Licenta Traistaru Adrian 2012

118
UNIVERSITATEA“POLITEHNICĂ”DIN TIMIŞOARA FACULTATEA DE ELECTRONICĂ ŞI TELECOMUNICAŢII LUCRARE DE LICENŢĂ Studiul unei surse în rezervă cu invertor PWM și realizarea unui stand de laborator Trăistaru Adrian Conducător ştiinţific Dr. Ing. Francisc Szombatfalvi Török 1

Transcript of Licenta Traistaru Adrian 2012

Page 1: Licenta Traistaru Adrian 2012

UNIVERSITATEA“POLITEHNICĂ”DIN TIMIŞOARA

FACULTATEA DE ELECTRONICĂ ŞI TELECOMUNICAŢII

LUCRARE DE LICENŢĂ

Studiul unei surse în rezervă cu invertor PWM și realizarea unui stand de

laborator

Trăistaru Adrian

Conducător ştiinţific

Dr. Ing. Francisc Szombatfalvi Török

TIMIŞOARA2012

1

Page 2: Licenta Traistaru Adrian 2012

2

Page 3: Licenta Traistaru Adrian 2012

TEMĂ PENTRU LUCRAREA DE LICENŢĂ

Numele şi prenumele studentului…………………………….............................……………....

Titlul temei. …………………………………………………..……………...............................…………………………………………………..…………………………............................…

Gradul de dificultate: ridicat mediu redus

Conducător ştiinţific…………………………………………….....................................………

Locul de desfăşurare a activităţii………………………………............................……………..

Lucrarea trebuie finalizată ca……………………………………...............................…………

Lucrarea trebuie să conţină………………………………………........................………….…..…………………………………………………..………………………….......................…….…………………………………………………..………………………………........................…………………………………………………..………………………………........................…………………………………………………..………………………………........................…………………………………………………..………………………………........................…………………………………………………..………………………………........................…………………………………………………..………………………………........................…………………………………………………..………………………………........................Cerinţe suplimentare ………………………………………..………………............................

………………………………………..………………................………………………………………..………………................………………………………………..………………................………………………………………..………………................………………………………………..………………................

Data propunerii temei Cond. ştiinţific

Data aprobării temei Dir. de departament

Data primirii temei Candidat

3

Page 4: Licenta Traistaru Adrian 2012

4

Page 5: Licenta Traistaru Adrian 2012

Cap. 1 Introducere

Dependența tot mai mare de dispozitive electronice care folosesc curent alternativ

evidențiează probleme asociate cu căderile neașteptate de tensiune de la rețeaua electrică. În

locurile în care infrastuctura electrică nu este bine dezvoltată, căderile de tensiune pot fi fatale

când instrumentele electrice medicale devin inutilizabile. Prin urmare, este nevoie de invertoare

ieftine pentru a putea utiliza de exemplu aparatura medicală și în zonele subdezvoltate. Această

lucrare documentează proiectarea și realizarea unei surse de alimentare neîntreruptibile,

invertorul DC-AC.

Majoritatea dispozitivelor electrice utilizează curent altenativ pentru alimentare pe care

apoi îl transformă în curent continuu. Curentul alternativ nu este întotdeauna disponibil și nevoia

de mobilitate și simplitate a dat un avantaj bateriilor și acumulatorilor. Astfel, pentru a converti

energia stocată în baterii sau provenită de la panouri solare avem nevoie de invertoare pentru a

converti curentul continuu în alternativ.

Există trei tipuri de invertoare DC-AC disponibile pe piață, care sunt clasificate în funcție

de forma semnalului de ieșire: semnal dreptunghiular, sinus modificat și sinus real. Majoritatea

au formă dreprunghiulară sau sinus modificat. Aceste tipuri de invertoare sunt mai puțin

costisitoare, deși livrează aceeași tensiune medie la sarcină, nu sunt indicate pentru dispozitivele

electronice delicate care se bazează pe frecvența tensiunii. Invertoarele cu sinus real au acuratețe

mai mare și livreză mai puțină energie neutilizabilă sarcinii prin armonici, dar au un design mai

complex și mai scump. Invertoarele cu sinus real vor alimenta dispozitive cu o acuratețe mai

mare, mai puține pierderi de putere și mai puțină căldură generată.

Inversia în sinus se face comutând tensiunea continuă pe sarcină cu o punte H. Dacă

valoarea tensiunii este mai mică decât cea de care avem nevoie putem folosii convertoare DC-DC

pentru tensiunea continuă sau transformatoare pentru tensiunea altenativă. Semnalul convertit

este format din semnal PWM care redă forma sinusoidală. Factorul de umplere al semnalului de

ieșire este modificat foarte rapid astfel puterea transmisă să fie sinusoidală. Semnalul de la ieșire

poate fi folosit așa sau filtrat pentru a obține tensiunea sinusoidală.

Această lucrare documentează proiectarea unui invertor cu sinus real, care face inversia

tensiunii continue provenită de la un convertor ridicător DC-DC.

5

Page 6: Licenta Traistaru Adrian 2012

Obiectivele pe care le-am avut pentru realizarea acestei lucrări au fost:

-studiul: surselor în rezervă;

surselor în comutație ZVS și ZCS;

surselor în comutație clasice;

-proiectarea și realizarea unei astfel de surse;

-programarea uC DSPIC30F4011;

-realizarea unui stand de laborator;

6

Page 7: Licenta Traistaru Adrian 2012

Cap. 2 Analiza şi sinteza literaturii de specialitate

2.1 Studiul surselor în comutație

2.1.1 Generalități

De mulţi ani, zona de design a surselor de alimentare a fost mutată treptat departe de zona

de utilizarea a surselor liniare către sursele de alimentare în comutație (S.M.P.S.). Sursele de

alimentare liniare conţin un transformator în serie cu regulatoare disipativ. Acest lucru înseamnă

că sursa de alimentare are transformatoare de 50/60 Hz extrem de mari şi grele, şi de asemenea

eficienţă foarte mică a conversie de putere, ambele fiind dezavantaje serioase. Eficienţa tipică a

surselor liniare standard este 30% . Acest lucru se compară cu eficienţa cuprinsă între 70 şi 80%,

disponibilă în prezent folosind surse în comutație .

În plus, prin utilizarea frecvenţelor înalte de comutare, dimensiunea transformatoarelor de

putere şi a filtrelor din S.M.P.S. sunt mult mai reduse în comparaţie cu cele dintr-o sursă liniară.

De exemplu, sursele în comutație care funcţionează la 20kHz au o reducere de 4 ori în

dimensiune a componentelor, şi aceasta creşte la circa 8 ori la 100kHz şi mai sus, astfel se pot

realiza surse foarte compacte şi uşoare. Acest lucru este acum o cerinţă esenţială pentru

majoritatea sistemelor electronice.

În prezent, există o gamă foarte largă de topologii disponibile, fiecare cu avantajele şi

dezavantajele sale, facandu-le potrivite pentru orice aplicaţiei în funcție de puterea necesară.

O sursă în comutație poate fi un circuit destul de complicat, după cum poate fi văzut din

schema bloc din Figura 2.1.1.1. Tensiunea alternativă de alimentare a sursei este redresată, iar

apoi se filtrează prin condensatorul de intrare pentru a produce current continuu. Capacitatea de

intrare trebuie să să fie destul de mare pentru a menține tensiunea constantă în cazul unor căderi

scurte de tensiune.

Figura 2.1.1.1 Schema bloc a unei surse în comutaţie

7

Page 8: Licenta Traistaru Adrian 2012

Dispozitivele semiconductoare de putere cum ar fi tranzistoarele Mosfet sau Bipolare

comută ON şi OFF, adică se închid şi se deschid, comutănd tensiunea de alimentare prin primarul

transformatorului de putere. Impulsurile au frecvenţe fixe (20-200kHz) şi factor de umplere

variabil. Astfel apare un tren de impulsuri cu amplitudine şi factor de umplere în secundarul

transformatoare proporţional cu raportul de transformare. Acest tren de impulsuri de tensiune este

aproximativ redresat, şi apoi netezit de filtrul de ieşire, care este fie un condensator sau o reţea

condensator-bobină în funcţie de topologia folosită. Acest transfer de putere trebuie să fie

efectuat cu cele mai mici pierderi posibil, pentru a menţine eficienţa. Calcularea optimă a

componentelor pasive şi magnetice şi de selecţie a semiconductorilor de putere este critică.

Stabilitatea tensiunii de ieşire este făcută de către blocul de control (feedback-ul). În

general, sursele în comutaţie lucrează pe o frecvenţă fixă şi modulare în lăţime a impulsurilor.

Astfel se compensează modificările tensiunii de alimentare şi încărcarea ieşirii . Tensiunea de

ieşire este comparată cu o tensiune de referinţă stabilă, şi eroare obţinută este folosită de logica de

control specializat, care modifică factorul de umplere al comutorului principal. Dacă a fost corect

proiectată aceasta va oferi o tensiune stabilă la ieşire.

