PROBLEME LA LIMITA PENTRU SISTEME DE ECUAT˘II DIFERENT ... · ^ n continuare) folosind diverse...

23
TEZ ˘ A DE ABILITARE PROBLEME LA LIMIT ˘ A PENTRU SISTEME DE ECUAT ¸II DIFERENT ¸ IALE, CU DIFERENT ¸E S ¸I FRACT ¸ IONARE REZUMAT Domeniul fundamental: MATEMATIC ˘ AS ¸I S ¸TIINT ¸E ALE NATURII Domeniul de abilitare: MATEMATIC ˘ A Autor: Prof.univ.dr. RODICA TUDORACHE (LUCA) Tez˘aelaborat˘ ın vederea obt ¸inerii atestatului de abilitare ˆ ın scopul conducerii lucr˘ arilor de doctorat ˆ ın domeniul MATEMATIC ˘ A. BUCURES ¸TI, 15 decembrie 2016 ACADEMIA ROMÂNĂ SCOSAAR

Transcript of PROBLEME LA LIMITA PENTRU SISTEME DE ECUAT˘II DIFERENT ... · ^ n continuare) folosind diverse...

TEZA DE ABILITARE

PROBLEME LA LIMITA PENTRU SISTEME DE ECUATII

DIFERENTIALE, CU DIFERENTE SI FRACTIONARE

REZUMAT

Domeniul fundamental: MATEMATICA SI STIINTE ALE

NATURII

Domeniul de abilitare: MATEMATICA

Autor: Prof.univ.dr. RODICA TUDORACHE (LUCA)

Teza elaborata ın vederea obtinerii atestatului de abilitare ın scopul conducerii lucrarilor de

doctorat ın domeniul MATEMATICA.

BUCURESTI, 15 decembrie 2016

ACADEMIA ROMÂNĂ SCOSAAR

Prezentarea domeniului de cercetare al autoarei

Studiul sistemelor de ecuatii cu derivate partiale cu ajutorul operatorilor monotoni si a

semigrupurilor de contractii neliniare a capatat o dezvoltare foarte mare ın ultimele decenii.

Printre primele lucrari ın acest domeniu amintim lucrarea Acad. V. Barbu [17], ın care s-a

demonstrat cu ajutorul operatorilor monotoni existenta solutiilor pentru un sistem hiperbo-

lic cu conditii la limita neliniare. Contributii ın aceeasi directie au adus prin lucrarile lor

Barbu, Benilan, Brezis, Crandall, Haraux, Morosanu, Pazy, Petrovanu, etc. (vezi de exemplu

lucrarile [16], [17], [18], [22], [26], [32], [47], [102], [167], [168], [169], [171], [172], [173], [170],

[175]).

In acelasi timp, ın ultimele decenii problemele la limita nelocale pentru ecuatii diferentiale

ordinare, ecuatii cu diferente si ecuatii diferentiale fractionare au fost dezvoltate foarte mult.

Studiul acestui tip de probleme este motivat nu numai de interesul teoretic al problemelor,

ci si de faptul ca numeroase fenomene din inginerie, fizica si stiintele vietii pot fi modelate

ın acest fel. De exemplu, problemele cu control feedback, cum ar fi starile stationare ale

unui termostat, unde regulatorul la unul dintre capete permite cresterea sau scaderea tem-

peraturii, ın functie de temperatura ınregistrata ıntr-un alt punct, pot fi interpretate ca o

ecuatie diferentiala ordinara de ordinul al doilea cu o conditie la limita cu trei puncte. Un alt

exemplu este reprezentat de vibratiile unui ”guy wire” (un cablu ıntins utilizat pentru stabil-

itatea unor structuri, ca de exemplu catargele corabiilor, stalpi de radio, turbine de vant sau

corturi) cu sectiune transversala uniforma si compus din N parti de densitati diferite, care

poate fi privita ca o problema la limita cu mai multe puncte (vezi lucrarea [174]). Studiul

problemelor la limita cu mai multe puncte pentru ecuatii diferentiale de ordinul al doilea

a fost initiat de Il’in si Moiseev (vezi [97], [98]). De atunci, astfel de probleme la limita

cu mai multe puncte (cazuri continue sau discontinue) au fost studiate (si sunt studiate si

ın continuare) folosind diverse metode, cum ar fi: teoreme de punct fix pe multimi conuri,

teoreme de continuitate de tip Leray-Schauder, alternative neliniare de tip Leray-Schauder,

teoria indexului punctului fix si teoria gradului de coincidenta.

Probleme la limita cu solutii pozitive descriu multe fenomene din stiintele aplicate cum

ar fi difuzia neliniara generata de surse neliniare, arderea gazelor, si probleme de concentratii

din chimie si biologie (vezi lucrarile [24], [28], [40], [44], [45], [108], [113]). Diverse probleme

care apar ın conductia caldurii, curgerea fluidelor subterane, ın termo-elasticitate si ın fizica

plasmei pot fi reduse la probleme diferentiale neliniare cu conditii la limita integrale (vezi

2

de exemplu lucrarile [29], [30], [102], [181]). In ultimele decenii, multi autori au studiat

probleme scalare cu conditii la limita integrale ([6], [23], [103], [106], [110], [162], [185],

[188]). Mentionam de asemenea lucrarile [33], [41], [46], [99], [100], [101], [109], [116], [183],

[187], [189], [190], unde autorii studiaza existenta solutiilor pozitive pentru cateva sisteme

de ecuatii diferentiale cu conditii la limita integrale. Conditii la limita cuplate apar ın

studiul ecuatiilor de reactie-difuzie si probleme de tip Sturm-Liouville, si au aplicatii ın

multe domenii ale stiintei si ingineriei cum ar fi conductia termica si biologie matematica

(vezi de exemplu lucrarile [10], [11], [12], [35], [36], [119], [122], [176]).

Modelarea matematica a numeroase probleme din informatica, teoria calculatoarelor,

economie, mecanica, sisteme de control, retele neuronale biologice si altele conduc la ecuatii

cu diferente neliniare (vezi lucrarile [114], [118]). In ultimele decenii, multi autori au studiat

asemenea probleme folosind diverse metode, cum ar fi teoreme de punct fix, teoria punc-

tului critic, metoda supra- si sub-solutiilor, teoria indexului punctului fix si teoria gradului

topologic.

Ecuatiile diferentiale fractionare descriu multe fenomene ın diverse domenii ale ingineriei

si ın alte domenii stiintifice cum ar fi fizica, biofizica, chimie, biologie (de exemplu fenomene

de flux sanguin), economie, teoria controlului, procesarea imaginilor si semnalelor, aero-

dinamica, vısco-elasticitate, electro-magnetism, etc. (vezi lucrarile [19], [34], [115], [178],

[180], [182]). Pentru cateva cercetari recente ın acest domeniu mentionam lucrarile [2], [4],

[5], [7], [8], [14], [15], [20], [37], [43], [107], [121], [177], [191], [192] si bibliografiile lor. De

exemplu, ın [177], autorii au dezvoltat un model pentru infectia primara cu HIV care este

un virus ce ataca celulele albe din sange limfocite CD4+T. Acest model poate fi descris

ca un sistem cu trei ecuatii fractionare de ordine diferite (α, β, γ > 0) ın variabilele T

(concentratia celulelor neinfectate CD4+T), I (celulele infectate CD4+T) si V (particulele

de virus HIV libere din sange). Ecuatiile diferentiale fractionare pot fi de asemenea privite

ca un instrument mai bun pentru descrierea proprietatilor ereditare ale diverselor materiale

si procese decat cele care corespund ecuatiilor diferentiale de ordin ıntreg. Modelele de ordin

fractionar s-au dovedit a fi mai precise si realiste decat modelele de ordin ıntreg, si cu acest

avantaj ın aplicatiile acestor modele, este important de stabilit teoretic conditiile pentru

existenta solutiilor pozitive, deoarece rezultatele teoretice pot ajuta oamenii sa ınteleaga mai

bine comportarea dinamica ın procesele practice, astfel ıncat studiul modelelor fractionare

abstracte este cu siguranta oportuna si relevanta ın zilele noastre.

