Proiect Masini Electrice II-firu

23
Proiect Masini Electrice II

Transcript of Proiect Masini Electrice II-firu

Page 1: Proiect Masini Electrice II-firu

Proiect Masini Electrice II

Autor:FIRU GEORGIANA-COSMINA An III ET grupa 2/1

Page 2: Proiect Masini Electrice II-firu

Coordonator: TUTELEA LUCIAN

I. Cuprins:Tema de proiectare............................................................pag.3

Memoriu de proiectare......................................................pag.4 Fisierul cu rezultate din MATLAB....................................pag.5

Caracteristici de functionare..............................................pag.10

Desene de tole....................................................................pag.13

Desen de gabarit.................................................................pag.15

Calculul de incalzire...........................................................pag.16

Bibliografie.........................................................................pag.19

2

Page 3: Proiect Masini Electrice II-firu

II. Tema de proiectare

Sa se proiecteze un motor asincron trifazat cu rotor in colivie in scurtcircuit , in constructie cu talpa care sa aiba urmatoarele caracteristici:

- puterea nominala : PN = 22 [kW] ;

- turatia sincrona : n1 = 750 [rpm] ;

- tensiunea nominala : UN = 400 [V] ;

- frecventa nominala : fN = 50 [Hz] ;

- randament nominal : ηN = 91,5 [%];

- factorul de putere : cosφN = 0,77 ;

- curentul de pornire raportat :

- cuplul de pornire raportat :

- cuplul maxim raportat :

- conexiune stea ;

- clasa de izolatie F dar cresterea temperaturii va fi corespunzatoare clasei B;

3

Page 4: Proiect Masini Electrice II-firu

III. Memoriu de prezentare

In urma proiectarii au rezultat urmatoarele caracteristici tehnice:

- randament nominal : ηN = 90,9 [%] (mai slab cu 0,6 %)

- factorul de putere : cosφN = 0,808 (mai bun cu 4,9 % ) ;

- cuplul nominal : MN= 280,11 [Nm];

- curentul nominal : IN=43,20 [A] ;

- curentul de pornire : IP=247,8 [A] ;

- cuplul de pornire : MP=435,25 [Nm] ;

- curentul de pornire raportat : ;

- cuplul de pornire raportat : ;

- cuplul maxim raportat : ;

- dimensiune de gabarit = 315 [mm];

4

Page 5: Proiect Masini Electrice II-firu

IV.Fisierul cu rezultate din MATLABParameters of Electrical machine This is a results file generated by e7_or.m using save_par.m Generated at: 02-Jun-2006 21:35:53

Rated parameters

Pn=22.000000; kW rated Power nb=750.000000; rpm rated synchronous (base) speed Vn=400.000000; V rated line Voltage m=3.000000; Phase number conex='y'; Stator windings connectionspoles=8.000000; numbers of poles rpos='i'; rotor position: i -inner rotor, o - outer rotorrwkind='s'; kind of rotor windings: s - shortcircuit cagedesignAs='m'; Design as: m-motor, g-generatorVfn=230.940108; VIn=43.200599; A Rated Current fn=50.000000; Hz Rated frequency Torq=280.112700; Nm Rated Torque Mmax=789.641768; Nm Peak Torque nn=721.157946; rpm Rated speed nslip=0.038456; Rated slip kslip=0.274625; critical slip rJ=2.466702; kg*m^2 Inertial moment of rotor Tmn=0.665003; s Mechanical time constant (rated tork) Tmk=0.245345; s Mechanical time constant (peak torq) P1n=24.199653; kW Rated Electric power etan=0.909104; Rated efficiency cosphin=0.808535 Rated power factor etamax=0.929118; Maximum of efficiency cosphimax=0.805632 Maximum of power factor lcpertau=1.500000; length per pole tau (for start design)sDeltaT=100.000000; C Temperature rise in stator windingrDeltaT=140.000000; C Temperature rise in rotor windingBoltHoles =1.000000; Factor to allow for bolt holes in stator coreFW = 110.000000; W Friction and windage loss at full load speed