Este esenţial ca întârzierile în bucla de control să fie minime, în caz contrar ar putea

apărea probleme de stabilitate. Prin urmare, componente de foarte rapide trebuie să fie alese

pentru bucla de reacţie. În cuplajele cu transformator, în scopul de a realiza o izolare

galvanică,este necesară utilizarea de componente izolate galvanic şi în bucla de reacţie. Acest

lucru este de obicei realizat prin utilizarea unui transformator de impulsuri mic sau un opto-

izolator, deci mărind numărul de componente.

În majoritatea aplicaţiilor, cele mai multe topologi de surse în comutaţie conţin

transformatoare de putere. Aceasta oferă izolare, scalarea tensiunii prin raportul de transformare

şi capacitatea de a furniza mai multe ieşiri. Cu toate acestea, sunt şi topologii non-izolate (fără

transformator), cum ar fi convertorul Buck şi Bust. Toate topologiile mult mai complexe sunt

bazate pe aceste tipuri de convertoare neizolate.

2.1.2 Convertoare neizolate

Majoritatea topologiilor folosite în convertoarele de azi sunt toate derivate din

următoarele trei versiuni non-izolate numit Buck, Bust şi Buck-boost. Acestea sunt cele mai

simple configuratii posibile, şi au cel mai mic numărul de componenta, care necesită doar o

8

Page 9: Licenta Traistaru Adrian 2012

bobină, condensatoare, tranzistore şi diode pentru a genera o singură ieşire. În cazul în care se

doreşte o izolare între intrare şi ieşire este necesar un transformator.

2.1.2.1 Convertorul coborâtor (buck)

Familia convertoarelor forward care includ topologiile push-pull şi punte, sunt toate

bazate pe convertorul Buck, prezentat în Figura 2.1.2.1.1. Funcţionarea sa este simplă. Când

comutatorul TR1 este în conducţie, tensiunea de la intrare este aplicată bobinei L1 şi energia este

dată la ieşire. Inductorul se construieşte în conformitate cu legea lui Faraday prezentată mai jos:

V=L

dIdt (1)

Când comutatorul este oprit, curentul din inductor se descarcă prin sarcină şi prin dioda

D1. Acest lucru permite ca energia stocată în inductor să fie livrată la ieşire. Acest curent

continuu este apoi netezit de condensator Co de la ieşire. Forme de undă tipice convertorului

Buck sunt prezentate în Figura 2.1.2.1.1.

Figura 2.1.2.1.1 Convertorul Buck (coborâtor)

9

Page 10: Licenta Traistaru Adrian 2012

Filtru LC are efect de mediere a pulsaţiilor aplicate la intrare, producând o netezire a

tensiunii de ieşire şi a curentului, cu o tensiune de riplu foarte mică. Media tensiune / secundă

prin bobină pe un ciclu complet de comutare trebuie să fie egală cu zero pentru echilibru.

Neglijând pierderile circuitului, mediea tensiunii de la intrarea în inductor este VinD, în

timp ce Vo este tensiunea de la ieşire. Astfel, în starea de echilibru, media tensiunii pe bobină va

fi zero, ecuaţia de bază a convertorului Buck este :

V 0

V i

=D (2)

D este factorul de umplere al tranzistorului, definit ca fiind raportul dintre timpul cât este

în conducţie şi o perioadă de comutaţie, exprimat astfel :

D=

tONT (3) unde T= tON+tOFF

Astfel convertorul Buck este un convertor coborâtor, în acest caz tensiunea de ieşire este

întotdeauna mai mică decât cea de intrare (atâta timp cât D nu ajunge la 1). Tensiunea de iesire

este menţinută constantă prin modificarea factorului de umplere al comutatorului. Reţeaua LC

oferă o foarte bună filtrare a curentului inductorului. Prin urmare, convertorul Buck şi derivatele

lui au un riplu foarte mic. Convertorul Buck funcţionează în mod continuu (curentul prin

inductor nu scade la zero) iar curenţii de vârf sunt mai mici, şi condensatoarele de netezire sunt

mai mici.

2.1.2.2 Convertorul ridicâtor (bust)

Funcţionarea regulatorului Bust este prezentat în Figura 2.1.2.2.1, este mult mai complexă

decât la Buck. Când comutatorul este ON, dioda D1 este polarizată invers şi tensiunea de intrare

Vin se aplică bobinei L1. Curentul se acumulează în inductor până la valoarea de vârf, fie spre

valoarea zero în modul discontinuu, sau spre valoare iniţială în modul continuu. Când

comutatorul se deschide energia stocată în bobina L1 trebuie elibertă cauzând apariția unei

tensiunii mai mari decât cea de intrare, dioda intră în conducție și încarcă condensatorul de la

ieșire. Prin urmare, Vo este întotdeauna mai mare decât Vin, făcând-ul un convertor ridicător.

Pentru modul de funcţionare continuă, ecuaţie convertorului Bust este obţinută printr-un proces

similar ca și pentru convertorul Buck, şi este cea cu numărul 4.

10

Page 11: Licenta Traistaru Adrian 2012

V 0

V i

= 11−D (4)

Din nou, tensiunea de ieşire depinde doar de tensiunea de intrare şi de factorul de

umplere. Astfel, prin controlul factorului de umplere, se reglează tensiunea de ieşire.

Din formele de undă ale convetorului Bust din Figura 2.1.2.2.1, curentul furnizat de

convertor condensatorului de netezire de la ieşire este curentul prin diodă, care va fi întotdeauna

discontinuu. Acest lucru înseamnă că, condensatorul de la ieşire trebuie să fie destul de mare, cu

o rezistenţă serie echivalentă scăzută (ESR), pentru a avea la ieșire o formă de unda cu un riplu

acceptabil. Aceasta este deosebirea față de condensatorul de la ieșirea convertorul Buck. Pe de

altă parte, curentul de intrare în convertor este curent ce trece prin bobină , iar acest lucru oferă un

riplu scăzut la intrare. Convertorul Bust este foarte folosit pentru aplicaţii în care avem o sarcină

capacitivă cum ar fi blitz-ul aparatului de fotografiat şi încărcătoare de baterii. Funcţiile

principale sunt să stabilizeze intrarea sursei şi pentru a îmbunătăţi foarte mult factorului de

putere. Această cerinţă a devenit foarte importantă în ultimii ani, într-un efort concertat de a

îmbunătăţi factorul de puterea al surselor.

Figura 2.1.2.2.1 Convertorul Bust (ridicător)

11

Page 12: Licenta Traistaru Adrian 2012

Dacă convertorul Bust este folosit în modul discontinuu, curentul de vârf prin tranzistor și

prin diodă va fi maxim, și condensatorul de la ieșire trebuie să aibă o valoare dublă pentru a

păstra acelaș riplu ca la cel din modul continuu. În funcționarea discontinuă, tensiune de la ieșire

depinde și de sarcină, rezultând o stabilitate scăzută a tensiunii de la ieșire. Când funcționează în

modul continuu convertorul Bust are plobleme cu controlul și stabilitatea. În modul dicontinuu,

energia din bobină la pornirea fiecărui ciclu este zero.

2.1.2.3 Convertorul coborâtor- ridicător (buck-bust)

Cel mai popular convertor flyback nu este derivat doar din convertorul Boost.Convertorul

flyback eliberează energia stocată în bobină pe perioda când comutatorul este blocat. Convertorul

Buck, deasemenea, livrează energia de la intrare. Flyback-ul se bazează pe combinaţia celor două

topologi, numindu-se convertorul Buck-Boost sau convertorul flyback neizolat. Această topologie

este prezentată în Figura 2.1.2.3.1.

Figura 2.1.2.3.1- Convertorul coborâtor- ridicâtor (buck-bust)

Când tranzistorul este închis, dioda este blocată, bobina este conectată la alimentare şi se încarcă cu energie. Când se deschide tranzistorul, energia stocată în bobină face ca tensiunea la bornele ei să crească şi prin dioda D1 încarcă condensatorul şi furnizează în acelaş timp energie sarcinii.

Formele de undă sunt similare cu cele de la convertorul Boost excepţie făcând tensiunea pe care trebuie să o suporte tranzistorul care este egală cu suma tensiunii de intrare şi cea de ieşire. Curentul de intrare şi de ieşire trebuie să fie discontinuu. În această schemă avem o inversare de polaritate, tensiunea generată la ieşire este negativă faţă de masa intrării.Formula de calcul este urmatoarea :

12

Page 13: Licenta Traistaru Adrian 2012

V 0

V i

= D1−D (5)

Valoarea factorului de umplere D poate fi aleasă astfel încât tensiunea de la ieşire să fie mai mare sau mai mică decăt tensiunea de la intrare.Acest lucru oferă flexibilitate convertorului de a fi ridicător sau coborâtor faţă de tensiunea de alimentare.

Acest regulator are aceeaşi problemă de funcţionare în modul continuu ca şi convertorul Boost şi de aceea este recomandat modul discontinuu de funcţionare.

Atâta timp cât curentul de intrare şi de ieşire sunt pulsatorii, nivele reduse ale riplului sunt foarte greu de atins folosind convertorul Buck Boost. Sunt necesare condensatoare de filtraj de până la 8 ori mai mari decâ la convertorul Buck.