Realizarile stiintifice ale autoarei

In aceasta teza de abilitare sunt prezentate rezultatele mele stiintifice, precum si planul

3

de dezvoltare profesionala. Activitatea mea de cercetare ın domeniul ecuatiilor diferentiale

a ınceput ın iunie 1990 o data cu programul de pregatire a doctoratului sub ındrumarea

prof.univ.dr. Gheorghe Morosanu de la Universitatea ”Al.I.Cuza” din Iasi. Pe data de 28

octombrie 1995 am sustinut teza de doctorat cu titlul ”Probleme la limita pentru sisteme cu

derivate partiale de tip hiperbolic si aplicatii”. In teza de doctorat am studiat cateva clase

de sisteme hiperbolice de tipul sistemului telegrafistilor, precum si o generalizare de ordin

superior, cu conditii la limita care pot contine extra-functii si conditii initiale. Am obtinut

rezultate de existenta, unicitate, proprietati de regularitate si comportarea asimptotica a

solutiilor tari si slabe, precum si existenta solutiilor periodice si aproape periodice, unde

variabila spatiala x apartine lui (0, 1), iar coeficientii sunt independenti sau dependenti de

variabila t (timp), neliniaritatile din sisteme sunt functii univoce sau multivoce, iar sursele

(functiile din conditiile la limita) sunt constante sau dependente de timp. Dupa anul 1995 am

continuat sa public rezultatele obtinute ın teza de doctorat ımpreuna cu cateva generalizari

ale acestora, folosind diverse ipoteze pentru coeficientii si neliniaritatile sistemelor.

Dintre rezultatele stiintifice obtinute ıncepand cu anul 2001, voi prezenta ın aceasta teza

de abilitare pe urmatoarele, grupate ın noua capitole.

In Capitolul 1 studiem existenta, unicitatea si proprietati de regularitate ale solutiilor

unui sistem hiperbolic neliniar cu coeficienti dependenti de timp cu conditii la limita si

conditii initiale, care are aplicatii ın electrotehnica. Capitolul 2 se ocupa cu existenta, unic-

itatea si comportarea asimptotica a solutiilor tari si slabe, precum si existenta solutiilor

periodice pentru o problema la limita neliniara pentru un sistem hiperbolic de tipul sistemu-

lui telegrafistilor pe semi-axa pozitiva a variabilei spatiale, unde conditia la limita contine o

extra-functie si un vector (vectorul surselor) constant sau dependent de t. Aceasta problema

are aplicatii ın teoria circuitelor integrate. Capitolul 3 se concentreaza pe existenta, unic-

itatea si comportarea asimptotica ale solutiilor tari si slabe, precum si existenta solutiilor

periodice pentru un sistem de ecuatii cu derivate partiale de ordinul al doilea ın raport

cu variabila spatiala pe semi-axa pozitiva a variabilei spatiale, cu o conditie la limita care

contine o extra-functie si un vector constant sau dependent de t, si cu conditii initiale. In

Capitolele 2 si 3 sunt facute de asemenea cateva observatii ın cazul ın care variabila spatiala

apartine lui R. Capitolul 4 este focalizat pe existenta, unicitatea si comportarea asimptotica

ale solutiilor pentru cateva sisteme de ecuatii diferentiale ordinare cu un numar finit sau

infinit de ecuatii, ın spatii Hilbert, cu conditii extreme si conditii initiale. Aceste probleme

sunt versiuni semi-discretizate ın raport cu variabila spatiala (sisteme cu diferente de ordinul

ıntai) ale unor probleme la limita pentru sisteme hiperbolice. Pentru demonstratiile rezul-

tatelor noastre din Capitolele 1-4, folosim cateva teoreme din teoria operatorilor monotoni si

4

a ecuatiilor neliniare de evolutie ın spatii Hilbert, iar pentru existenta solutiilor periodice ale

problemelor din Capitolele 2 si 3, aplicam o teorema de punct fix a lui Browder si Petryshyn.

Problemele din aceste prime patru capitole au fost scrise ca probleme Cauchy ın spatii de

functii convenabil alese, cu ajutorul unor operatori maximal monotoni, astfel ıncat teoria

ecuatiilor neliniare de evolutie ın spatii Hilbert a fost folosita concomitent cu exploatarea car-

acterului particular al acestor probleme. Sunt de asemenea studiate si problemele stationare

asociate acestor probleme. In Capitolul 4 prezentam si cateva generalizari ale teoremei lui

Minty pentru caracterizarea unui operator maximal monoton ın spatii Hilbert sau spatii

Banach.

Capitolul 5 este consacrat studierii existentei, multiplicitatii si non-existentei solutiilor

pozitive pentru cateva clase de sisteme de ecuatii diferentiale ordinare neliniare de ordinul

al doilea cu parametri sau fara parametri, cu conditii la limita integrale Riemann-Stieltjes,

si pentru care neliniaritatile sunt functii nesingulare sau singulare. Capitolul 6 este dedicat

existentei, multiplicitatii si non-existentei solutiilor pozitive pentru clase de sisteme de ecuatii

diferentiale neliniare de ordin superior cu parametri sau fara parametri, cu conditii la limita

cu mai multe puncte, pentru care neliniaritatile sunt functii nesingulare sau singulare. Este

de asemenea studiat un sistem de ecuatii diferentiale de ordin superior cu neliniaritati care ısi

schimba semnul si are conditii la limita integrale Riemann-Stieltjes. In Capitolul 7 studiem

existenta, multiplicitatea si non-existenta solutiilor pozitive pentru clase de sisteme de ecuatii

neliniare cu diferente de ordinul al doilea, cu parametri sau fara parametri, si cu conditii la

limita cuplate sau necuplate cu mai multe puncte.

Capitolul 8 se ocupa cu existenta, multiplicitatea si non-existenta solutiilor pozitive

pentru clase de sisteme de ecuatii diferentiale neliniare fractionare Riemann-Liouville cu

parametri sau fara parametri, cu conditii la limita integrale Riemann-Stieltjes necuplate,

pentru care neliniaritatile sunt functii nesingulare sau singulare. Este de asemenea studiat

un sistem de ecuatii fractionare cu neliniaritati care ısi schimba semnul. Capitolul 9 este ded-

icat studiului existentei, multiplicitatii si non-existentei solutiilor pozitive pentru sisteme de

ecuatii diferentiale neliniare fractionare Riemann-Liouville cu parametri sau fara parametri,

cu conditii la limita integrale Riemann-Stieltjes cuplate, si pentru care neliniaritatile sunt

functii nesingulare sau singulare. Este de asemenea studiat un sistem de ecuatii fractionare

cu neliniaritati nesingulare sau singulare care ısi schimba semnul, si cu conditii la limita in-

tegrale. In Capitolele 5-9 sunt prezentate diverse exemple care arata validitatea rezultatelor

principale.