Stator windings N1=72; Turns per stator phaseParallelPaths=1;layers=2;sSlotsPerPolPerPhase=3; Stator Slots Per Pole Per PhasesStep=0.888889; Stator coil step sb_c=3.148532; Turns per coils in stator windings from calculussb=3.000000; Chose turns per coils in stator windings as integer number CpS=6.000000; Conductors per slot in stator fws=0.997463; Distribution factor for stator windingfchs=0.999988; Shorting factor fw=0.945214; Stator windings factor sOverhangLength=286.808755; mm, Stator over hang lengthMLC=537.808755; mm, Length of the mean conductorsdelcc=0.741395; mm, diameter of elementary conductor from calculatinselc=29; Stator elementary conductor on coilsdelc=0.750000; mm, it is standard diameter around sdelcc

5

Page 6: Proiect Masini Electrice II-firu

sdelc_ins=0.832000; mm, diameter of insulated elementary conductorsacu=12.811808; area of stator equivalent conductorsacu_ins=15.766472; area of insulated stator equivalent conductorsWireBareD =4.038874; equivalent diameter of stator wiresWireCovD =4.480457; equivalent diameter of insulated stator wire

Rotor windings rWireBareD=1.321964e+001; mm Diameter of rotor barerEndRingCSA =314.133514; mm^2 End of ring arearhRing =24.000000; mm radial ring height fwr =0.956000; Winding factor for squirrel-cage motor

Stator main dimensions sDo=548.000000; mm, Stator ODsDi=406.000000; mm, Stator bore diameter sSlots=72.000000; No. of stator slots BoltHoles=1.000000; There are not exactly bolt holeslc=251.000000; mm, Core length lcEff=233.430000; mm, Effective iron length tauPole=159.435827; mm, pole pitch C0=63.326569; kVAs/m^3 Machines constant, used for design startlgMin=0.617707; mm minimum length of air-gap from calculuslg=0.250000; mm, air-gap length

Stator slots - Primary dimensions sMs=2.600000; mm, Mouth of stator slot sh4=0.800000; mm, height of slot mouthsW3=7.487256; mm, width of top slotssh3=1.012184; mmsW2=7.487256; mmsh2=0.000000; mmsW1=9.545313; bottom slots width mmsh1=23.536453; mm sR1=4.772656; mm, radius of bottom of stator slotsht=23.568624; mm, distance from bottom circle center to air gapshOA=30.121293; mm, over all slot height sAlpha=22.500000; degrees sSlotAlpha=0.087266; rad, angle between two stator slotstauSslot=17.715092; mm, stator slot pitch at boresSlotArea=245.881586; mm^2 sSlotWindingArea=236.267934; mm^2, Slot area need for windings

Stator slot insulation slotInsulThick=0.150000; mm, Thickness of slot insulationslotClosureThick=0.500000; mm, Thickness of slot closure (wedge)

Rotor main dimension rSlots=44.000000; Number of rotor slots rDi=340.000000; mm, rotor bore diameter rDo=405.500000; mm, rotor outer diameter rrJ=189.503110 mm, rotor inertial radius

Rotor slots dimensions rMs=1.200000; mmrh4=6.421595; mm, height of mouth of rotor slotrh3=0.000000; mm

6

Page 7: Proiect Masini Electrice II-firu

rh1=0.500000; mmrhOA=13.343189; mmrW1=12.843189; mmrW2=12.843189; mm Stator magnetic circuit dimensions sToothTop=10.381865; mm, width at tooth root sToothBot=10.385979; mm, width nearest air-gap sCoreDepth=40.878707; mmDx=493.495057; mm, effective diameter of magnetic length path in stator core

Rotor magnetic circuit dimensions rToothTop=16.038043; mm, width of root of rotor Tooth rToothBot=14.204040; mm, width of rotor tooth nearest air-gap Dy=365.875748; mm, effective diameter of magnetic length path in rotor corerCoreDepth=19.406811; mm