Tranzistorul trebuie să poată conduce curentul mare de vârf şi să poată suporta tensiunea. Convertorul flyback (buck boost) care foloseşte această topologie plasează cel mai mult stres pe tranzistor, dioda trebuie de asemenea să suporte un curent de vârf mare.

2.1.3 Convertoare izolate

2.1.3.1 Convertorul Flyback

Dintre toate convertoare izolate, de departe, cea mai simplă topologie este topologia

flyback din Figura 2.1.3.1.1. Utilizarea unui singur tranzistor care comută înseamnă că

transformatorul poate fi alimentat numai unipolar (asimetric). Aceasta duce la o dimensiune mare

a miezului transformatorului. Flyback-ul este o versiune izolată a convertorului Buck-Boost.

Atunci când tranzistorul este în conducție, curentul crește prin bobina primarului şi energie este

stocată în miez, această energie este apoi eliberată la ieşire prin circuitul secundar când

tranzistorul este blocat.

13

Page 14: Licenta Traistaru Adrian 2012

Figura 2.1.3.1.1-Convertorul flyback și formele de undă

Polaritatea înfăşurărilor este în așa fel încât dioda de ieşire este blocată în timpul când

tranzistorul este în conducție. Atunci când tranzistorul este blocat, tensiunea prin bobina

secundară își inversează polaritatea, menţinând un flux constant în miez şi forţează curentul din

secundar să ”curgă” prin diodă spre sarcină. Amplitudinea curentului secundar de vârf este

valoarea amplitudinii curentului de vârf primar la ieșirea tranzistorului din conducție reflectatată

prin raportul de transformare.

Faptul că toată puterea de la ieşirea flyback-ului trebuie să fie stocată în miez ca 1/2LI2

înseamnă că mărimea miezului şi costul acestuia va fi mult mai mare decât la alte topologii.

În scopul de a stoca energie cât mai multă, inductanţa primară a flyback-ului trebuie să fie

semnificativ mai mică decât necesarul pentru un transformator adevărat, deoarece sunt necesari

curenţii de vârf mari. Acest lucru este în mod normal realizat prin introducerea unui întrefier în

miez. Întrefierul reduce inductanţa, şi energia de vârf este apoi stocată în întrefier, evitând astfel

saturarea transformatorului.

Atunci când tranzistorul se blochează, tensiunea de ieşire este reflectată prin transformator

în primar și în multe cazuri poate fi aproape la fel de mare ca tensiunea de alimentare. Există de

asemenea un vârf de tensiune la turn-off din cauza energie stocate în inductanţa de pierderi a

transformatorului. Acest lucru înseamnă că tranzistorul trebuie să fie capabil să suporte

14

Page 15: Licenta Traistaru Adrian 2012

aproximativ de două ori tensiunea de alimentare plus vârfurile. Prin urmare, pentru o alimentare

la 230V AC tensiunea după redresare poate atinge valoarea de 385V, valoarea tensiunii maxime

suportate de tranzistorul trebuie să se afle între 800 şi 1000V.

Avantaje

Acţiunea de flyback înseamnă că inductanţa secundară este în serie cu dioda de ieşire

atunci când curentul este livrat sarcinii. Acest lucru înseamnă că nu este nevoie de o bobină de

filtrare la ieşirea din sursă. Prin urmare,pe ieşire are nevoie doar de o diodă şi de condensatorul de

filtrare. Acest lucru înseamnă că flyback este alegere ideală pentru a realize surse ieftine cu ieşiri

multiple.

Flyback este de asemenea ideal pentru generarea de inaltă tensiune la ieşiri. Dacă un

convertor Boost de tip filtru LC a fost utilizat pentru a genera un nivel ridicat de tensiune, o

valoare foarte mare a inductanţei ar fi necesară pentru a reduce nivelul curentului de riplu pentru

a atinge modul de funcţionare continuu. Această restricţie nu nu se aplică în flyback, deoarece nu

are nevoie de o inductanță la ieșire.

Dezavantaje

Din formele de undă din Figura 2.1.3.1.1 este clar că condensatorul de la ieşire este

alimentat numai în timpul când tranzistorul este blocat. Acest lucru înseamnă că trebuie să

netezească curentul pulsatoriu de ieşire care are valori de vârf mai mari decât curent continuu de

ieşire care ar fi produs într-un convertor Forward, de exemplu. În scopul de a obține valori mici

ale riplului sunt necesari condensatori foarte mari cu rezistență serie echivalentă foarte

mică(e.s.r). Se poate observa că la aceeaşi frecvenţă un filtru LC este de aproximativ 8 ori mai

eficient la reducerea riplului decât un singur condensator. Prin urmare, sursele flyback au valuri

mult mai mari ale riplului decât alte topologii. Acest lucru, împreună cu curenţi mari de vârf,

condensatori şi transformatoare mari, limitează flyback-u la o putere de ieşire cuprinsă în gama

20-200W.

Flyback cu două tranzistoare

O soluţie la cerinţa de tranzistori care trebuie sa suporte o tensiune de 1000V este

versiunea flyback cu două tranzistore prezentată în Figura 2.1.3.1.2. Ambii tranzistori sunt

comandați simultan, şi toate formele de undă sunt exact la fel, cu excepţia faptului că tensiunea

pe fiecare tranzistor nu depăşeşte tensiunea de intrare. Pot fi folosite acum tranzistoare care să

15

Page 16: Licenta Traistaru Adrian 2012

suporte o tensiune maximă de 400-500V, care comută mai repede şi deci pierderi mai reduse.

Puterea şi frecvenţa de comutare pot fi crescute în mod semnificativ. Dezavantajele acestei

versiunii cu două tranzistoare sunt costul suplimentar şi complexitatea în comanda și izolarea

tranzistorului cu baza flotantă.

Figura 2.1.3.1.2-Convertorul Flyback cu două tranzistoare

Funcționarea în modul continuu vs. discontinuu

Ca şi convertorul Buck-boost, flyback-ul poate funcţiona atât în modul continuu cât și

discontinuu. Forme de undă din Figura 2.1.3.1.1 arată modul de funcţionare discontinuu. În

modul discontinuu, curentul secundar scade la zero în fiecare perioadă de comutare, şi toată

energia este eliberată din transformator. În modul continuu există curent prin inductorul de cuplaj

în orice moment, rezultând o formă de undă trapezoidală a curentului.

Avantajul principal al modului continuu este faptul că, curenţii de vârf au o valoare

înjumătățită față de cei din modul discontinuu pentru aceeaşi puterea de ieşire, prin urmare, este

posibilă obținerea unui riplu mai mic de ieşire. Cu toate acestea, dimensiunea miezului

transformatorului este de aproximativ 2 până la 4 ori mai mare în modul continuu pentru a atinge

inductanţa necesară pentru a reduce curenţii de vârf.

Un alt dezavantaj al modului continuu este faptul că în buclă închisă este mult mai dificil

de controlat decât în modul discontinuu. Aceasta înseamnă că este nevoie de mai mult timp şi

efort pentru a proiecta convertoare care să funcționeze în modul continuu pentru a atinge

stabilitatea.

16

Page 17: Licenta Traistaru Adrian 2012

În modul discontinuu este neglijabilă puterea disipată în tranzistor la turn-on, întrucât

acest lucru poate fi destul de mare în modul continuu, în special efectul suplimentar al curentului

de ieşire prin diodă, care apare doar în modul continuu. În mod normal înseamnă că trebuie să fie

adăugat un snubber pentru a proteja tranzistorul împotriva stresului de la intrarea în conducție.

Un avantaj al modului continuu este că în buclă deschisă câştigul este independent de

sarcina de la ieşire adică Vo depinde numai de D şi Vin aşa cum se arată în ecuaţia câştigul.

Modul continuu are în buclă deschisă o stabilitate foarte bună, variind de exemplu sarcina de la

ieşire nu va afecta valoarea Vo. Modul discontinuu pe de altă parte, are o dependenţa față ieşire.

Prin urmare, modul discontinuu, are o stabilitate mult mai mică în buclă deschisă, și anume o

schimbarea a sarcinii va afecta Vo. Această problemă dispare atunci când controlul se face în

buclă închisă.

Eficiența acestui convertor este ɳ=80%. (6)

Factorul de umplere maxim este Dmax = 0.45 (7)

Curentul maxim prin tranzistori este I=2

Pout

η∗Dmax∗Vmin (8)

Câștigul în modul continuu este

V 0

V in

=nD

1−D (9)

Câștigul în modul discontinuu este

V o

V in

=√ RL∗T2∗Lp (10)

2.1.3.2 Convertorul Forward

Convertorul forward este o topologie izolata cu un singur tranzistor, si este prezentat în

Figura 2.1.3.2.1. Aceasta se bazeaza pe topologia convertorului Buck, cu adaugarea unui

transformator si o dioda în circuitul de iesire. caracteristica filtrului LC de iesire este în mod clar

prezenta.

