OHHH

OH

C

H

H

H2HO

D – riboza 2 – dezoxi – D – riboza

79

Page 80: Biochimie

NucleozideNucleozide

N

N

N

N

N H 2

H O 2HO

HH

O H

C

H

H

H

N

N

N

N

N H 2

H O 2HO

HH

O H

C

H

O H

H

2’ – dezoxiadenozina adenozina

StructuraStructura unuiunui nucleotidnucleotid

N

N

N

N

NH2

2HO

HH

O H

C

H

H

H

OP

O H

O

O

PO

O

OH

P

O H

O

HO

A M P

A DP

A T P

80

Page 81: Biochimie

NucleotideNucleotide

2HOHH

OH

C

H

H

H

OP

OH

O

HO baza azotatã

2HOHH

OH

C

H

OH

H

OP

OH

O

HO baza azotatã

dezoxiribonucleotid

ribonucleotid

Funcţiile nucleozidtrifosfaţilor

ATP este un transportor de grupări fosfat şi pirofosfat în câteva recţii enzimatice implicate în transferal energiei chimice. ADP – ul rezultat prin defosforilarea ATP –ului este refosforilat la ATP în procesul respiraţiei.

Sistemul ATP – ADP este sistemul principal pentru transferul grupărilor fosfat în celulă, dar şi ceilalţi nucleozidtrifosfaţi, şi anume: GTP, UTP şi CTP au rolul de a canaliza energia chimică pe anumite biosinteze specifice.

A doua funcţie majoră a NTP şi NDP este cea de transportori de energie, energie pe care o înmagazinează sub formă de legături macroergice. NTP şi d – NTP sunt precursori bogaţi în energie în procesul de biosinteză enzimatică a ADN şi ARN. În acest proces NTP şi d- NTP îşi pierd grupările pirofosfat terminale, transformându –se în resturi de nucleozid monofosfaţi, care sunt elemente constitutive ale acizilor nucleici.

O altă funcţie majoră a NTP şi NDP este cea de transportori energizanţi de tip coenzimă ai anumitor elemente constitutive. De exemplu: UDP este un transportor pentru glucide în procesul de biosinteză a polizaharidelor.

81

Page 82: Biochimie

Nucleotide Nucleotide foartefoarte importanteimportante au un au un rolrol cheiecheie îînn acacţţiuneaiunea biochimicăbiochimică a a

unorunor hormonihormoni

N

N

N

N

N H 2

OC

H

H H

O HO

H

H 2O

PO

O H O H

O P

O H 2 OC

H

H H

O HO

H

N

N

N

N

O H

H 2 N

AMPc GMP c

ADNADN

OC

HH H

O

HH

H 2b a z ã a z o t a t ã5 '

3 'P O HO

OC H 2

OH

HH

H

b a z ã a z o t a t ã

O

P OH OO

5 '

3 '

82

Page 83: Biochimie

ARNARN

OC

HH H

O

HO H

H 2b a z ã a z o t a t ã5 '

3 'P O HO

OC H 2

OH

HH

O H

b a z ã a z o t a t ã

O

P OH OO

5 '

3 '

Acizii ribonucleici

Cele 3 tipuri majore de acizi ribonucleici din celule sunt: ARNm, ARNr şi ARNt. Toate cele 3 tipuri de ARN sunt lanţuri monocatenare poliribonucleotidice, dar se

deosebesc între ele prin domenii caracteristice de mase moleculare şi de coeficienţi de sedimentare.

Fiecare dintre cele 3 tipuri majore de ARN există în forme moleculare multiple. ARNr există în cel puţin 3 forme majore, ARNt există în 60 de forme, iar ARNm există în sute şi poate mii de forme distincte.

Majoritatea celulelor conţin de 2- 8 ori mai mult ARN decât ADN. ARNm

ARNm conţine doar cele 4 baze majore. El se sintetizează în nucleu în procesul de transcripţie, prin care secvenţa bazelor

dintr-un lanţ de ADN cromozomial este copiată enzimatic în lanţul de ARNm. O anumită cantitate de ARNm se sintetizează şi în mitocondrii. Secvenţa bazelor din lanţul de ARNm este complementară celei din lanţul de ADN ce se transcrie.

După transcripţie, ARNm trece în citoplasmă şi apoi la ribozomi, unde serveşte ca matriţă pentru ordonarea secvenţială a aminoacizilor în procesul de biosinteză a proteinelor.