In centrul rezultatelor fiecaruia dintre ultimele cinci capitole sunt aplicatii ale teoremei

de punct fix a lui Guo-Krasnosel’skii pentru operatori ne-expansivi si ne-contractivi ıntr-un

5

con. Ca o caracteristica unica a aplicatiilor acestei teoreme de punct fix este reprezentarea

noua a functiilor Green, care ın cele din urma ofera aproape o lista de verificare ın deter-

minarea conditiilor pentru existenta solutiilor pozitive ın raport cu neliniaritatile date. In

demonstratiile multor rezultate principale folosim de asemenea teorema de punct fix a lui

Schauder, alternativa neliniara de tip Leray-Schauder si cateva teoreme din teoria indexului

punctului fix.

Rezultatele prezentate ın aceasta teza de abilitare au fost publicate ın lucrarile: [129]

(Capitolul 1), [136] si [142] (Capitolul 2), [133], [148] si [156] (Capitolul 3), [137], [138], [139],

[140], [141], [143], [144] si [146] (Capitolul 4), [60], [71], [80], [50], [51], [58] si [85] (Capitolul

5), [53], [69], [63], [70], [48], [161] si [160] (Capitolul 6), [57], [68], [81], [54], [55], [72], [74],

[79] si [88] (Capitolul 7), [64], [82], [65], [86] si [159] (Capitolul 8), [66], [83], [84], [73], [87],

[76], [77] si [78] (Capitolul 9).

Rezultatele stiintifice prezentate ın Capitolele 2 si 4, precum si o parte din Capitolul 3

au fost raportate la granturile: CNCSIS GR 77/11.06.2008, Cod 125, Tema 40; CNCSIS GR

80/23.05.2007, Cod 125, Tema 54; CNCSIS GR 217/18.09.2006, Cod 125, Tema 9, ”Evolutii

neliniare ın spatii Banach si aplicatii”; PN-II-RU-MC-2008-2, Aprilie 2008, Cod CNCSIS

87. Rezultatele stiintifice prezentate ın Capitolele 5-9 au fost raportate la grantul PN-II-

ID-PCE-2011-3-0557 ”Probleme la limita pentru sisteme de ecuatii diferentiale neliniare cu

aplicatii ın electronica si mecanica” (2011-2016). La cele cinci granturi de mai sus am fost

directorul proiectelor.

Din anul 2001 am scris trei monografii:

1) Johnny Henderson, Rodica Luca, ”Boundary Value Problems for Systems of Differ-

ential, Difference and Fractional Equations. Positive Solutions”, ELSEVIER, Amsterdam,

2016 (2015 in Elsevier), (322 pag.), ISBN: 978-0-12-803652-5, raportata la grantul PN-II-ID-

PCE-2011-3-0557;

2) Rodica Luca-Tudorache, ”Probleme neliniare de evolutie ın spatii Hilbert”, Perfor-

mantica, Iasi, 2007 (148 pag.), ISBN: 978-973-730-359-2, raportata la grantul CNCSIS GR

80/23.05.2007, Cod 125, Tema 54;

3) Rodica Luca-Tudorache, ”Probleme la limita pentru sisteme neliniare hiperbolice si

aplicatii”, Casa de Editura Venus, Iasi, 2003 (236 pag.), ISBN: 973-8174-94-5.

Relevanta activitatii stiintifice si recunoasterea activitatii nationale si internationale ın

domeniul ecuatiilor diferentiale, ecuatiilor cu diferente si ecuatiilor fractionare sunt subliniate

de publicatiile mele, multe dintre ele fiind ın colaborare cu Prof. Johnny Henderson de la

Universitatea Baylor, Waco, Texas, SUA, precum si de citarile acestora ın reviste indexate

ISI sau din alte baze de date internationale.

6

Proiecte de cercetare la care autoarea a fost director de proiect

Din anul 2001 am fost director de proiect la urmatoarele granturi cıstigate prin competitie

nationala:

1) PN-II-ID-PCE-2011-3-0557 ”Probleme la limita pentru sisteme de ecuatii diferentiale

neliniare cu aplicatii ın electronica si mecanica” (2011-2016), la care echipa de cercetare a

grantului a raportat 73 de lucrari (45 ın reviste ISI, 20 ın reviste BDI, 4 ın volume de

conferinte internationale - din care 3 ın volume ISI, si 4 lucrari ın evaluare la reviste ISI) si o

monografie ın editura ELSEVIER (vezi https:// sites.google.com/site/rodicalucatudorache/

home/ pn-ii-grant);

2) CNCSIS GR 77/11.06.2008, Cod 125, Tema 40; CNCSIS GR 80/23.05.2007, Cod

125, Tema 54; CNCSIS GR 217/18.09.2006, Cod 125, Tema 9, ”Evolutii neliniare ın spatii

Banach si aplicatii”, la care echipa de cercetare a raportat 50 de lucrari (din care 12 lucrari

ın reviste ISI) si 9 carti (din care 5 monografii), (vezi http://www.cncsis.ro, la Programe de

finantare - Granturi (1995-2008));

3) PN-II-RU-MC-2008-2, Aprilie 2008, Cod CNCSIS 87 - un grant de mobilitate pen-

tru ”Fifth World Congress of Nonlinear Analysts”, Orlando, Florida, SUA, 2-9 iulie 2008

(mobilitatea 1-10 iulie 2008), la care am raportat lucrarea ISI [146];

4) Grantul pentru ”6-th International Congress on Industrial and Applied Mathematics”

ICIAM 2007, 16-20 iulie 2007, Zurich, Elvetia, de la Swiss Federal Institute of Technology

Zurich, castigat prin competitie internationala.

De asemenea am fost membra ın echipele de cercetare ale altor 11 granturi sau proiecte

nationale.

Participarea mea ın mai multe granturi nationale ın calitate de director sau membra

a echipei a dezvoltat abilitatile si competentele mele privind managementul unor astfel de

proiecte.

Realizarile profesionale si didactice ale autoarei

In anul 2001 am devenit Conferentiar universitar, iar ın anul 2008 am fost promovata

Profesor Universitar ın cadrul Departamentul de Matematica al Universitatii Tehnice ”Ghe-

orghe Asachi” din Iasi.

In cadrul activitatii didactice, am scris urmatoarele cursuri si culegeri de probleme

pentru studentii din anii I si II - licenta si anul I - master:

1) Nicoleta Breaz, Lucia Cabulea, Ariana Pitea, Ioan Rasa, Rodica Tudorache, Gheorghita

7

Zbaganu, ”Probabilitati si statistica”, 2013, (Cap. 3 si 4, 62 pag.), Editura StudIS, Vatra-

Dornei, ISBN: 978-606-624-309-4, (304 pag., format academic).

2) Rodica Luca-Tudorache, ”Probleme de analiza matematica. Calcul integral”, Casa

de Editura Venus, Iasi, 2007 (381 pag., format academic), ISBN: 973-756-039-6, 978-973-

756-039-1 (editura CNCSIS).

3) Rodica Luca-Tudorache, ”Probleme de analiza matematica. Calcul diferential”, Per-

formantica, Iasi, 2006 (346 pag., format academic), ISBN: 973-730-206-0, ISBN: 978-973-

730-206-9 (editura CNCSIS).

4) Rodica Luca-Tudorache, ”Probleme de teoria probabilitatilor”, Editura Tehnopress,

Iasi, 2006 (100 pag., format academic), ISBN-10 973-702-354-4, ISBN-13 978-973-354-4 (ed-

itura CNCSIS).

5) Rodica Luca-Tudorache, ”Analiza matematica. Calcul diferential”, Editura Tehno-

press, Iasi, 2005 (321 pag., format academic), ISBN: 973-702-151-7 (editura CNCSIS).