Stator weight WeightIronUsed=546.779709; kg, Weight of iron usedWeightStCoreIron=118.579645; kgWeightStTeethIron=41.003299; kgWeightStIron=159.582943; kg, Weight of stator IronWeightStCu=26.581132; kg, Copper weight WeightSt=186.164076; kg, Stator weight

Rotor weight WeightRtIron=58.832116; kg, Weight of Rotor IronWeightCage=9.856379; kg, Rotor Copper weightWeightRt=68.688495; kg, Rotor weight

WeightM=254.852570; %kg, Generator weight

Electrical parameter sR=0.148644; Ohm, Stator resistance at 120.000000 grade CrR=0.191482; Ohm, Rotor resistance at 160.000000 grade Crm=419.881119; Ohm, Equivalent iron loss resistance lh=0.084142; Hk_Carter=1.193121; Carter Factor k_sat=2.305002; Saturated Factor Js=3.517870; A/mm^2 Stator current density Jr=3.400000; A.mm^2 Rotor current density sSlotFill=0.509790; fill factor for stator

Magnetic induction Bg_max=0.486836; T air-gap magnetic induction sBTooth=0.959777; T magnetic induction in stator tooth sBCore=0.753475; T magnetic induction in stator yoke rBTooth=1.026356; T magnetic induction in rotor rBCore=1.472402; T magnetic induction in rotor yoke

Losses spcu=832.236574; W, Stator windings losses IronLoss=377.523509; W, Iron Loss IronLossCore=240.852512; W, Iron Loss IronLossTeeth=136.670997; W, Iron Loss stLoss=1209.760083; W, Stator Loss rpcu=884.123322; W, Rotor windings Loss pmec=105.769832; W, Mechanical loss

7

Page 8: Proiect Masini Electrice II-firu

Rotor mechanical stress vmax=31.847896; m/s Maximum value of periphery speed sigma_yoke=6.669477; N/mm^2 Yoke stress under itself weight sigma_max=11.512227; N/mm^2 Maximum stress in rotor yoke

Torkue and power density Tdn=1.143126; Nm/kg Rated torque per kilo Tdk=3.098426; Nm/kg Peak torque per kilo Pd=0.086324; kW/kg Power per kilo

This outputs was produced using the next data as input:

Pn=22; kW, rated Powernb=750; rpm, rated (base) spednmax=2*nb;Vn=400; V, rated line Votagem=3; Phase numberconex='y'; Stator windings conections

y for star and d for poligon conectionpoles=8; numbers of polesetaSpec=0.915; rated eficiencycosPhiSpec=0.77; rated power factorrpos='i'; rotor position: i -iner rotor, o - outer rotorrwkind='s'; kind of rotor windings: s - shortchircuitdesignAs='m'; Design as: m-motor, g-generatorlg=.25; mm length of airgap;

Stator slots - Primary dimeuwnsions

sSlotShape = ['b']; Stator slot shapesMs=2.6; Mouth of stator slot mm.sh4=0.8; Height of slot mouth mm.sAlpha=22.5; degreessh2=0; in this case as winding fills slot

Rotor slots - Primary dimensions

rSlotSkew=27; Rotor skew = 1/rSlotSkew of rotor peripheryrSlotShape= ['b']; Rotor slot shaperMs=1.2; Mouth of rotor slot mm.rh1=0.5;

Charge of materialsJs=3.6; A/mm^2 Stator current densityJr=3.4; A/mm^2 Rotor current densityJendring=2.5; A/mm^2 Current denssity in rotor end ring of rotor cageelsp=16; kA/m Specificate electric load sBToothsp=1.1; T Specificate magnetic inductin in stator ToothsBYokesp=0.8; T Specificate magnetic inductin in stator yokerBToothsp=1.6; T Specificate magnetic inductin in rotor ToothrBYokesp=1.7; T Specificate magnetic inductin in rotor yokeBagsp=0.6 ; T Specificate magnetic inductin in air gapsSlotFills=0.4; Specificate stator sllot fill