ARN –ul mitocondrial reprezintă doar o mică parte din ARN –ul total din celulă, dar el se află în foarte multe forme distincte, care se deosebesc prin masa moleculară şi secvenţa bazelor azotate. Fiecare din miile de proteine diferite sintetizate în celula este codificată de către un ARNm.

83

Page 84: Biochimie

ARNm din celulele eucariote se caracterizează prin prezenţa la capătul 3’ terminal a unei secvenţe lungi de cca 200 de radicali adenilici, care pare să aibă un rol în prelucrarea sau transportul ARNm de la nucleu la ribozomi.

ARNt

ARNt sunt molecule relativ mici, care funcţionează ca transportori specifici ai câte unei molecule de aminoacizi în procesul de biosinteză a proteinelor pe ribozomi.

Ei au o masă moleculară de 23000 – 28000 şi un coeficient de sedimentare de 4S. Ei conţin 75 – 90 de nucleotide.

Fiecare dintre cei 20 de aminoacizi din proteine are cel puţin un ARNt coerspunzător, iar unii au chiar mai mulţi ARNt.

De exemplu: în celulele de Escherichia coli există 5 ARNt diferţi pentru transferul leucinei.

In celulele eucariote unui anumit aminoacid îi corespund ARNt mitocondriali diferiţi de ARNt citoplasmatici.

Moleculele de ARNt prezintă câteva trăsături comune. Toate tipurile de ARNt au la un capăt al lanţului polinucleotidic un acid guanilic terminal, iar la celălalt capăt secvenţa terminală citidil – citidil – adenil (CCA). Gruparea 5’ –hidroxil a acidului adenilic terminal este legată de gruparea 3’ –hidroxil a acidului citidilic precedent print-o punte fosfodiesterică. Gruaprea hidroxil liberă din acidul adenilic terminal este acilată enzimatic cu α-aminoacidul specific, formând aminoacil –ARNt. Acest aminoacid este transferat enzimatic la capătul lanţului polipeptidic în curs de formare pe suprafaţa ribozomilor, în procesul de biosinteză proteică.

ARNr

ARNr reprezintă 65% din masa ribozomilor. El se poate obţine din ribozomii de E.coli ca molecule lineare, monocatenare, prezente în 3 forme caracteristice, cu coeficienţii de sedimentare de 23S, 16S şi respectiv 5S. Aceste 3 forme se deosebesc prin secvenţa şi raportul bazelor.

În celulele eucariote, care au ribozomi mai mari decât celulele procariote, există 4 tipuri de ARNr: 5S, 7S, 18S şi 28S.

Deşi ARNr reprezintă o mare parte din ARN celular total, funcţia lui în ribozomi nu este încă, bine elucidată.

Complexe supramoleculare acizi nucleici – proteine

Unii acizi nucleici se află în celule asociaţi necovalent cu proteine specifice, formând complexe supramoleculare. Dintre aceste sisteme acid nucleic – proteine, cu structuri şi funcţii biologice foarte complexe; ribozomii şi virusurile sunt cele mai cunoscute. Cele mai complexe sisteme acid nucleic – proteină sunt probabil cromozomii din celulele eucariote.

84

Page 85: Biochimie

Ribozomii sunt particule ribonucleoproteice care se găsesc în toate tipurile de celule. Ei sunt esenţiali în biosinteza proteinelor.

Virusurile sunt structuri subcelulare la limită între lumea biotică şi abiotică. Virusurile au capacitatea de a se antagoniza atunci când intră într-o celulă gazdă specifică.

Implicaţiile terapeutice ale nucleotidice

Unele nucleotide naturale, precum şi derivaţii lor obţinuţi prin sinteză pot fi utilizate în terapie, fiind utilizate în: chimioterapia bolii maligne, tratamentul hiperuricemiei şi gutei, în afecţiuni virale, în hipertiroidism sau ca agenţi imunosupresori, hipogliceminaţi, antifungici şi antiparazitari.

Mecanismul lor de acţiune este variat: înhibă enzimele implicate în biosinteza acizilor nucleici, blocând procesul înhibă enzimele care catalizează conversia xantinei în acid uric.