Pe langa activitatile mele didactice, adica cursuri si seminarii de Analiza matematica, Al-

gebra liniara, geometrie si ecuatii diferentiale (pentru studentii din anul I licenta) si Matem-

atici speciale (pentru studentii din anul II licenta si anul I master), am organizat ın perioada

2006-2011 si ın anul 2016 un Cerc de Matematica unde am lucrat cu cei mai buni studenti

din anul I probleme deosebite de Analiza matematica.

Planul de dezvoltare profesional

In viitorul apropiat as dori sa ma asociez la o Scoala Doctorala de Matematica, sau sa

colaborez cu profesori conducatori de doctorat ın cadrul Scolilor Doctorale de la Universitatea

Tehnica ”Gheorghe Asachi” din Iasi.

In plus, voi continua cercetarile din ultimii ani prin studierea unor noi probleme la

limita nelocale pentru sisteme de ecuatii diferentiale ordinare, sisteme de ecuatii cu diferente

si sisteme de ecuatii diferentiale fractionare.

Dinamica proceselor evolutive este adesea supusa unor schimbari bruste cum ar fi

socurile sau dezastrele naturale. Deseori aceste perturbari pe termen scurt sunt consid-

erate ca actionand instantaneu sau sub forma de impulsuri. Ecuatiile diferentiale impulsive

supuse efectelor de impuls au fost dezvoltate ın modelarea problemelor impulsive ın fizica,

dinamica populatiei, biologie, tehnologie chimica, control optimal, biotehnologie, farmaco-

cinetica, robotica industriala (a se vedea [21], [42], [124]). Probleme la limita cu argumente

deviate constitue o alta clasa importanta de probleme. Prin urmare este necesar sa se extinda

aceste cercetari.

Voi studia existenta, multiplicitatea si non-existenta solutiilor pozitive pentru sisteme

8

de ecuatii diferentiale ordinare neliniare de ordinul al doilea sau de ordin superior cu diverse

conditii la limita nelocale incluzand conditii la limita Riemann-Stieltjes si conditii impulsive.

Voi considera diverse clase de sisteme, si anume: sisteme cu parametri sau fara parametri,

sisteme cu neliniaritati nesingulare sau singulare, sisteme cu neliniaritati care ısi schimba

semnul, sisteme cu termeni integrali sau cu argumente deviate. Intervalul pentru variabila

t poate fi finit sau infinit, iar conditiile la limita pot fi necuplate sau cuplate ın functiile

necunoscute ale sistemelor. De asemenea voi investiga unele cazuri discrete ale acestor

probleme, adica sisteme finite sau infinite de ecuatii cu diferente cu conditii la limita cu mai

multe puncte. O alta clasa de sisteme pe care o voi studia este clasa sistemelor de ecuatii

diferentiale fractionare Riemann-Liouville cu conditii la limita integrale Riemann-Stieltjes

care pot contine derivate fractionare.

9

References

[1] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

[2] R.P. Agarwal, B. Andrade, C. Cuevas, Weighted pseudo-almost periodic solutions of a class

of semilinear fractional differential equations, Nonlinear Anal. Real World Appl., 11 (2010),

3532-3554.

[3] R.P. Agarwal, M. Meehan, D. O’Regan, Fixed Point Theory and Applications, Cambridge

University Press, 2001.

[4] R.P. Agarwal, Y. Zhou, Y. He, Existence of fractional neutral functional differential equations,

Comput. Math. Appl., 59 (2010), 1095-1100.

[5] A. Aghajani, Y. Jalilian, J.J. Jrujillo, On the existence of solutions of fractional integro-

differential equations, Fract. Calc. Appl. Anal., 15 (2012), 44-69.

[6] B. Ahmad, A.Alsaedi, B.S. Alghamdi, Analytic approximation of solutions of the forced

Duffing equation with integral boundary conditions, Nonlinear Anal. Real World Appl., 9

(2008), 1727-1740.

[7] B. Ahmad, S.K. Ntouyas, Nonlinear fractional differential equations and inclusions of arbi-

trary order and multi-strip boundary conditions, Electron. J. Differ. Equ., 2012:98 (2012),

1-22.

[8] B. Ahmad, S.K. Ntouyas, A note on fractional differential equations with fractional separated

boundary conditions, Abstr. Appl. Anal., 2012, Article ID 818703 (2012), 1-11.

[9] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach

spaces, SIAM Review, 18 (1976), 620-709.

[10] H. Amann, Parabolic evolution equations with nonlinear boundary conditions, in Nonlinear

Functional Analysis and its Applications (editor F.E. Browder), Proc. Symp. Pure Math. 45,

Amer. Math. Soc., Providence, RI, 1986, 17-27.

[11] H. Amann, Parabolic evolution equations and nonlinear boundary conditions, J. Differ. Equ.,

72 (1988), 201-269.

[12] D.G. Aronson, A comparison method for stability analysis of nonlinear parabolic problems,

SIAM Rev., 20 (1978), 245-264.

[13] F.M. Atici, G.Sh. Guseinov, On Green’s functions and positive solutions for boundary value

problems on time scales, J. Comput. Appl. Math., 141 (2002), 75-99.

10

[14] Z. Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear

Anal., 72 (2010), 916-924.

[15] K. Balachandran, J.J. Trujillo, The nonlocal Cauchy problem for nonlinear fractional inte-

grodifferential equations in Banach spaces, Nonlinear Anal., 72 (2010), 4587-4593.

[16] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff,

Leyden, 1976.

[17] V. Barbu, Nonlinear boundary-value problems for a class of hyperbolic systems, Rev. Roum.

Math. Pures Appl., 22 (1977), 155-168.

[18] V. Barbu, G. Morosanu, Existence for a nonlinear hyperbolic system, Nonlinear Anal., 5

(1981), 341-353.

[19] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical

Methods. Series on Complexity, Nonlinearity and Chaos, World Scientific, Boston, 2012.

[20] D. Baleanu, O.G. Mustafa, R.P. Agarwal, An existence result for a superlinear fractional

differential equation, Appl. Math. Lett., 23 (2010), 1129-1132.

[21] M. Benchohra, J. Henderson, S. Ntouyas, Impulsive Differential Equations and Inclusions,

Hindawi Publishing Corporation, New York, 2006.

[22] P. Benilan, Equations d’Evolution dans un Espace de Banach Quelconque et Applications,

These, Orsay, 1972.

[23] A. Boucherif, Second-order boundary value problems with integral boundary conditions, Non-

linear Anal., 70 (2009), 364-371.

[24] A. Boucherif, J. Henderson, Positive solutions of second order boundary value problems with

changing signs Caratheodory nonlinearites, Electron. J. Qual. Theory Differ. Equ., 2006:7

(2006), 1-14.

[25] R.K. Brayton, Nonlinear oscillations in a distributed network, Quarterly Appl. Math., 26

(1967), 289-301.

[26] 11. H. Brezis, Operateurs Maximaux Monotones et Semigroupes de Contractions dans les

Espaces de Hilbert, North–Holland, Amsterdam, 1973.

[27] F.E. Browder, W. V. Petryshyn, The solution by iteration of nonlinear functional equations

in Banach spaces, Bull. Amer. Math. Soc., 72 (1966), 571-575.

[28] N.P. Cac, A.M. Fink, J.A. Gatica, Nonnegative solutions of quasilinear elliptic boundary

value problems with nonnegative coefficients, J. Math. Anal. Appl., 206 (1997), 1-9.

11

[29] J.R. Cannon, The solution of the heat equation subject to the specification of energy, Quart.

Appl. Math., 22 (1964), 155-160.

[30] R. Yu. Chegis, Numerical solution of the heat conduction problem with an integral condition,

Litov. Mat. Sb., 24 (1984), 209-215.