8

Page 9: Proiect Masini Electrice II-firu

Secondary data prescriptin

ParallelPaths=1;lcpertau=1.5; sSlotsPerPolPerPhase=3; Slots per pole per phaselayers=2;sStep=(m*sSlotsPerPolPerPhase-1)/(m*sSlotsPerPolPerPhase); Stator coill step sOvehang_ins=2; mm Stator overhang insulated, minimum distance between axe and overhang delcmax=.75; mm Maximum diameter for elementary conductor in statorrSlots=44;sDeltaT =100; Temperature rise in stator windingrDeltaT =140; Temperature rise in rotor windingBoltHoles = 1; Factor to allow for bolt holes in stator core

= 1 if no bolt holes

= 1.05 if bolt holes

FW = 5*Pn; W Friction and windage loss at full load

Assumed 0.5% from Pn

M0=30*FW/(pi*nb);

constant; get constant

dk66_65; get magnetc features of lamination

V. Caracteristici de functionare;

9

Page 10: Proiect Masini Electrice II-firu

10

Page 11: Proiect Masini Electrice II-firu

VI. Sectiune (detaliu crestaturi)

11

Page 12: Proiect Masini Electrice II-firu

Detaliu crestatura statorica:

12

Page 13: Proiect Masini Electrice II-firu

Detaliu cresatatura rotorica:

13

Page 14: Proiect Masini Electrice II-firu

VII. Desen de gabarit

VIII. Calcul de incalzire

14

Page 15: Proiect Masini Electrice II-firu

Partile motorului care se dezvolta caldura sunt:infasurarile pachetul de tole si lagarele.Pierderile de putere care apar in motor la functionarea acestuia in regimul nominal sunt:

- PCu1 = 243,90 ;- PFe = 55,57 ;- PAl2 = 211,67 ;- Pmec = 10,038 ;

Se calculeaza incalzirea carcasei fata de mediul ambiant:

Unde :

;

Intre suprafata exterioara a pachetului de tole statoric si suprafata interioara a carcasei se formeaza un interstitiu , prin care se transmit pierderile din pachetul de tole statoric PFe si infasurarea statorica Pcu1;

Incalzirea pachetului de tole statoric fata de carcasa este:

Unde:

15

Page 16: Proiect Masini Electrice II-firu

Incalzirea pachetului de tole statoric fata de mediul ambiant este:

Avem :

]m[320604,054115,0)0074,01,570,022(

NLc)1sw2

1sh2(NLcPS

izolatiei; a termicaliatateaconductibi - Cm

W0,1

izolatiei; grosimea]m[1025,0iar

mW75,760

320604,090,243

SP

A

:expresia are silor crestaturi suprafataprin caloric fluxului densitateaA :unde

];C[019,11,0

00025,075,760A

2

11cr'cr

oi

3i

2'cr

1cui

i

o

i

iii

Incalzirea infasurarii statorului fata de mediul ambiant:

Daca incalzirea motorului este suflata de aerul de racire(functionarea motorului cu ventilator), calculul anterior se va corecta astfel:

Deoarece suprafata S1 este suflata cu aer , in aceasta zona apare o imbunatatire a transmisiei de caldura.Viteza aerului se apreciaza la V=6-18 m/s, corespunzator turatiilor de 750-3000 rpm.Coeficientul de transmisie a caldurii pe partea suflata este:

;

Incalzirea carcasei fata de mediul ambiant devine:

16

Page 17: Proiect Masini Electrice II-firu

ceea ceconduce la modificarea incalzirii infasurarii statorice si a pachetului de tole statoric fata de mediul ambiant .

Incalzirile corespund claselor de izolatie B;

IX. Bibliografie

17

Page 18: Proiect Masini Electrice II-firu

- I. Cioc, C. Nica : „Proiectarea masinilor electrice”

- Toma Dordea : „Proiectarea masinilor electrice vol I+II” „Constructia masinilor electrice”

- I. Sora , I. Novac : „Indrumator de proiectare”

18