Metabolismul nucleotidelor

Nucleotidele ocupă un loc central în procesele biochimice, deoarece ele sunt: precursori în biosinteza acizilor nucleici principalele rezervoare de legături macroergice componenţi ai mai multor coenzime efectori allosterici.

ARN din diferite celule şi clase este continuu hidrolizat la nucleotide şi resintetizat după necesităţi în toate celulele.

Procesul este mai rapid în acele celule sau organe în care eliminarea de secreţii bogate în proteine sau restructurarea diferitelor căi metabolice necesită o biosinteză proteică activă: glandele digestive exocrine şi ficat.

Unele tipuri de celule au o viaţă relativ scurtă (celulele epidermei, mucoasei intestinale, celulele sanguine), în cazul lor fiind supus unui proces asemănător şi ADN, evident la nivelul întregului organism.

Transformările metabolice ale nucleotidelor libere formează o schemă unitară în care biosinteza este corelată cu biodegradarea la diferite nivele prin circuite de recuperare.

1. Nucleotidele sunt constant degradate până la nucleozide şi apoi la bazele azotate corespunzătoare şi ribozo-1-fosfat sau dezoxiribozo-5-fosfat.

2.Nucleozidele, bazele azotate şi ribozofosfatul pot fi reutilizate în căi de recuperare pentru resinteză de nucleotide.

3.O parte din bazele purinice sunt catabolizate până la acid uric care se elimină, iar cele pirimidinice până la intermediari metabolici din alte căi.

4.Ribozofosfatul poate fi utilizat în calea pentozofosfatului.

85

Page 86: Biochimie

5.Nucleotidele pot fi sintetizate de novo pornind de la intermediari simpli anumiţi aminoacizi (glicocol, acid aspartic, glutamina), dioxid de carbon şi grupări C1 activate (legate de acizi tetrahidrofolici).

6.Reutilizarea bazelor şi biosinteza lor de novo sunt controlate prin disponibilitatea formei activate a ribozo-5-fosfatului cum ar fi 5-ribozo-α -D-ribozil pirofosfat (PRPP); enzima care-l formează PRPP-sintetaza (sau ATP fosforil transferaza) este activată de fosfatul anorganic şi înhibată allosteric de nucleotide, asigurând concentraţia lor constantă.

Hidroliza acizilor nucleici

Lanţurile lungi a acizilor nucleici sunt hidrolizate de către nucleaze în fragmente scurte.

Ele sunt, în general, de două tipuri:

I. Exonucleazele care desfac succesiv nucleotidele de la una din capete, fiind 5’ sau 3’specifice şi necesită un anumit mod de terminare (cu sau fără fosfat) a capătului atacant.II.Endonucleazele care desfac legăturile situate în interiorul lanţului formând astfel lanţuri oligonucleotidice.

Sunt cunoscute numeroase enzime de acest tip cu localizări şi roluri diferite.

Acţiunea lor poate specifică pentru un anumit de acid nucleic (ADN sau ARN) sau nespecifică hidrolizându-le pe amândouă.

Specificitatea poate privi şi alte aspecte cum ar fi existenţa ADN ca moleculă dublu sau monolanţ, mai ales pentru unele exonucleaze, recunoaşterea unui anumit nucleotid dintre cele două sunt unite prin legătura atacată (unele endonucleaze) sau a unei secvenţe întregi de nucleotide din vecinătate (enzime de restricţie).

Nucleazele intervin în digestia acizilor nucleici din alimente sau în prelucrarea şi distrugerea acizilor nucleici endogeni (cu numeroase aspecte).

Digestia acizilor nucleici are loc în duoden.

Sub acţiunea endonucleazelor pancreatice (ribonucleaza şi dezoxiribonucleaza) se eliberează oligonucleotide din care diesterazele intestinului subţire eliberează 5’ şi 3’ nucleotide.

86

Page 87: Biochimie

ribonucleazadezoxiribonucleaza

fosfodiesteraze

nucleotidazafosfomonoesteraze

nucleozidfosforilaze

Calea pentozofosfatului

R5_P(dR5_P )

R1_P(dR1_P )

P

Baze pirimidiniceBaze purinice

Nucleozide

P

H2O5'_Nucleotide

H2O

Oligonucleotide + Nucleotide

H2O

Lanturi polinucleotidice

Catabolismul general al nucleotidelor la baze purinice şi pirimidinice

Nucleotidele sunt hidrolizate specific de către 5’-nucleotidază şi fosfat. Există o mare varietate de asemenea enzime, unele secretate de mucoasa

intestinală cu rol în digestie, altele în general răspâdite în organism cu localizare pe membrana periplasmatică, în lizozomi, microzomi sau citoplasmă, care intervin în metabolismul nucleotidelor endogene.