[31] K.L. Cooke, D.W. Krumme, Differential-difference equations and nonlinear initial-boundary

value problems for linear hyperbolic partial differential equations, J. Math. Anal. Appl., 24

(1968), 372-387.

[32] M.G. Crandall, The semigroup approach to first order quasilinear equations in several space

variables, Israel J. Math., 12 (1972), 108-132.

[33] Y. Cui, J. Sun, On existence of positive solutions of coupled integral boundary value problems

for a nonlinear singular superlinear differential system, Electron. J. Qual. Theory Differ. Equ.,

2012:41 (2012), 1-13.

[34] S. Das, Functional Fractional Calculus for System Identification and Controls, Springer, New

York, 2008.

[35] K. Deng, Global existence and blow-up for a system of heat equations with nonlinear bound-

ary conditions, Math. Methods Appl. Sci., 18, 307-315 (1995).

[36] K. Deng, Blow-up rates for parabolic systems, Z. Angew. Math. Phys., 47, 132-143 (1996).

[37] M. El-Shahed, J.J. Nieto, Nontrivial solutions for a nonlinear multi-point boundary value

problem of fractional order, Comput. Math. Appl., 59 (2010), 3438-3443.

[38] P.W. Eloe, B. Ahmad, Positive solutions of a nonlinear nth order boundary value problem

with nonlocal conditions, Appl. Math. Letters, 18 (2005), 521-527.

[39] P.W. Eloe, J. Henderson, Positive solutions for (n−1, 1) conjugate boundary value problems,

Nonlinear Anal., 28 (1997), 1669-1680.

[40] D.G. de Figueiredo, P.L. Lions, R.D. Nussbaum, A priori estimates and existence of positive

solutions of semilinear elliptic equations, J. Math. Pures Appl., 61 (1982), 41-63.

[41] C. S. Goodrich, Nonlocal systems of BVPs with asymptotically superlinear boundary condi-

tions, Comment. Math. Univ. Carolin., 53 (2012), 79-97.

[42] J.R. Graef, J. Henderson, A. Ouahab, Impulsive Differential Inclusions. A Fixed Point Ap-

proach, de Gruyter, Berlin, 2013.

[43] J.R. Graef, L. Kong, Q. Kong, M. Wang, Uniqueness of positive solutions of fractional bound-

ary value problems with non-homogeneous integral boundary conditions, Fract. Calc. Appl.

Anal., 15 (3) (2012), 509-528.

12

[44] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New

York, 1988.

[45] D. J. Guo, V. Lakshmikantham, Multiple solutions of two-point boundary value value prob-

lems of ordinary differential equations in Banach spaces, J. Math. Anal. Appl., 129 (1988),

211-222.

[46] X. Hao, L. Liu, Y. Wu, Positive solutions for second order differential systems with nonlocal

conditions, Fixed Point Theory, 13 (2012), 507-516.

[47] A. Haraux, Nonlinear Evolution Equations - Global Behavior of Solutions, Springer Verlag,

Berlin - Heidelberg - New York, 1981.

[48] J. Henderson, R. Luca, Positive solutions for a system of higher-order multi-point boundary

value problems, Comput. Math. Appl., 62 (2011), 3920-3932.

[49] J. Henderson, R. Luca, On a system of higher-order multi-point boundary value problems,

Electron. J. Qual. Theory Differ. Equ., 2012:49 (2012), 1-14.

[50] J. Henderson, R. Luca, Positive solutions for a system of second-order multi-point boundary

value problems, Appl. Math. Comput., 218 (10) (2012), 6083-6094.

[51] J. Henderson, R. Luca, Existence and multiplicity for positive solutions of a multi-point

boundary value problem, Appl. Math. Comput., 218 (21) (2012), 10572-10585.

[52] J. Henderson, R. Luca, On a system of second-order multi-point boundary value problems,

Appl. Math. Lett., 25 (2012), 2089-2094.

[53] J. Henderson, R. Luca, Existence of positive solutions for a system of higher-order multi-point

boundary value problems, Appl. Math. Comput., 219 (8) (2012), 3709-3720.

[54] J. Henderson, R. Luca, Positive solutions for a system of second-order multi-point discrete

boundary value problems, J. Difference Equ. Appl., 18 (9) (2012), 1575-1592.

[55] J. Henderson, R. Luca, Existence and multiplicity for positive solutions of a second-order

multi-point discrete boundary value problem, J. Difference Equ. Appl., 19 (3) (2013), 418-

438.

[56] J. Henderson, R. Luca, On a multi-point discrete boundary value problem, J. Difference Equ.

Appl., 19 (4) (2013), 690-699.

[57] J. Henderson, R. Luca, Existence of positive solutions for a system of second-order multi-point

discrete boundary value problems, J. Difference Equ. Appl., 19 (11) (2013), 1889-1906.

13

[58] J. Henderson, R. Luca, Positive solutions for singular systems of multi-point boundary value

problems, Math. Methods Appl. Sci., 36 (2013), 814-828.

[59] J. Henderson, R. Luca, Positive solutions for a system of second-order nonlinear multi-point

eigenvalue problems, Appl. Math. Comput., 223 (2013), 197-208.

[60] J. Henderson, R. Luca, Positive solutions for systems of second-order integral boundary value

problems, Electron. J. Qual. Theory Differ. Equ., 2013:70 (2013), 1-21.

[61] J. Henderson, R. Luca, Existence and multiplicity for positive solutions of a system of higher-

order multi-point boundary value problems, Nonlinear Differ. Equ. Appl., 20 (2013), 1035-

1054.

[62] J. Henderson, R. Luca, Positive solutions for singular systems of higher-order multi-point

boundary value problems, Math. Model. Anal., 18 (3) (2013), 309-324.

[63] J. Henderson, R. Luca, Existence and multiplicity of positive solutions for a system of higher-

order multi-point boundary value problems, Adv. Dyn. Syst. Applic., 8 (2) (2013), 233-245.

[64] J. Henderson, R. Luca, Positive solutions for a system of nonlocal fractional boundary value

problems, Fract. Calc. Appl. Anal., 16 (4) (2013), 985-1008.

[65] J. Henderson, R. Luca, Existence and multiplicity of positive solutions for a system of frac-

tional boundary value problems, Bound. Value Prob., 2014:60 (2014), 1-17.

[66] J. Henderson, R. Luca, Positive solutions for a system of fractional differential equations with

coupled integral boundary conditions, Appl. Math. Comput., 249 (2014), 182-197.

[67] J. Henderson, R. Luca, Positive solutions for systems of nonlinear second-order multi-point

boundary value problems, Math. Methods Appl. Sci., 37 (2014), 2502-2516.

[68] J. Henderson, R. Luca, On a second-order nonlinear discrete multi-point eigenvalue problem,

J. Difference Equ. Appl., 20 (7) (2014), 1005-1018.

[69] J. Henderson, R. Luca, Positive solutions for systems of multi-point nonlinear boundary value

problems, Comm. Appl. Nonlinear Anal., 21 (3) (2014), 1-12.

[70] J. Henderson, R. Luca, Positive solutions for systems of singular higher-order multi-point

boundary value problems, Brit. J. Math. Comp. Sci., 4 (4) (2014), 460-473.

[71] J. Henderson, R. Luca, Existence of positive solutions for a system of nonlinear second-order

integral boundary value problems, Discrete Cont. Dyn. Sys., 2015, Supplement, Dynamical

Systems, Differential Equations and Applications, AIMS Proceedings 2015, Proceedings of the

10th AIMS International Conference (Madrid, Spain, 2014), Editors: Manuel de Len, Wei

14

Feng, Zhaosheng Feng, Julian Lopez-Gomez, Xin Lu, J.M. Martell, Javier Parcet, Daniel

Peralta-Salas and Weihua Ruan, 2015, 596-604.