În comparatie cu convertorul flyback, convertorul forward are o actiune reala a

transformatorului, unde energia este transferata direct la iesire prin bobina cînd tranzistorul este

în conductie. Se poate observa ca polaritatea înfasurarii secundare este inversata fata de flyback,

permitînd curentului sa treaca direct prin dioda D1. În timpul cât tranzistorul este în conducție,

curentul care parcurge bobina primară induce energie în bobina secundară și apare un curent și

prin bobina L1 care se încarcă cu energie. Când tranzistorul iese din conducție, tensiunea prin

17

Page 18: Licenta Traistaru Adrian 2012

secundar se inversează, dioda D1 trece din starea de conducție în starea de blocare, iar dioda D2

intră în conducție pentru a pastra un curent constant prin sarcină. Acest lucru permite ca energia

stocată în bobina L1 să fie transferată sarcinii cât tranzistorul este blocat.

Convertorul Forward poate funcționa tot timpul în modul continuu, producând curenți de

vârf cu valori mici la intrare și la ieșire. Dacă trecem în modul discontinuu aceste valori vor

crește odată cu zgomotul generat de comutare. Problemele de control pe care le avea convertorul

flyback în modul continuu nu sunt prezente și aici. Deci nu avem avantaje reale să folosim modul

discontinuu la convertorul forward.

Avantaje

După cum se poate vedea în formele de undă din Figura 2.1.3.2.1, curentul prin bobină IL ,

care este de asemenea curentul de ieșire, este tot timpul continuu. Amplitudinea riplului și a

curentului de vârf din secundar depind de mărimea bobinei de la ieșire. Riplul poate fi făcut

relativ mic în comparație față de curentul de la ieșire, cu un curent de vârf minim. Acest riplu cu

valori mici, curentul continuu de la ieșire este ușor de netezit și mărimea condensatorului de la

ieșire necesar, rezistența serie echivalentă și curent de vârf suportat sunt de departe mai mici

decât în cazul unui convertor flyback.

Transformatorul în această topologie transferă energia direct deci este neglijabilă energia

stocată în miez în comparație cu flyback. În acest caz energia magnetică necesară să excite miezul

este mică, excitație care face miezul să devină un mediu de transfer al energiei. Această energie

este foarte mică și este nevoie de un curent de magnetizare mic prin primar. Asta înseamnă că

primarul trebuie sa aibă o inductanță mare, fără să fie nevoie de întrefier ca în cazul flyback-ului.

Miezurile din ferită standard cu permeabilitate mare sunt ideale pentru a obține o inductanță

mare. Energia stocată fiind neglijată înseamnă că transformatorul convertorului forward este mult

mai mic decât cel al flyback, deci și pierderile în miez sunt mult mai mici pentru aceași putere

transferată. Transformatorul operează tot asimetric, înseamnă că energia se transferă doar când

tranzistorul este în conducție, și aceasta înseamnă că transformatorul este totuși mare față de un

transformator care operează simetric.

18

Page 19: Licenta Traistaru Adrian 2012

Figura 2.1.3.2.1-Convertorul Flyback cu două tranzistoare

Dezavantaje

Datorită acţiunii comutării unipolare a convertorului forward este o problemă majoră cu

eliberarea energiei de magnetizare din miez la fiecare ciclu de comutare. Dacă această energie nu

s-ar elibera ar duce la saturarea miezului şi la distrugerea tranzistorului din primar. Energia de

magnetizare este eliberată automat la tipurile simetrice de acţiunea push-pull. La convertorul

flyback această energie este descărcată în sarcină la ieşirea tranzistorului din conducţie. La

convertorul forward nu există o astfel de cale prin care să se descarce energia.

Această cale se obţine prin adăugarea unei înfăşurări adiţionale de resetare cu polaritate

opusă faţă de cea primară. Această bobină este înseriată cu o diodă care în momentul blocării

tranzistorului intră în conducţie şi eliberează energia de magnetizare în sursa de alimentare.

Înfăşurarea de resetare este bobinată în paralel cu cea primară pentru a se asigura o cuplare bună

şi acelaşi număr de spire cu primarul. Timpul necesar ca energia de magnetizare să scadă la zero

are aceaşi durată cu cea cât tranzistorul este în conducţie. Acest lucru înseamnă că teoretic

19

Page 20: Licenta Traistaru Adrian 2012

factorul maxim de umplere este 50% dar dacă luăm în calcul şi întârzierile de comutaţie acesta

scade sub valoarea de 45%. Această limitare a controlului este un dezavantaj principal în

folosirea convertorului forward. Formele de undă ale curentului de magnetizare sunt prezentate în

Figura 2.1.3.2.1. Înfăşurarea de resetare este obţională la convertorul flyback, dar la convetorul

forward este necesară pentru o funcţioare corectă.

Alegerea diodei de la ieșire

Dioda din circuitul de ieșire trebuie să conducă întreaga amplitudine a curentului de ieșire.

Diodele pot produce vârfuri de curent în special dioda D2. Aceste vârfuri pot cauza pierderi în

transformator la intrarea în conducție a tranzistorului, cauze ce pot distruge tranzistorul în

absențaunui circuit snubber. Sunt necesare diode cu eficiență mare și să comute cât mai rapid

pentru a minimiza pierderile din timpul conducției și să reducă vârfurile de la intrarea în

conducție. Aceste cerințe sunt îndeplinite de diodele Schottky pentru tensiuni de ieșire de până la

20V și diode rapide pentru tensiuni mai mari de ieșire. Nu este normal ca un convertor forward să

aibă la ieșire o tensiune mai mare de 100V, convertoarele flyback fiind preferate pentru aceste

tensiunii.

Forward cu două tranzistoare

Pentru a nu folosi tranzistoare care să suporte tensiune mare se poate folosi convertorul

forward cu două tranzistoare. Acest circuit poste fi văzut în Figura 2.1.3.2.2, care este foarte

similar cu cel al convertorului flyback și are aceleași avantaje. Tensiunea pe tranzistoare va fi cea

de intrare V IN , care permite utilizarea unor tranzistoare mult mai rapide care trebuie să suporte o

tensiune de 400-500V pentru aplicațiile alimentate la 220V. Eliberarea energiei de magnetizare se

face prin cele două diode și nu mai este nevoie de o înfășurare în plus pentru a elibera această

energie.

20

Page 21: Licenta Traistaru Adrian 2012

Figura 2.1.3.2.2-Convertorul Forward cu două tranzistoare

Versiunea cu două tranzistoare este foarte utilizată pentru aplicațiile off-line. Ea poate

genera puteri mari la ieșire dar și frecvențe mari de comutație. Dezavantajul este costul

componentelor și nevoia unui driver izolat pentru comanda tranzistorului TR2.

Totuși acest convertor are și dezavantaje, utilizează sub jumătate din performanțele

transformatorului, este foarte popular pentru plaja de putere menționată, oferă o comandă simplă

pentru un singur tranzistor și componente ieftine. Sunt foarte comune cele cu ieșiri multiple.

Bobina de la ieșire este realizată pe un singur miez și dacă este dimensionat corect reduce riplul

de la ieșire oricât de mare ar fi. Avantajul major al convertoarelor forward este riplul foarte mic la

ieșire care poate fi ușor de eliminat cu un mic filtru LC.

Eficiența acestui convertor este ɳ=80%. (11)

Factorul de umplere maxim este Dmax = 0.45 (12)

Curentul maxim prin tranzistori este I=2

Pout

η∗Dmax∗Vmin (13)

Câștigul este

V 0

V in

=n∗D (14)

2.1.3.3 Convertorul Push-pull

21

Page 22: Licenta Traistaru Adrian 2012

Pentru a utiliza transformatorul pe întreg ciclul de histerezis, este necesar ca primarul să

fie alimentat simetric. Acest lucru permite utilizarea unor transformatoare mai mici generând

puteri mari la ieşire lucru care nu este posibil cu cele alimentate asimetric. Tipurile de

convertoare simetrice necesită întotdeauna un număr mai mare de tranzistoare. Cel mai cunoscut

convertor asimetric este convertorul push-pull din Figura 2.1.3.3.1.

Bobina primară are o bornă mediană conectată la plus şi fiecare tranzistor este comandat

alternativ, alimentând transformatorul în două sensuri. Transformatorul convertorului push-pull

este ca mărime jumătate faţă de cel al unui convertor flyback sau forward. Această acţiunea push-

pull produce o resetare naturală a miezului la fiecare ciclu, astfel nu mai este necesară o

înfăşurare suplimentară de resetare. Puterea este transferată la ieşirea de tip buck în timpul

conducţiei fiecărui tranzistor. Factorul de umplere al fiecărui tranzistor este mai mic de 0.45,

pentru a ne asigura că nu sunt cei doi tranzistori în conducţie în acelaş timp. Puterea poate fi

transferată la ieşire în proporţie de 90%, timpul cât tranzistorii sunt în conducţie, permiţând un

transfer de putere mai mare decât în cazul convertoarelor asimetrice. Configuraţia push-pull este

folosită pentru puteri cuprinse între 100-500W.

Efectul comutării tranzistoarelor se poate vedea în formele de undă din Figura 2.1.3.3.2 în

care se poate observa că frecvenţa de operare a circuitului de ieşire este de două ori mai mare

decât frecvenţa de comutare a tranzistoarelor. Condensatorul şi bobina de la ieşire pot fi mai mici

pentru aceleaşi valori ale riplului de la ieşire. Convertoarele push-pull sunt excelente pentru

densitate mare de putere şi riplu mic la ieşire.