Membrana periplasmatică este impermeabilă pentru nucleotide dar permite pătrunderea nucleozidelor.

Ecto-5’-nucleotidaza fixată pe faţa externă a plasmei dă posibilitatea utilzării nucleotidelor, extracelulare (mai ales a AMP) hidrolizându-le vectorial la nucleozide (adenozină).

În hematii există o 5’-nucleotidază specifică pentru nucleotidele pirimidinice. Cea mai mare parte din adenozin-5’- monofosfat este catabolizat printr-o

dezaminare la inozin-5’ - monofosfat. Adenilat deaminaza are mai multe izoenzime, una din ele fiind abundentă în

muşchi. Aşa cum se va vedea IMP(inozinmonofosfat) este primul nucleotid purinic

format prin sinteza de novo şi prezintă un punct de încrucişare între căile catabolice şi cele anabolice.

87

Page 88: Biochimie

Adenozina care rezultă din restul AMP-ului este, la rândul ei, dezaminată de către adenozin deaminază la inozină.

O mare parte de adenozină provine în urma hidrolizei S-adenozilhomocisteinei (SAH), formată din S-adenozilmetionină în urma procesului de metilare.

Un caz particular îl prezintă celulele musculare ale miocardului. Ele sunt lipsite de adenilatdeaminază iar AMP produs, în urma contracţiei, este

fie hidrolizat la adenozină, care se eliberează în sânge, fie refosforilat până la ATP.

Ajungând până la arterele coronare, adenozina cauzează vasodilataţia şi consecutiv creşterea debitului circulator.

Deoarece producerea adenozinei creşte proprţional cu hipoxia, efectul ei primeşte semnificaţia unei autoreglări a fluxului sanguin în funcţie de necesităţile miocardului.

Desfacerea nucleozidelor poate decurge pe două tipuri de acţiuni enzimatice şi anume hidrolitică şi fosforolitică.

Nucleotidazele, într-o reacţie ireversibilă, hidrolizează nuclozidele la baze purinice şi pirimidinice şi riboză (sau dezoxiriboză).

nucleozidaza+ Riboza(dezoxiriboza)

pirimidinica

purinicaBazaH2ONucleozida +

Astfel de enzime sunt răspândite în diferite ţesuturi fără a se cunoaşte numărul şi specificitatea lor exactă.

Nucleozifosforilazele scindează cu ajutorul fosfatului anorganic şi eliberează din nucleozide bazele azotate şi ribozo-1-fosfat (sau dezoxiribozo-1-fosfat).

Există nucleozid fosforilaze specifice pentru purine şi pentru pirimidine. Purinucleozid fosforilazele nu pot folosi ca substrat adenozina. Din acest motiv este necesar ca AMP şi adenozina să fie în prealabil dezaminate. Acţiunea acestor fosforilaze este reversibilă, ele putând servi şi în biosinteză, deşi

sensul fiziologic este catabolic.p u r in _ p ir im id inn u c leo zif o s f o r ilaza

+ R 1_ P (d R 1_ P )p ir im id in ic a

p u r in ic ab azaN u c leo zid a + f o s f at

În digestie se absorb nucleozide, catabolizate în interiorul celulelor intestinale ca produşi finali.

Din acest motiv majoritatea bazelor azotate din nucleotidele alimentare nu pot fi utilizate de către organismul uman.

Catabolismul bazelor purinice

Din catabolismul nucleotidelor purinice rezultă două baze azotate principale: hipoxantina (din inozină) şi guanina (din guanizină).

Ele sunt oxidate mai departe până la acid uric, produs final de catabolism la om, primate, păsări şi unele reptile.

Guanina este dezaminată, în prealabil, până la xantină de către o xantioxidază sau o xantindehidrogenază.

88

Page 89: Biochimie

În mod normal, în celule, se formează foarte puţină adenină liberă, provenind din fosforilarea 5’-metioninadenozinei.

Adenina nu poate fi catabolizată direct organismul uman fiind lipsit de adenindeaminază, prezentă doar la bacterii şi nevertebrate, care s-o transforme în hipoxantină.