[72] J. Henderson, R. Luca, Positive solutions for systems of second-order difference equations,

Discrete Dyn. Nature Soc., 2015, Article ID 468648 (2015), 1-8.

[73] J. Henderson, R. Luca, Positive solutions for a system of semipositone coupled fractional

boundary value problems, Bound. Value Probl., 2016:61, (2016), 1-23.

[74] J. Henderson, R. Luca, Positive solutions for a system of difference equations with coupled

multi-point boundary conditions, J. Difference Equ. Applic., 22 (2) (2016), 188-216.

[75] J. Henderson, R. Luca, Boundary Value Problems for Systems of Differential, Difference and

Fractional Equations. Positive Solutions, Elsevier, Amsterdam, 2016 (2015 in Elsevier).

[76] J. Henderson, R. Luca, Existence of positive solutions for a system of semipositone fractional

boundary value problems, Electr. J. Qualit. Theory Differ. Equ., 2016:22 (2016), 1-28.

[77] J. Henderson, R. Luca, On a system of Riemann-Liouville fractional boundary value problems,

Commun. Appl. Nonlinear Anal., 23 (2) (2016), 1-19.

[78] J. Henderson, R. Luca, Existence of positive solutions for a singular fractional boundary value

problem, Nonlinear Anal. Model. Control, 22 (1) (2017), 99-114.

[79] J. Henderson, R. Luca, Existence and multiplicity of positive solutions for a system of dif-

ference equations with coupled boundary conditions, J. Appl. Anal. Comput., 7 (1) (2017),

134-146.

[80] J. Henderson, R. Luca, Positive solutions for a system of singular second-order integral bound-

ary value problems, Fixed Point Theory, accepted for publication.

[81] J. Henderson, R. Luca, A. Tudorache, Multiple positive solutions for a multi-point discrete

boundary value problem, Commun. Fac. Sci. Univ. Ank. Ser. A1, Math. Stat., 63 (2) (2014),

59-70.

[82] J. Henderson, R. Luca, A. Tudorache, Positive solutions for a fractional boundary value

problem, Nonlinear Stud., 22 (1) (2015), 1-13.

[83] J. Henderson, R. Luca, A. Tudorache, On a system of fractional differential equations with

coupled integral boundary conditions, Fract. Calc. Appl. Anal., 18 (2) (2015), 361-386.

[84] J. Henderson, R. Luca, A. Tudorache, Positive solutions for systems of coupled fractional

boundary value problems, Open J. Appl. Sci., 5 (2015), 600-608.

15

[85] J. Henderson, R. Luca, A. Tudorache, Positive solutions for a system of second-order dif-

ferential equations with integral boundary conditions, Intern. J. Appl. Phys. Math., 6 (3)

(2016), 138-149.

[86] J. Henderson, R. Luca, A. Tudorache, Existence of positive solutions for a system of frac-

tional boundary value problems, in Differential and Difference Equations with Applications,

ICDDEA, Amadora, Portugal, May 2015, Selected Contributions, Editors: Sandra Pinelas,

Zuzana Dosla, Ondrej Dosly, Peter E. Kloeden, (451 pag.), Springer, 2016, 349-357.

[87] J. Henderson, R. Luca, A. Tudorache, Existence and nonexistence of positive solutions for

coupled Riemann-Liouville fractional boundary value problems, Discrete Dyn. Nature Soc.,

2016, Article ID 2823971 (2016), 1-12.

[88] J. Henderson, R. Luca, A. Tudorache, Existence and nonexistence of positive solutions to a

discrete boundary value problem, Carpathian J. Math., accepted for publication.

[89] J. Henderson, S.K. Ntouyas, Positive solutions for systems of nth order three-point nonlocal

boundary value problems, Electron. J. Qual. Theory Differ. Equ., 2007:18 (2007), 1-12.

[90] J. Henderson, S.K. Ntouyas, Positive solutions for systems of three-point nonlinear boundary

value problems, Aust. J. Math. Anal. Appl., 5 (2008), 1-9.

[91] J. Henderson, S.K. Ntouyas, Positive solutions for systems of nonlinear boundary value prob-

lems, Nonlinear Stud., 15 (2008), 51-60.

[92] J. Henderson, S.K. Ntouyas, I.K. Purnaras, Positive solutions for systems of m-point nonlin-

ear boundary value problems, Math. Model. Anal., 13 (2008), 357-370.

[93] J. Henderson, S.K. Ntouyas, I.K. Purnaras, Positive solutions for systems of generalized

three-point nonlinear boundary value problems, Comment. Math. Univ. Carolin., 49 (2008),

79-91.

[94] J. Henderson, S.K. Ntouyas, I.K. Purnaras, Positive solutions for systems of three-point

nonlinear discrete boundary value problems, Neural Parallel Sci. Comput., 16 (2008), 209-

224.

[95] J. Henderson, S.K. Ntouyas, I.K. Purnaras, Positive solutions for systems of nonlinear discrete

boundary value problems, J. Difference Equ. Appl., 15 (10) (2009), 895-912.

[96] V. Iftimie, Sur un probleme non lineaire pour un systeme hyperbolique, Rev. Roum. Math.

Pures Appl., 21 (1976), 303-328.

[97] V. Il’in, E. Moiseev, Nonlocal boundary value problems of the first kind for a Sturm-Liouville

operator in its differential and finite difference aspects, Differ. Equ., 23 (1987), 803-810.

16

[98] V.A. Il’in, E.I. Moiseev, Nonlocal boundary value problem of the second kind for a Sturm-

Liouville operator, Differ. Equ., 23 (1987), 979-987.

[99] G. Infante, F. M. Minhos, P. Pietramala, Non-negative solutions of systems of ODEs with

coupled boundary conditions, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4952-4960.

[100] G. Infante, P. Pietramala, Existence and multiplicity of non-negative solutions for systems

of perturbed Hammerstein integral equations, Nonlinear Anal., 71 (2009), 1301-1310.

[101] G. Infante, P. Pietramala, Eigenvalues and non-negative solutions of a system with nonlocal

BCs, Nonlinear Stud., 16 (2009), 187-196.

[102] N.I. Ionkin, Solution of a boundary-value problem in heat conduction with a nonclassical

boundary condition, Differ. Equ., 13 (1977), 204-211.

[103] T. Jankowski, Positive solutions to second-order differential equations with dependence on

the first-order derivative and nonlocal boundary conditions, Bound. Value Prob., 2013:8

(2013), 1-20.

[104] Y. Ji, Y. Guo, The existence of countably many positive solutions for some nonlinear nth

order m-point boundary value problems, J. Comput. Appl. Math., 232 (2009), 187-200.

[105] Y. Ji, Y. Guo, C. Yu, Positive solutions to (n − 1, n) m-point boundary value problemss

with dependence on the first order derivative, Appl. Math. Mech. (English Ed.), 30 (2009),

527-536.

[106] M. Jia, P. Wang, Multiple positive solutions for integro-differential equations with integral

boundary conditions and sign changing nonlinearities, Electron. J. Differ. Equ., 2012:31

(2012), 1-13.

[107] D. Jiang, C. Yuan, The positive properties of the Green function for Dirichlet-type boundary

value problems of nonlinear fractional differential equations and its application, Nonlinear

Anal., 72 (2010), 710-719.

[108] D.D. Joseph, E.M. Sparrow, Nonlinear diffusion induced by nonlinear sources, Quart. Appl.

Math., 28 (1970), 327-342.