22

Page 23: Licenta Traistaru Adrian 2012

Figura 2.1.3.3.1 Convertorul Push-pull

Avantaje

Convertorul push-pull oferă un design compact al transformatorului şi al filtrelor de ieşire,

producând un riplu foarte mic la ieşire. Controlul convertorului push-pull este similar cu cel al

forward, bazându-se pe modul de funcţionare al convertorului buck în modul continuu. Când

închidem bucla de reacţie compensarea se face uşor. Pentru mai multe ieşiri se va proceda ca la

convertorul forward.

Diodele de protecţie sunt puse între bornele tranzistoarelor după cum se vede. Acestea

permit eliberarea energiei de magnetizare pentru a fi uşor de dirijat în sursa de alimentare,

reducând stresul tranzistoarelor și mărind eficiența.

Emitorul sau sursa tranzistorului de putere sunt la același potențial în configurația push-

pull și au ca referință masa. Acest lucru înseamnă că poate fi folosit acelaș tip de driver pentru

cele două tranzistoatre și nu sunt necesare transformatoare de izolație ce ar însemna costuri

suplimentare.

Dezavantaje

Un principal neajuns al convertorului push-pull este faptul că fiecare tranzistor trebuie să

blocheze o tensiune dublă față de cea de alimentare datorată de efectul dublării al primarului

format din două bobine înseriate, chiar dacă sunt folosite două tranzistoare. Acest lucru apare

23

Page 24: Licenta Traistaru Adrian 2012

când un tranzistor se blochează și celălalt intră în conducție. Când ambii tranzistori sunt blocați,

fiecare blochează tensiunea de alimentare, acest lucru poate fi observat în Figura 2.1.3.3.2.

O problemă majoră a convertorului push-pull este că fluxul trebuie să fie simetric. Dacă

fluxul generat la fiecare jumătate de ciclu nu este exact simetric va rezulta saturarea miezului

transformatorului în general pentru tensiuni mari de intrare. Nesimetria poate fi cauzată de

caracteristici diferite ale celor două tranzistoare.

Utilizarea a două bobine primare înseamnă un necesar mai mare de cupru și este necesară

o cuplare foarte bună între cele două bobine. Dacă vor fi folosite circuite de protecție a

tranzistoarelor de tip snubber acestea trebuie să fie calculate foarte bine pentru a nu interacționa

cu celelalte circuite de protecție. Acest lucru este valabil pentru toate convertoarele simetrice.

Aceste dezavantaje în mod normal dictează ca push-pull să funcționeze la la tensiuni mici

de alimentare cum ar fi 12,28 sau 48V. Convertoarele DC-DC utilizate în automotive și în

industria telecomunicațiilor sunt de obicei topologii push-pull. La aceste nivele de tensiune

saturarea miezului transformatorului poate fi ușor evitată.

Figura 2.1.3.3.2 Formele de undă ale convertorul Push-pull

Eficiența acestui convertor este ɳ=80%. (15)

24

Page 25: Licenta Traistaru Adrian 2012

Factorul de umplere maxim este Dmax = 0.90 (16)

Tensiunea maximă suportată de tranzistoare este V=2*Vin(max )+vârfuri (17)

Curentul maxim prin tranzistori este I=2

Pout

η∗Dmax∗Vmin (18)

Câștigul este

V 0

V in

=2∗n∗D (19)

2.1.3.4 Convertorul Half-Bridge

Dintre toate convertoarele simetrice de putere mare, convertorul half-bridge din Figura

2.1.3.4.1 este cel mai utilizat. În principiu este o versiune balansată a convertorului forward și

este de asemenea derivat din convertorul buck. Convertorul half-bridge are câteva avantaje față

de push-pull, care îl face să fie prima alegere în aplicațiile de mare putere cu o putere cuprinsă

între 500 și 1000W.

Condensatoarele C1 și C2 sunt conectate în serie și astfel se crează un punct median

virtual al tensiunii de alimentare, punctul A din schemă. Cele două tranzistoare sunt comandate

alternativ și conectează câte un condensator la înfășurarea primară la fiecare jumătate de ciclu. V

in /2 este aplicat înfășurării primare simetric ca în cazul push-pull. Puterea este transferată direct

la ieșire în fiecare ciclu de conducție a unuia dintre tranzistoare având un factor de umplere

maxim de 90%. Sunt necesari niște timpi de gardă pentru a preveni ca cei doi tranzistori să intre

în conducție în acelaș timp. Deoarece primarul este alimentat în cele două direcții la ieșire va fi

nevoie de un redresor dublă alternanță. Acesta este rezultatul utilizării foarte eficiente ale

transformatorului. După cum se poate observa în Figura 2.1.3.4.2 formele de undă sunt identice

ca cele de la push-pull, excepție făcând tensiunea de pe tranzistoare care este jumătate din

tensiunea de alimentare. Curentul dispozitivului va fi mai mare pentru aceași putere de ieșire.

25

Page 26: Licenta Traistaru Adrian 2012

Figura 2.1.3.4.1 Convertorul Half-bridge

Avantaje

Deoarece cele două tranzistoare sunt efectiv în serie ele nu vor trebui niciodată să suporte

o tensiune mai mare decât cea de alimentare, Vin . Cănd cele două sunt blocate, tensiunea de pe

ele va fi egală cu cea din punctul median adică Vin /2. Aceasta este jumătate față de cea din cazul

push-pull. Acest lucru înseamnă că half-bridge este foarte utilizată în aplicații cu tensiunea mare

de intrare.

Un alt avantaj major față de push-pull este că problema saturării transformatorului

datorată nesimetriei balansării fluxului este evitată prin folosirea unui mic condensator(mai puțin

de 10uF) astfel orice componentă continuă este oprită și doar curent alternativ simetric va fi livrat

la intrare.

Configurația halh-bridge permite utilizarea unor diode de clamp-ing în paralel cu

tranzistoarele, diodele D3 și D4 din Figura 2.1.3.4.1. Energia de magnetizare este recuperată în

cele două condensatoare, protejând tranzistoarele și mărind eficiența.

Un avantaj mai puțin evident al half-bridge este dat de cele două condensatoare conectate

în serie care face din acesta să fie un circuit ideal pentru un dublor de tensiune care permite

utilizarea lui la 110V sau 220V având posibilitatea să selectăm acest lucru.

26

Page 27: Licenta Traistaru Adrian 2012

Circuitele în punte au de asemenea acelaș avantaj față de cele cu un singur tranzistor,

incluzând o utilizare excelentă a transformatorului, un riplu foarte mic și capabilitatea să debiteze

puteri mari la ieșire. Factorul care limitează puterea maximă disponibilă la ieșirea half-bridge este

capabilitatea tranzistoarelor din ziua de azi să suporte vârfuri de curent. Puterea maximă este

1000W, pentru puteri mai mari se folosesc convertoare în punte cu patru tranzistoare.

Dezavantaje

Un dezavantaj îl reprezintă dimensiunea condensatoarelor C1 și C2 care sunt destul de

mari. Tranzistorul TR1 trebuie să fie comandat printr-un driver izolat deoarece acesta se află la

un potențial flotant. Dacă sunt folosite circuite snubber în paralel cu tranzistoarele acestea trebuie

dimensionate precis pentru a nu interacționa între ele datorită acțiunii alimentării simetrice.

Costul circuitului și complexitatea au crescut dar odată cu ele și avantajele. În multe cazuri half-

bridge este folosit la puteri de sub 500W.

Figura 2.1.3.4.2 Formele de undă ale convertorul Half-bridge

Eficiența acestui convertor este ɳ=80%. (20)

27

Page 28: Licenta Traistaru Adrian 2012

Factorul de umplere maxim este Dmax = 0.90 (21)

Tensiunea maximă suportată de tranzistoare este V=Vin(max )+vârfuri (22)

Curentul maxim prin tranzistori este I=2

Pout

η∗Dmax∗Vmin (23)

Câștigul este

V 0

V in

=n∗D (24)

2.1.3.5 Convertorul Full-Bridge

Convertorul Full-bridge din Figura 2.1.3.5.1 este o versiune a convertorului half-bridge de

putere mai mare și poate debita cea mai mare putere la ieșire dintre toate convertoarele de mai

sus. Curentul maxim suportat de tranzistoarele de putere poate determina limita maximă a puterii

de ieșire a convertorului half-bridge. Aceste nivele pot fi dublate folosind Full-bridge, care se

obține prin adăugarea a încă două tranzistoare și două diode de clamp-ing la half-bridge.

Tranzistoarele sunt comandate alternativ în perechi, T1 și T3 apoi T2 și T4. Primarul

transformatorului este acum alimentat la tensiunea de intrare. Nivelele curenților sunt înjumătățite

în comparație cu half-bridge pentru aceași putere dată. Convertorul full-bridge va dubla puterea

de la ieșire față de half-bridge folosind acelaș tip de tranzistoare.