Cea mai mare parte din adenină este utilizată în căile de recuperare. În cazul unor deficite enzimatice ereditare sau în aportul alimentar crescut,

excesul de adenină este oxidat de către xantinoxidază la 8-hidroxixantină şi apoi la 2,8-dihidroxiadenină, substanţă puţin solubilă, care formează calculi renali.

N

N N

N

OH

O

OH

H2N

OH

H2CO3PO-2H2O P

H2C

OH

H2N

O

OH

N

N N

N

OH

HO

fosfomonoesteraza

P R_1_P

purin_nucleozidfosforilaza

H2N

N

N N

N

OH

H H

N

N N

N

O

H2N

HHN

N N

N

O

HOH

guanizin_5'_fosfat guanizina

guanina

xantina

guanaza

N

N N

N

OH

O

OHOH

H2CO3PO-2H2O P

H2C

OH

O

OH

N

N N

N

OH

HO

fosfomonoesteraza

P R_1_P

purin_nucleozidfosforilaza

N

N N

N

OH

H H

N

N N

N

O

H

inozin_5'_fosfat inozina

hipoxantina

H2O + O2 H2O2

NAD+

xantina

HO H

N

N N

N

O

HNADH + H+

89

Page 90: Biochimie

În organismul uman xantinoxidaza se găseşte mai ales în mucoasa intestinală şi în ficat, restul organelor prezentând doar urme de activitate.

În consecinţă purinele din alimente formează direct acid uric, iar sursa majoră de acid uric endogen este ficatul.

O parte din acidul uric este excretat în intestin prin bilă. În general acidul uric din organismul uman (în jur de 1,2g) provine din trei surse principale:

1.din nucleotidele alimentare 2.catabolismul purinelor endogene 3.transformarea directă a IMP sintetizat de novo

Concentraţia normală de acid uric în ser este ceva mai mare la bărbaţi (6,9-7,5mg/dl) decât la femei (5,7-6,6 mg/dl).

Hiperurinemii apar în guta primară şi secundară, hipouricemii în deficienţele de xantinoxidază ereditară sau în cadrul unei insuficienţe hepatice.

Eliminarea urinară este între 400 şi 800 mg/24 ore variind şi în funcţie de alimentaţie.

Rinichiul uman elimină acidul uric într-un proces destul de complicat. La nivelul glomerulilor este filtrat, apoi reabsorbit în tubii contorţi distali. O serie de medicamente interferează cu aceste procese renale.

H N

N N

N

O

HOH

xant ina

HO H

N

N N

N

O

OH

HH2O + O 2 H2O 2

N A D + N A D H + H+ac id ur ic

În afara semnificaţiei sale de produs final al catabolismului purinic, acidul uric serveşte pentru eliberarea amoniacului la păsări şi unele reptile, fiind puţin solubile acestea se elimină sub formă de pastă economisindu-se apă.

Astfel de animale se numesc uricotelice şi nu posedă enzimele necesare formării de uree.

Mamiferele, cu excepţia primatelor, descompun în continuare acidul uric în prezenţă de uricază la alantoină pe care o elimină prin urină.

La alte specii degradarea merge mai departe prin acţiunea alantoinazei la acid alantoic, sau continuă datorită alantoicazei până la uree şi acid glioxilic.

Deci, flora intestinală descompune ureea cu ureează la dioxid de carbon şi amoniac, la unele nevertebrate.

90

Page 91: Biochimie

acid ur ic

HHN

N N

N

O

O

HOH

O 2 C O 2

H2O H2O 2

H2N

N

N H

N

O

O

HH

O

ur icaza

alantoinaH2O

alantoinaza

O

H HN

N H2

NO

H2N C O O H

H2O

alantoicazaH2N

N H2O

N H2

OH2N

+ +

C O O H

C HO

ureea

acid glioxilic

ureaza

2 (C O 2 + 2N H3)

acid alantoic

La om se elimină prin urină în mod normal şi cantităţi mici de hipoxantină, xantină şi adenină.

Bazele purinice minore, de exemplu, 7-metilguanina, nu pot fi catabolizate şi se elimină ca atare.