[109] P. Kang, Z. Wei, Three positive solutions of singular nonlocal boundary value problems for

systems of nonlinear second-order ordinary differential equations, Nonlinear Anal., 70 (2009),

444-451.

[110] G.L. Karakostas, P.Ch. Tsamatos, Multiple positive solutions of some Fredholm integral

equations arisen from nonlocal boundary-value problems, Electron. J. Differ. Equ., 2002:30

(2002), 1-17.

17

[111] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19 (1967),

508-520.

[112] W. Kecs, Produsul de Convolutie, Editura Academiei, Bucuresti, 1978.

[113] H.B. Keller, D.S. Cohen, Some positone problems suggested by nonlinear heat generation, J.

Math. Mech., 16 (1967), 1361-1376.

[114] W.G. Kelley, A.C. Peterson, Difference Equations. An Introduction with Applications, Second

Edition, Academic Press, San Diego, CA, 2001.

[115] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential

Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam,

2006.

[116] K.Q. Lan, Positive solutions of systems of Hammerstein integral equations, Commun. Appl.

Anal., 15 (2011), 521-528.

[117] K.Q. Lan, W. Lin, Multiple positive solutions of systems of Hammerstein integral equations

with applications to fractional differential equations, J. Lond. Math. Soc., 83 (2011), 449-469.

[118] V. Lakshmikantham, D. Trigiante, Theory of Difference Equations. Numerical Methods and

Applications, Mathematics in Science and Engineering, 181. Academic Press, Inc., Boston,

MA, 1988.

[119] A. Leung, A semilinear reaction-diffusion prey-predator system with nonlinear coupled

boundary conditions: Equilibrium and stability, Indiana Univ. Math. J., 31 (1982), 223-

241.

[120] W.T. Li, H.R. Sun, Positive solutions for second-order m-point boundary value problems on

times scales, Acta Math. Sin. (Engl. Ser.), 22 (2006), 1797-1804.

[121] S. Liang, J. Zhang, Positive solutions for boundary value problems of nonlinear fractional

differential equation, Nonlinear Anal., 71 (2009), 5545-5550.

[122] Z. Lin, C. Xie, The blow-up rate for a system of heat equations with nonlinear boundary

conditions, Nonlinear Anal., 34 (1998), 767-778.

[123] B. Liu, L. Liu, Y. Wu, Positive solutions for singular systems of three-point boundary value

problems, Comput. Math. Appl., 53 (2007), 1429-1438.

[124] G. Lu, M. Feng, Positive Green’s function and triple positive solutions of a second-order

impulsive differential equation with integral boundary conditions and a delayed argument,

Bound. Value Prob., 2016:88 (2016), 1-17.

18

[125] R. Luca, An existence result for a nonlinear hyperbolic system, Differ. Integral Equ., 8 (1995),

887-900.

[126] R. Luca, Periodic and almost-periodic solutions for a class of nonlinear hyperbolic systems,

Anal. Stiint. Univ. ”Al.I.Cuza” Iasi, Sect. Mat., 42 (1996), 405-417.

[127] R. Luca, Time periodic solutions for a higher order nonlinear hyperbolic system, Libertas

Math., 19 (1999), 83-93.

[128] R. Luca, Existence and uniqueness results for a higher order hyperbolic system, Math. Reports

(Stud. Cerc. Mat.), 1(51) (1999), 551-571.

[129] R. Luca, On a class of nonlinear hyperbolic systems with nonlocal boundary conditions, J.

Math. Anal. Appl., 256 (2001), 375-404.

[130] R. Luca, Time periodic solutions for a nonlinear hyperbolic system, Nonlinear Anal., 45

(2001), 801-815.

[131] R. Luca, Asymptotic behaviour of solutions to a nonlinear hyperbolic problem, Libertas

Math., 21 (2001), 41-51.

[132] R. Luca, On a class of nonlinear hyperbolic systems, Nonlinear Anal., 49 (2002), 841-860.

[133] R. Luca, Boundary value problems for a second-order nonlinear hyperbolic system, Commun.

Appl. Anal., 8 (2004), 305-321.

[134] R. Luca, An asymptotic result for the solutions of a higher order hyperbolic problem,

PanAmer. Math. J., 14 (2004), 99-109.

[135] R. Luca, Time almost-periodic solutions for a class of nonlinear hyperbolic problems, Com-

mun. Appl. Nonlinear Anal., 13 (2006), 1-14.

[136] R. Luca, Monotone boundary conditions for a class of nonlinear hyperbolic systems, Int. J.

Pure Appl. Math., 32 (1) (2006), 83-103.

[137] R. Luca, Existence for a class of discrete hyperbolic problems, Adv. Difference Equ., 2006,

Article ID89260 (2006), 1-14.

[138] R. Luca, Existence and uniqueness for a nonlinear discrete hyperbolic system, Nonlinear

Anal., 67 (2007), 2433-2446.

[139] R. Luca, Existence and asymptotic behaviour for a discrete hyperbolic system, J. Math. Anal.

Appl., 329 (2007), 191-205.

[140] R. Luca, On a nonlinear discrete hyperbolic system, Asym. Anal., 51 (3-4) (2007), 289-302.

19

[141] R. Luca, On a nonlinear differential problem with second-order differences, Anal. Stiint. Univ.

”Al.I.Cuza” Iasi, Sect. Mat., 54 (2) (2008), 261-277.

[142] R. Luca, Time periodic solutions for a class of nonlinear boundary value problems, Fixed

Point Theory, 9 (1) (2008), 173-187.

[143] R. Luca, On a differential system with first-order differences, Int. J. Pure Appl. Math., 46

(1), (2008), 73-81.

[144] R. Luca, Differential systems with second-order differences in Hilbert spaces, PanAmer. Math.

J., 18 (3) (2008), 59-67.

[145] R. Luca, Positive solutions for m+1-point discrete boundary value problems, Libertas Math.,

29 (2009), 65-82.

[146] R. Luca, Nonlinear differential problems with first- or second-order differences in Hilbert

spaces, Nonlinear Anal., 71 (2009), e81-e97.

[147] R. Luca, Existence of positive solutions for a class of higher-order m-point boundary value

problems, Electron. J. Qual. Theory Diff. Equ., 2010:74 (2010), 1-15.

[148] R. Luca, Existence and uniqueness of solutions for a second-order nonlinear hyperbolic sys-

tem, Electron. J. Differ. Equ., 2011:78 (2011), 1-11.

[149] R. Luca, Positive solutions for a second-order m-point boundary value problem, Dyn. Contin.

Discrete Impuls. Syst. Ser. A Math. Anal., 18 (2011), 161-176.

[150] R. Luca, Existence of positive solutions for a second-order m + 1 point discrete boundary

value problem, J. Difference Equ. Appl., 18 (5) (2012), 865-877.

[151] R. Luca, Positive solutions for a higher-order m-point boundary value problem, Mediterr. J.

Math., 9 (2012), 381-394.

[152] R. Luca-Tudorache, Hyperbolic problems associated to integrated circuits modeling,

Carpathian J. Math. (Bul. Stiint. Univ. Baia Mare), Ser. B Mat.-Inf., 9 (1993), 123-128,

(in Rom.).

[153] R. Luca-Tudorache, The asymptotic behaviour of the solutions of a class of nonlinear hy-

perbolic systems, Carpathian J. Math. (Bul. Stiint. Univ. Baia Mare), Ser. B Mat.-Inf., 9

(1993), 33-38, (in Rom.).

[154] R. Luca-Tudorache, Boundary Value Problems for Nonlinear Hyperbolic Systems and Ap-

plications (Probleme la Limita pentru Sisteme Neliniare Hiperbolice si Aplicatii), Casa de

Editura Venus, Iasi, 2003, (in Rom.).