Circuitul secundar funcționează în exact acelaș mod ca la push-pull și half-bridge,

producând de asemenea un riplu foarte mic la ieșire la nivele ale curentului mari. Formele de

undă pentru Full-Bridge sunt identice cu cele de la Half-Bridge din Figura 2.1.3.4.2, exceptând

tensiunea din primar care este efectiv dublată.

Figura 2.1.3.5.1 Convertorul Full-Bridge

28

Page 29: Licenta Traistaru Adrian 2012

Avantaje

Convertorul Full-Bridge este ideal pentru a genera puteri foarte mari la ieșire.

Complexitatea crescută a circuitului înseamnă că Full-Bridge este folosit în aplicațiile care

necesită o putere de 1KW sau mai mare.

Full-Bridge are avantajul că utilizează un singur condensator de netezire față de half-

bridge ceea ce înseamnă că se economisește spațiu. Celelalte avantaje sunt identice cu cele ale

half-bridge.

Dezavantaje

Sunt necesare patru tranzistori și patru diode de clamp-ing față de două la celelalte tipuri

simetrice. De asemenea sunt necesare două drivere izolate pentru tranzistoarele aflate la potențial

flotant. Full-bridge are cel mai complex și costisitor design dintre toate convertoarele de mai sus

și trebuie folosit doar acolo unde celelalte convertoare nu îndeplinesc cerințele. Pentru cele patru

tranzistoare circuitele de protecție de tip snubber trebuie proiectate cu grije pentru a nu

interacționa între ele.

Eficiența acestui convertor este ɳ=80%. (25)

Factorul de umplere maxim este Dmax = 0.90 (26)

Tensiunea maximă suportată de tranzistoare este V=Vin(max )+vârfuri (27)

Curentul maxim prin tranzistori este I=2

Pout

η∗Dmax∗Vmin (28)

Câștigul este

V 0

V in

=2∗n∗D (29)

2.1.4 Convertoare cvasirezonante

2.1.4.1 Generalități

Creşterea frecvenţei de funcţionare a convertoarelor de putere este de dorit, deoarece

permite circuitului magnetic şi condensatorilor să fie reduse, ceea ce duce la circuite mai ieftine şi

mai compact. Cu toate acestea, creşterea frecvenţei de funcţionare duce la creşterea pierderilor

din timpul comutaţiei, prin urmare, se reduce eficienţa sistemului. O soluţie la această problemă

29

Page 30: Licenta Traistaru Adrian 2012

este de a înlocui comutatorul "chopper-ului" din topologiile standard SMPS (Buck, Boost, etc) cu

comutatoare "rezonante", care

folosesc rezonanţa circuitelor capacitive şi inductive pentru a contura forma de undă a curentului

sau a tensiunii pe elementul de comutare astfel încât atunci când are loc comutarea, nu există

curent prin comutator sau tensiune pe el şi prin urmare puterea disipată va fi mult mai mică

(Figura 2.1.4.1.1).

Figura 2.1.4.1.1

Circuitele care utilizează această tehnică se numesc convertoare rezonante (sau,convertor

cvasi-rezonanţă).

Un circuit care comută la curent zero (ZCS) modelează forma de undă a curentului, în

timp ce circuitele cu comutarea la tensiune zero (ZVS), modelează forma de undă a tensiunii.

2.1.4.2 Comutarea la curent zero (ZCS)

O comutare tipică la curent zero constă în, comutatorul S în serie cu inductor de rezonanţă

L¿ RES ¿¿¿ , şi condensatorul C

¿ RES ¿¿¿ conectate în paralel. Energie este furnizată de o sursă de curent.

Circuitul și formele de undă sunt prezentate în Figura 2.1.4.2.1

30

Page 31: Licenta Traistaru Adrian 2012

Figura 2.1.4.2.1

Dacă este utilizat un transformator de ieşire, în anumite cazuri inductanţa sa parazită poate

fi folosită ca inductanţă rezonată (atât în acest caz cât și la topologia comutare la tensiune zero).

Cu toate acestea, valoarea sa nu este cunoscută, frecvenţa de rezonanţă nu va fi fixă, și poate

provoca probleme în proiectarea circuitului. Când comutatorul S este oprit, capacitorul rezonant

este încărcat cu un curent mai mult sau mai puţin constant, şi astfel tensiunea pe aceasta creşte

liniar. Când comutatorul este pornit, energia stocată în condensator este transferată în inductor,

cauzând o circulație a curentului sinusoidală prin comutatorul. Pe alternanța negativă, curentul

circulă prin dioda anti-paralel, şi astfel în această perioadă nu este curent prin comutator sau

tensiunea pe acesta, şi poate fi oprit, fără pierderi. Acest tip de comutare este de asemenea,

cunoscută sub numele de modul tiristor, deoarece este una dintre cele mai potrivite modalităţi de

utilizare a tiristoare, aceste dispozitive se blochează doar în cazul în care curentul prin ele trece

prin zero, care apare în mod natural în această topologie.

2.1.4.3 Comutarea la tensiune zero (ZVS)

Comutarea la tensiune zero constă în conectarea unui comutator cu o diodă în paralel.

Condensatorul rezonant este conectate în paralel, şi bobina rezonantă este conectată în serie cu

această configuraţie. O sursă de tensiune conectată în paralel injectează energie în acest sistem.

Circuitul și formele de undă sunt prezentate în Figura 2.1.4.3.1.

31

Page 32: Licenta Traistaru Adrian 2012

Figura 2.1.4.3.1

Când comutatorul este în conducție, curentul circulă liniar prin bobină. Când comutatorul

este blocat, energia care este stocată în bobină este transferată în condensatorul rezonant.

Tensiunea rezultată pe condensator şi comutator este sinusoidală.

Pe alternanța negativă tensiunea este blocată de diodă. Pe alternanța negativă, curentul și

tensiunea prin comutator sunt zero, și comutatorul poate intra în conducție fără să disipe energie.

Funcționarea în comutație reduce pierderile cu 70%-95%. Pentru randamente foarte mari

nu se folosesc convertorare de CC în impulsuri ci se folosesc ZVS și ZCS.

Avantajul este ca pierderile din timpul comutației sunt minime, tranzistorul chopper nu se

mai încalzeste deci nu mai este nevoie de radiatoare pentru acesta.

2.1.5 Transformatoarele cu miez de ferită

Versiunile neizolate de convertoare au utilizare limitată, cum ar fi regulatoarele DC-DC

capabile să aibă o singură ieșire. Ieșirea este limitată de tensiunea de intrare și de factorul de

umplere. Utilizarea unui transformator elimină majoritatea acestor neajunsuri și obținem un

convertor cu următoarele avantaje:

-avem izolație între intrare și ieșire, care este necesară în aplicațiile în care utilizează tensiunii

mari pentru a asigura un grad de siguranță la ieșire;

-raportul de transformare al transformatorului poate fi ales pentru a obține orice valoare la

ieșire,la versiunile neizolate suntem limitați la un raport de aproximativ 5;

32

Page 33: Licenta Traistaru Adrian 2012

-se pot obține ieșiri multiple doar adăugând înfășurări suplimentare în secundar;

Convertoarele izolate pot fi împărțite în două categori, convertoare asimetrice și simetrice,

în fucție de cum este utilizat transformatorul.

În convertoarele asimetrice curba de histerezis a transformatorlui este doar într-un cadran,

fluxul și câmpul magnetic nu își schimbă semnul. Miezul trebuie reset la fiecare ciclu pentru a

evita saturarea, însemnând că doar jumătate din fluxul utilizabil este exploatat. Acest lucru poate

fi văzut în Figura 2.1.5.1 unde putem observa modul de funcționare al fiecărui convertor.

Convertorul flyback și forward sunt amândouă asimetrice. Din diagramă putem observa cum

convertorul flyback funcționează la permeabilitate (B/H) și inductanță mică față de celelalte.

Acest lucru este datorat faptului că transformatorul înmagazinează energia înainte să o transfere

sarcinii, este necesar pentru acest lucru de un întrefier care să stocheze energia și să împiedice

saturarea miezului.

Figura 2.1.5.1-Utilizarea miezului în convertoarele asimetrice și simetrice

Convertoarele simetrice care necesită un număr mai mare de tranzistoare pentru

comutație, curba de histerezis este în ambele cadrane, folosind miezul mult mai eficient, putând

produce mai multă putere decât cele asimetrice.

33

Page 34: Licenta Traistaru Adrian 2012

În tabelul următor este prezentată puterea maximă care se poate obține din aceste

convertoare:

Ferita este un material ideal pentru miezul transformatoarelor, invertoarelor și bobinelor

folosite la frecvente de 20Khz-3Mhz.

Relațiile de calcul pentru dimensionarea transformatorului sunt derivate din legea lui

Faraday:

E=4*B*AC *N*f*10−8

(30) – pentru forma de undă dreptunghiulară

E=4.44*B*AC *N*f*10−8

(31) – pentru forma de undă sinusoidală

E - tensiunea aplicată (V) N - numărul de spire

B – densitatea fluxului (gauss) f – frecvența (Hz)

AC - aria miezului (cm2

)

Formula generală pentru alegerea dimensiunii miezului pentru diferite topologi:

Wa AC =

P0∗Dcma

k t∗Bmax∗f (32)

Wa AC - produsul dintre aria ferestrei și a miezului (cm4

)

P0 - puterea debitată (Watt)

34

Page 35: Licenta Traistaru Adrian 2012

Dcma - densitatea de curent (mils/amper)

Bmax - densitatea fluxului (gauss)

f – frecvența (Hz)

k t - constanta topologiei: Forward=0.0005

Push-pull=0.001

Half-bridge=0.0014

Full-bridge=0.0014

Flyback=0.00033

Valoarea densității fluxului se află citind graficul din Figura 2.1.5.2.