Nucleotide

Riboză-5-fosfat Riboză-5-fosfat Riboză-5-fosfat Riboză-5-fosfat

OH 2 OH 2 OH 2

nucleotidză nucleotidază nucleotidază

1P 1P

OH 2 (ADA) 4NH PNP

AMP dezaminază

OH 2

OH 2

1P

1P

nucleotidază

AMP

adenozină Adenosin - dezaminază inozină

IMP

hipoxantine

Xantin - oxidază xantine

XMP

xantozină

Acid uric

GMP

guanozină

guanină

Purin-nucleotid fosforilază (PNP)

cfdfdsffsd

()

OHO 22

1P

1p

Riboză – 1 - fosfat

1P

Riboză – 1 - fosfat Riboză – 1 - fosfat

1p

Xantin - oxidază

Guanin - dezaminază

NH 4 OH 2

OH 2

22HO

OHO 22

22HO

91

Page 92: Biochimie

Biosinteza de novo a nucleotidelor purinice

Nucleotidele purinice pot fi sintetizate în citoplasmă printr-o succesiune de 10 reacţii enzimatice, heterociclul bazei fiind construit direct din ribozo-5-fosfat.

Primul compus purinic format este un nucleotid, acidul inozinic (IMP), nu o purină liberă.

1. Prima etapă este catalizată de o aminotransferază care trece gruparea aminică a glutaminei pe PRPP (fosforibozopirofosfat) pentru a forma fosforibozil amina. Enzima are proprietăţi allosterice şi este etapa principală de reglare a biosintezei de novo.

O O P O

OH

P OH

OO

OH OH

H2CP

OH

O

HO

OHaminotransferaza

Gln + H2O Glu + PP

HO P

OH

O

H2C

OHOH

O NH2

2. În a doua etapă prin hidroliza ATP se asigură energia necesară condensării glicocolului cu fosforibozilamina pentru a da fosforibozil-glicinamida, sub acţiunea unei sintetaze.

Reacţia este reversibilă dar produsul reacţiei este îndepărtat în mod continuu deplasând echilibrul.

O NH2

OH OH

H2CP

OH

O

HO

+ HOOC CH2 NH2

sintetaza

ATP ADP + P

Mg+2

HO P

OH

O

H2C

OHOH

O NH

OC

CH2 NH2

3.De pe N5, N10 –metenil-tetrahidrofolat, o transferază, trece, folosind o moleculă de apă, o grupă formil pe atomul de azot provenit din glicocol.

În acest fel se completează atomii din ciclul pentatomic al purinei.

OC

CH2 NH2

O NH

OH OH

H2CP

OH

O

HO transferaza

THFN5N10_metilenTHF

HO P

OH

O

H2C

OHOH

O NH

OC

CH2 NH

CH O

92

Page 93: Biochimie

4.Fosforibozil - N – formilglicina din etapa precedentă se transformă prin acţiunea unei sintetaze care schimbă CO a amidei cu NH provenit de la glutamină.

Reacţia necesită hidroliza ATP. Produsul format este fosforibozil-N-formil glicinamidină.

OC

CH2 NH

CH O

O NH

OH OH

H2CP

OH

O

HOGln Glu

M g+2

A T P A DPH2O P

HO P

OH

O

H2C

OHOH

O NH

C

CH2 NH

CH OHN

5.Utilizând energia liberă eliberată prin hidroliza unui rest fosfat din ATP, o altă sintetază închide ciclul de cinci atomi şi formează 5’-fosforibozil-5-aminoimidazol.

Grupa =NH adăugată, în reacţia anterioară, apare acum ca un substituient amino al ciclului.

HO P

O H

O

H2C

O HO H

O N H

C

C H2 N H

C H OHN

A T P

M g+2O

O H O H

H2CP

O H

O

HO

A D P +P

N

C

C N H

C H

H

H2N

6.În etapa următoare se adaugă un grup carboxil din dioxid de carbon. Carboxilaza este enzima care formează, astfel, 5’-fosforibozil-5-aminoimidazol-4-

carboxilat nu are ca grupare prostetică biotina şi diferă ca mecanism de alte enzime care adaugă grupări carboxil.

H2N

H

C

C NH

C H

NHO P

O H

O

H2C

O HO H

O O

O H O H

H2CP

O H

O

HO N

C

C NH

C HH2Ncarboxilaza

C O 2

HO O C

7.O sintetază condensează acidul aspartic cu produsul anterior de reacţie consumând o legătură macroergică din ATP.