20

[155] R. Luca-Tudorache, Nonlinear Evolution Problems in Hilbert Spaces (Probleme Neliniare de

Evolutie ın Spatii Hilbert), Editura Performantica, Iasi, 2007, (in Rom.).

[156] R. Luca-Tudorache, Time periodic solutions to a nonlinear second-order partial differential

problem, in Proceedings of the ”Sixth Congress of Romanian Mathematicians”, Bucharest,

Romania, June 28-July 4, 2007, Editors L. Beznea et al., Vol. 1, Scientific Contributions,

Editura Academiei Romane, Bucuresti, 2009, 261-268.

[157] R. Luca, G. Morosanu, On a class of nonlinear hyperbolic systems, Mem. Sect. Stiint. Acad.

Romane, 14 (2), Seria IV (1991), 219-237.

[158] R. Luca, G. Morosanu, Hyperbolic problems in integrated circuits modelling, Stud. Cerc.

Mat. (Math. Reports), 44 (1992), 355-373.

[159] R. Luca, A. Tudorache, Positive solutions to a system of semipositone fractional boundary

value problems, Adv. Difference Equ., 2014:179 (2014), 1-11.

[160] R. Luca, A. Tudorache, Existence of positive solutions to a system of higher-order semiposi-

tone integral boundary value problems, Commun. Appl. Anal., 19 (2015), 589-604.

[161] R. Luca, A. Tudorache, Existence and nonexistence of positive solutions for a system of

higher-order differential equations with integral boundary conditions, Brit. J. Math. Comput.

Sci., 19 (3) (2016), 1-10.

[162] R. Ma, Y. An, Global structure of positive solutions for nonlocal boundary value problems

involving integral conditions, Nonlinear Anal., 71 (2009), 4364-4376.

[163] R. Ma, B. Thompson, Positive solutions for nonlinear m-point eigenvalue problems, J. Math.

Anal. Appl., 297 (2004), 24-37.

[164] C.A. Marinov and A. Lehtonen, Mixed–type circuits with distributed and lumped parameters,

IEEE Trans. Circuits Systems, CAS-36 (1989), 1080-1086.

[165] C.A. Marinov and P. Neittaanmaki, A delay time bound for distributed parameter circuits

with bipolar transistors, Int. J. Circuit Theory Appl., 18 (1990), 99-106.

[166] C.A. Marinov, P. Neittaanmaki, Mathematical Models in Electrical Circuits: Theory and

Applications, Kluwer Academic Publishers, Dordrecht, 1991.

[167] G. Morosanu, Mixed problems for a class of nonlinear differential hyperbolic Systems, J.

Math. Anal. Appl., 83 (1981), 470-485.

[168] G. Morosanu, On a class of nonlinear differential hyperbolic systems with non-local boundary

conditions, J. Differ. Equ., 43 (1982), 345-368.

21

[169] G. Morosanu, Nonlinear Evolution Equations and Applications, Editura Academiei -

D.Reidel, Bucuresti - Dordrecht, 1988.

[170] G. Morosanu, C.A. Marinov, P. Neittaanmaki, Well–posed nonlinear problems in integrated

circuits modelling, Circ. Syst. Sign. Proc., 10 (1991), 53-69.

[171] G. Morosanu, D. Petrovanu, Nonlinear boundary value problems for a class of hyperbolic

partial differential systems, Atti. Sem. Mat. Fis. Univ. Modena, 34 (1985-1986), 295-316.

[172] G. Morosanu, D. Petrovanu, Nonlinear monotone boundary conditions for parabolic equa-

tions, Rend. Ist. Mat. Univ. di Trieste, 18 (1986), 136-155.

[173] G. Morosanu, D. Petrovanu, Time periodic solutions for a class of hyperbolic partial differ-

ential systems, An. Stiint. Univ. ”Al.I.Cuza” Iasi, Sect. Mat., 36 (1990), 93-98.

[174] M. Moshinsky, Sobre los problemas de condiciones a la frontiera en una dimension de carac-

teristicas discontinuas, Bol. Soc. Mat. Mexicana, 7 (1950), 1-25.

[175] A. Pazy, Semigroups of Nonlinear Contractions and their Asymptotic Behaviour, Nonlinear

Analysis and Mechanics: Heriot–Wat Symposium, vol. III, Research Notes in Math., 30,

Pitman, London, 1979.

[176] M. Pedersen, Z. Lin, Blow-up analysis for a system of heat equations coupled through a

nonlinear boundary condition, Appl. Math. Lett., 14, 171-176 (2001).

[177] A. Perelson, D. Kirschner, R. Boer, Dynamics of HIV infection of CD4 T cells, Math. Biosci.,

114 (1993), 81-125.

[178] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[179] A. Rousseau, R. Temam, J. Tribbia, Boundary conditions for an ocean related system with

a small parameter, in Nonlinear partial differential equations and related analysis, Contem-

porary Mathematics, vol.371, 2005, 231-263.

[180] J. Sabatier, O.P. Agrawal, J.A.T. Machado (Eds.), Advances in Fractional Calculus, The-

oretical Developments and Applications in Physics and Engineering, Springer, Dordrecht,

2007.

[181] A.A. Samarskii, Some problems of the theory of differential equations, Differ. Urav., 16

(1980), 1925-1935.

[182] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and

Applications, Gordon and Breach, Yverdon, 1993.

22

[183] W. Song, W. Gao, Positive solutions for a second-order system with integral boundary con-

ditions, Electron. J. Differ. Equ., 2011:13 (2011), 1-9.

[184] H. Su, Z. Wei, X. Zhang, J. Liu, Positive solutions of n-order and m-order multi-point singular

boundary value system, Appl. Math. Comput., 188 (2007), 1234-1243.

[185] J.R.L. Webb, G. Infante, Positive solutions of nonlocal boundary value problems involving

integral conditions, Nonlinear Differ. Equ. Appl., 15 (2008), 45-67.

[186] D. Xie, C. Bai, Y. Liu, C. Wang, Positive solutions for nonlinear semipositone nth-order

boundary value problems, Electron. J. Qual. Theory Diff. Equ., 2008:7 (2008), 1-12.

[187] Z. Yang, Positive solutions to a system of second-order nonlocal boundary value problems,

Nonlinear Anal., 62 (2005), 1251-1265.

[188] Z. Yang, Positive solutions of a second-order integral boundary value problem, J. Math. Anal.

Appl., 321 (2006), 751-765.

[189] Z. Yang, D. O’Regan, Positive solvability of systems of nonlinear Hammerstein integral equa-

tions, J. Math. Anal. Appl., 311 (2005), 600-614.

[190] Z. Yang, Z. Zhang, Positive solutions for a system of nonlinear singular Hammerstein integral

equations via nonnegative matrices and applications, Positivity, 16 (2012), 783-800.

[191] C. Yuan, Multiple positive solutions for (n−1, 1)-type semipositone conjugate boundary value

problems of nonlinear fractional differential equations, Electron. J. Qual. Theory Differ. Equ.,

2010:36 (2010).

[192] C. Yuan, D. Jiang, D. O’Regan, R.P. Agarwal, Multiple positive solutions to systems of

nonlinear semipositone fractional differential equations with coupled boundary conditions,

Electron. J. Qualit. Theory Differ. Equ., 2012:13 (2012), 1-17.

[193] Y. Zhou, Y. Xu, Positive solutions of three-point boundary value problems for systems of

nonlinear second order ordinary differential equations, J. Math. Anal. Appl., 320 (2006),

578-590.

23