Figura 2.1.5.2 - Densitatea fluxului în raport cu frecvența de funcționare

După ce am ales miezul transformatorului putem calcula numărul de spire și curentul prin

înfășurări ajutandu-ne de formulele:

35

Page 36: Licenta Traistaru Adrian 2012

Np =

V p∗108

4∗B∗Ac∗f (33) Ns =

V s

V p * Np (34)

Ip =

Pin

Ein (35) Is =

Pout

Eout (36)

Np - numărul de spire din primar Ns - numărul de spire din secundar

Vp - tensiunea aplicată primarului Vs - tensiunea debitată în secundar

Ip - curentul prin primar Is - curentul prin secundar

Pin - puterea de intrare Pout - puterea la ieșire

Ein - tensiunea aplicată la intrare E¿ out ¿¿¿ - tensiunea obținută la ieșire

2.2 Studiul microcontroller-ului DSPIC30F4011

2.2.1 Introducere

Microcontroller-ul DSPIC30F4011 de la firma Microchip pe care l-am utilizat în montaj

are o arhitectură Harvard modificată, setul de instrucțiuni este optomizat și are un buss de date de

16 biți.

Am folosit acest microcontroller deoarece are un modul de Motor Control cu ajutorul

căruia se poate comanda puntea H de la iesire în vederea obținerii formei de undă sinusoidale.

Pe lângă modulul de Motor Control acesta mai are 5 module de timer, 9 canale de ADC

pe 10 biți și module de comunicație cum ar fi UART,SPI,I2C sau CAN.

Deoarece am avut nevoie de un microcontroller cu aproximativ 30 de pini pe care să-i pot

utiliza am ales modelul cu 44 de pini în capsulă QFN, dispunerea pinilor este prezentată în Figura

2.2.1.1.

36

Page 37: Licenta Traistaru Adrian 2012

Figura 2.2.1.1 –Dispunerea pinilor

În Figura 2.2.1.2 este prezentată schema bloc a acestui microcontroller.

37

Page 38: Licenta Traistaru Adrian 2012

Figura 2.2.1.2 –Schema bloc a microcontroller-ului

2.2.2 Unitatea de intrare-ieșire (I/O)

38

Page 39: Licenta Traistaru Adrian 2012

Toți pinii dispozitivului în afară de VDD,VSS,MCLR și OSC1 sunt conectați între

periferice și portul paralel de I/O. Pinii de intrare au câte un Trigger Schmitt pentru a îmbunătății

imunitatea la zgomot.

Când un periferic este activat și un anume pin îi este asociat, utilizarea pinului cu scop de

ieșire este dezactivată. Pinul I/O poate fi citit dar driverul de ieșire pentru portul paralel va fi

dezactivat.

Registru TRISx controlează direcția pinului. Registrul LATx distribuie datele la ieșire și

poate fi atât citit cât și scris. Citirea registrului PORTx arată starea pinului de intrare iar scrierea

acestuia modifică continutul registrului LATx.

Schema bloc a unui pin este prezentată în Figura 2.2.2.1.

Figura 2.2.2.1 –Schema bloc a unui pin

2.2.3 Modulul de generare PWM

39

Page 40: Licenta Traistaru Adrian 2012

Modulul de motor control simplifică modul în care se pot genera mai multe pwm-uri

sincronizate. Modulul conține 3 generatoare de factor de umplere și are 6 ieșiri de pwm. Modulul

permite mai multe moduri de funcționare utile în aplicațiile de control al puterii.

Registrii din care se configurează modulul sunt:

PTCON - registrul de control al bazei de timp;

PTPER - registrul de control al perioadei bazei de timp;

PWMCON - registrul de control al PWM;

PDC1 - registrul de control al factorului de umplere;

Schema bloc a modulului de motor control este prezentată în Figura 2.2.3.1.

Figura 2.2.3.1 –Schema bloc a modului motor control

2.2.4 Modulul de ADC

40

Page 41: Licenta Traistaru Adrian 2012

Schema bloc a modului ADC este prezentată în Figura 2.2.4.1. Convertorul analog/digital

poate avea până la 16 pini de intare analogici, numerotați AN0-AN15, dintre care doi dintre ei pot

fi folosiți pentru tensiunea de referință externă.

Registrii din care se configurează modulul sunt:

ADCON1 - registrul de control 1

ADCON2 - registrul de control 2

ADCON3 - registrul de control 3

ADCHS - registrul de selecție al canalului de intrare

ADPCFG - registrul de configurare a portului A/D

Figura 2.2.4.1 –Schema bloc a modului de ADC

2.3 Studiul surselor neîntreruptibile de energie

41

Page 42: Licenta Traistaru Adrian 2012

O sursă neîntreruptibilă de energie, sau UPS, este un dispozitiv electronic care oferă o

alternativă în alimentarea echipamentelor de curent alternativ când nu avem retea electrică. În

comparație cu sursele auxiliare de energie, UPS-ul poate debita energie instant pentru

dispozitivele conectate, protejează dispozitivele electronice sensibile permițându-le să se oprească

adecvat și previne astfel erorile de sistem. UPS-urile au devenit foarte populare în protejarea

calculatoarelor și echipamentelor de telecomunicații, prevenind daune serioase ale părții fizice cât

și pierderi de date.

Sistemele UPS oferă un număr mare de aplicații în variate ramuri ale industriei. Zona de

aplicabilitate a acestora este, pentru puteri mici la calculatoarele personale, cele de putere medie

pentru aparatură medicală, sisteme de susținere a vieții, înmagazinare de date și echipament de

urgență, și cele de putere mare pentru telecomunicații, industia de procesare și sistemele de

management online.

2.3.1 Surse neîntreruptibile Offline

Un UPS offline prezentat în Figura 2.3.1.1, direcționează energia electrică primită de la

rețeaua electrică sarcinii și comută doar când detectează o problemă a tensiunii de alimentare,

furnizând energie din baterii. Aceată comutare are timp în câteva milisecunde, timp în care

invertorul pornește și debitează energie din baterii.

Figura 2.3.1.1 –Schema bloc a unui UPS offline

2.3.2 Surse neîntreruptibile Online

42

Page 43: Licenta Traistaru Adrian 2012

Un UPS online prezentat în Figura 2.3.2.1, alimentează consumatorul din invertor chiar și

când nu avem probleme cu alimentarea iar în timp ce invertorul funcționează sunt încărcați

acumulatorii, când apare o problemă cu rețeaua de alimentare este oprit doar redresorul care

încarcă acumulatorii. Acesta mai are și un comutator de bypass care comută în cazul în care apare

o suprasarcină dar avem și retea electrică.

Figura 2.3.2.1 –Schema bloc a unui UPS online

2.3.3 UPS cu tensiune de ieșire dreptunghiulară

Invertoarele cu formă de undă dreptunghiulară si-au luat numele din forma de undă de la ieșire, o astfel de undă este prezentată în Figura 2.3.3.1. Acestea au fost primele invertoare inventate, și partea de comutație era realizată cu relee, semnalul obținut fiind aplicat unui transformator ridicător. Comutatoarele mecanice au fost înlocuite apoi cu tiristoare.

43

Page 44: Licenta Traistaru Adrian 2012

Figura 2.3.3.1 –Forma de undă dreptunghiulară

2.3.4 UPS cu tensiune de ieșire sinus-modificat

Ciclul de comutare este identic cu cel care are ieșire dreptunghiulară exceptând faptul că

mai are un pas adițional. În ciclul de comutare, este adus încă un pas care eliberează energia din

miezul transformatorului eliminând astfel problemele legate de schimbarea sensului curentului

prin primarul transformatorului. O astfel de formă de undă este prezentată în Figura 2.3.4.1.

Figura 2.3.4.1 –Forma de undă sinusoidală modificată

44

Page 45: Licenta Traistaru Adrian 2012

2.3.5 UPS cu tensiune de ieșire sinusoidală

Ca și invertoarele cu undă sinusoidală modificată sau cele cu undă dreptunghiulară, multe

alte topologii de invertoare au fost create pentru a obtine o formă sinusoidală. Neajunsul acestor

invertoare este costul și complexitatea care sunt relativ mari în comparație cu celelalte. Semnalul

de la ieșirea unui invertor cu undă sinusoidală este prezentat în Figura 2.3.5.1.

Figura 2.3.5.1 –Forma de undă sinusoidală

2.3.6 Comparație între formele de undă

Diferența dinte cele trei topologii de invertoare se poate observa din Figura 2.3.6.1 unde

sunt prezentate formele de undă de la cele 3 invertoare.