Condensarea are loc între grupa amino a acidului aspartic şi carboxilul imidazolului.

Intermediarul 5-fosforibozil-4-(N-succincarboxamid)-5-aminoimidazol, care rezultă, serveşte pentru introducerea atomului N1 din inelul purinic.

93

Page 94: Biochimie

CO

O

OH OH

H2CP

OH

O

HO N

C

C NH

CHH2N

sintetazaM n+2

A DP + PA T P

HOOC CH2 CH COOH

NH2

+

HOOC

H2N C

C NH

CH

NHO P

OH

O

H2C

OHOH

O

NH

CH

HOOC CH2 COOH

8. Produsul reacţiei anterioare este scindat de către o liază la 5 –fosforibozil-4-carboxamid-aminoimidazol şi acid fumaric. Reacţiile 7 şi 8 se aseamănă sintezei argininei din citrulină din ciclul ureogenetic

HOOC CH2 COOH

HN

CH

CO

O

OH OH

H2CP

OH

O

HO N

C

C NH

CHH2N

acid fumaric

adenilatsuccinat liazaH2N C

C NH

CH

NHO P

OH

O

H2C

OHOH

O

COH2N

9.În etapa următoare este transferată o grupă formil de pe N10 formil tetrahidrofolat ducând la 5-fosforibozil-4-carboxamid-5-formamidoimidazol, care conţine toţi atomii ciclului purinic.

C OH2N

O

OH OH

H2CP

OH

O

HO N

C

C NH

C HH2N

formiltransferaza

T HFN10 _formilT HF C

C NH

C H

NH2C

OHOH

O

C OH2N

OP

HNOHC

10. În fine, în ultima etapă prin eliminare de apă de către ciclohidrolază se închide şi inelul de şase atomi ducând la apariţia primului nucleotid purinic, acidul inozinic (IMP).

C

C N H

C H

NH2C

O HO H

O

C OH2N

OP

HNO HC

c ic lo h id r o laza

_ C O 2

P OO

N

NN

N

O H

O H O H

H2C

94

Page 95: Biochimie

Se poate observa că pentru sinteza IMP se consumă şase legături macroergice, considerând şi formarea PRPP.

Aspecte de patologie din metabolismul nucleotidelor

Guta este una din cele mai răspândite boli de metabolism cu o frecvenţă de 0,3% din populaţia Europei.

Sub acestă denumire sunt incluse un grup heterogen de boli caracterizate toate prin hiperuricemie, care duce la depunerea uratului de sodiu în sinoviala articulaţiilor, atacuri acute de artrite, formarea de depozite masive de urat şi apariţia urolitiazei.

Hiperuricemia poate apărea din numeroase cauze, unele determinate genetic, altele dobândite.

Nu orice uricemie duce la apriţia gutei. În unele cazuri aceasta poate persista toată viaţa fără a provoca modificări patologice.

Guta poate să fie primară, ca boală ereditară de metabolism în sine, sau secundară dezvoltându-se ca o consecinţă a altor boli ereditare sau dobândite.

Guta secundară poate să apară în deficienţă de glucozo-6-fosfatază sau în deficienţa totală a hipoxantin-guanin fosforibozil transferazei, precum şi în boli de distrugeri celulare masive: anemii hemolitice, leucemii, policitemii, etc.

Tratamentul cu medicamente citotoxice în neoplazii poate declanşa apariţia secundară a gutei, ceea ce impune asocierea acestora cu inhibitori ai xantinoxidazei.

O altă posibilitate a gutei secundare este în urma unei afecţiuni renale cu scăderea capacităţii de excreţie.

În majoritatea cazurilor de gută primară se cunoaşte defectul enzimatic cauzal, putându-se evidenţia doar diferite situaţii generale.

Astfel poate să fie vorba de: 1. o hiperproducţie endogenă crescută a acidului uric 2. o scădere a eliminării renale 3. o scădere a proteinei serice de vehiculare: α1 - α2 –globulina de legare

a uratului. Xantinuria ereditară este o boală relativ blîndă, adesea asimptomatică ce se

datorează deficitului de xantinoxidază. Bolnavii pot prezenta hiperuricemie şi hiperuricozurie cu eliminări renale de

xantină şi hipoxantină. Xantina fiind mai puţin solubilă decât acidul uric poate forma calculi renali.

95