Figura 2.3.6.1 –Fomele de undă de la cele 3 invertoare

45

Page 46: Licenta Traistaru Adrian 2012

Cap. 3 Contribuții proprii

Am realizat acest stand pentru a demonstra funcționalitatea sursei neîntreruptibile pe care

am realizat-o, el este prezentat în figura 3.1.

Figura 3.1 –Standul demonstrativ

Standul este format din urmatoarele elemente:

1. Comutator acumulator

2. Comutator rețea

3. Sarcina: corp de iluminat

4.Sarcina: motor de curent alternativ (230V)

5. Comutator de sarcină

6. Afișor status UPS

7.Acumulator

8.Suport montaj (UPS)

46

Page 47: Licenta Traistaru Adrian 2012

3.1 Schema bloc a proiectului

Schema bloc a montajului este prezentată în Figura 3.1.1.

Figura 3.1.1 –Schema bloc a UPS-ului

3.2 Proiectarea schemei electronice

Schema electronică a fost proiectată în programul Eagle 5.8.0 iar simulările unor părți din

schema au fost făcute Orcad Pspice 16.2

3.2.1 Încărcătorul pentru acumulatori

Pentru încărcarea acumulatorilor folosiți am preferat să folosec o sursă în comutație ZVS

pentru a utiliza eficient energia de la rețea deoarece acst tip de sursă are pierderi mici la comutare.

3.2.1.1 Redresorul și filtrul de intrare

Pe partea de alimentare a sursei ZVS am plasat un filtru de mod comun pentru a elimina

interferențele de mod comun. Siguranța fuzibilă F2 are rol de protecție la scurtcircuit și NTC-ul

de a proteja puntea redresoare. Din datele de catalog ale punții redresoare se poate citii valoarea

maximă instantanee a curentului este de 120A iar în momentul alimentării considerăm

condensatoarele electrolitice descărcate deci puntea va avea practic în scurt ieșirea și trebuie limit

47

Page 48: Licenta Traistaru Adrian 2012

acest curent până încep condensatoarele să se încarce. Valoarea NTC-ului de protecție se poate

calcula folosind formula R=

UI , unde U este tensiunea aplicată deci 230V iar I este curentul

maxim instantaneu deci 120A de unde rezultă valoarea rezistenței de 1.9 Ω iar valoarea ce-a mai

apropiată de aceasta a fost 3.3 ohm. Rezistoarele R27 și R29 au fost folosite pentru a echilibra

tensiunea din condensatoare acestea fiind înseriate. În locul celor două condensatoare se putea

folosi unul de tensiune mai mare, minim 400V, au fost preferate acestea deoarece au fost

recuperate dintr-o altă sursă în comutație. Schema este prezentată în Figura 3.2.1.1.1.

Figura 3.2.1.1.1 –Schema redresorului și filtrului de intrare

3.2.1.2 Circuitul de putere

Circuitul de putere este format din tranzistorul mosfet care realizează comutarea tensiunii

de alimentare și transformatorul ridicător.

Mi-am propus să realizez un încărcător cu o putere de 300W deci prin primar o să avem

un curent de maxim 1A. Știind că tensiunea de pe șunt la care integratul oprește sursa este de 2V

iar curentul de scurt este de 10 ori mai mare decât curentul nominal putem calcula valoarea

șuntului folosind formula R=

UI , unde U este tensiunea de pe șunt, 2V iar I este curentul de scurt

deci 10A de unde rezultă valoarea rezistenței de 0.2 Ω. Deoarece nu am gasit un șunt de această

valoare am folosit unul de valoare apropiata și anume 0.182 Ω. Curentul maxim va fi astfel de

I=10.98A.

48

Page 49: Licenta Traistaru Adrian 2012

Figura 3.2.1.2.1 –Schema părți de putere

În alegerea tranzistorului de putere am ținut cont de faptul că sursa este în configurație

flyback deci tensiunea drenă-sursă minimă trebuie să fie de cel puțin două ori mai mare decât

tensiunea după redresare la care adăugăm vârfurile de tensiune, de aceea am ales un tranzistor cu

UDS=800V, curentul de drenă suportat este de 8A. În cazul unui curent maxim de 1A prin drena

tranzistorului vom avea o putere disipată de 1.2W deci va fi nevoie de un mic radiator pentru a

disipa această căldură.

Pentru a preveni saturarea miezului fiind o configurație flyback am folosit un circuit

diodă-rezistor-condensator pentru a elibera energia acumulată în miez pe perioda cât tranzistorul

este blocat.

3.2.1.3 Circuitul de comandă

Componenta principală a circuitului de comandă este integratul specializat de la firma ST,

L6565. Într-o capsulă cu 8 pini este foarte utilizat în topologiile ZVS. În figura 3.2.1.3.1 este

prezentată conectarea integratului în schemă.

Pinul 3 este pinul de reacție pentru tensiunea de alimentare. În funcție de această tensiune

se setează limitările de curent. Tensiunea pe care o poate citi pe acest pin este între 0 și 3V, astfe

am calculat valorile rezistențelor din divizor de tensiune. Am ales tensiunea de reacție la

jumătatea intervalului și rezistenta R68=16K de aici folosind formula divizorului de tensiune a

rezultat cealaltă rezistență cu valoarea de 3.3MΩ. Am folosit o valoare apropiată și anume 3

rezistențe de 1MΩ înseriate obținând astfel 3MΩ, tensiunea de reacție va fi:

VVFF=

16∗32016+3000 =1.69, deci ne încadrăm în limitele admise. Condensatorul C53 are rolul de a

filtra zgomotul sau perturbațiile ce pot apărea pe pinul de reacție.

49

Page 50: Licenta Traistaru Adrian 2012

Circuitul are nevoie de un curent foarte mic de pornire de aceea am folosit patru rezistențe de

100K înseriate prin care încarc condensatorul C31 din care se alimentează circuitul. După pornire

circuitul se alimentează dintr-o înfășurare secundară auxiliară. Dioda D8 redresează tensiunea din

înfășurarea secundară auxiliară, după care este filtrată cu condensatoarele C31, C52 și

alimentează circuitul de comandă.

Pinul 7 este pinul de comandă al tranzistorului de putere. Grila este încărcată prin

rezistența R33 de 100Ω și descărcată prin cea de 10Ω pentru a păstra o rampă simetrică la

încărcare și la descărcare.

Pinul 5 citește trecerile prin zero pentru a putea să comute tranzistorul la tensiune zero.

Rezistența R59 limitează curentul prin acest pin. Stiind curentul maxim suportat este 50mA și

tensiunea debitată de înfășurare secundară auxiliară este 15V putem alege valoarea rezistenței. La

o valoare de 10K vom avea un curent de 15mA care se încadrează în limite.

Reacția tensiunii de ieșire se face cu un optocuplor pentru a avea o izolare galvanică între

primar și secundar. Tensiunea de la ieșire este redresată cu o altă diodă pentru a nu fi influențată

reacția de tensiunea din acumulator în momentul încărcării.

Figura 3.2.1.3.1 –Schema circuitului de comandă

3.2.1.4 Transformatorul

50

Page 51: Licenta Traistaru Adrian 2012

Pentru realizarea transformatorului am ales un miez de ferită E40 care la frecvența de

lucru propusă de 100Khz poate transfera 300W. Miezul și carcasa au fost recuperate dintr-o sursă

ATX, acest miez are o arie de 1.32cm2

.

Cunoscând tensiunea maximă din primar ca fiind Vp=330V, fluxul maxim prin miez

B=1200 Gauss, aria miezului A=1.32 cm2

și frecvența de lucru f=100Khz am înlocuit în formula

33 și am obținut în primar un numar de spire Np =52 spire.

După ce am determinat număr de spire din primar și cunoscând tensiunea de ieșire

Vs =30V am înlocuit în formula 34 și am obținut un număr de spire în secundar Ns =5 spire.

Pentru înfășurarea secundară auxiliară am folosit tot formula 34 în care se modifica doar

tensiunea de ieșire care nu mai era 30V, era 15V de unde au rezultat 3 spire.

Pierderile în transformatorul de putere se datorează pierderilor în miezul de ferită şi

pierderilor în conductorul de cupru. Pierderile din miezul de ferită sunt datorate în mare parte

pierderilor de histerezis şi cresc odată cu creșterea frecvenței şi creșterea fluxului, din acest motiv

densitatea maximă de flux s-a ales la valoarea de 0.12T (1200 G), la această valoare pierderile în

miezul de ferită ajung la 70mW/cm3 iar la volumul total de 17.3 cm3 pierderile totale din miez se

situează la valoarea de 1.2W.

Pierderile din cupru se împart la rândul lor în două categorii pierderi datorate efectului

pelicular şi pierderi datorate efectului de proximitate.La 100Khz diametrul maxim al

conductorului nu trebuie să fie mai mare de 0.4 mm, în acest scop la confecționarea

transformatorului am utilizat sârmă de bobinaj cu grosimea de 0.4mm.

La putere maximă prin înfășurarea primară va circula un curent de maxim 1A și la o

densitate de curent de 5A/mm ar fi fost de ajuns folosirea unui singur conductor de 0.4mm dar

pentru siguranță am folosit două conductoare în paralel.

Înfășurarea secundară mi-am propus să reziste la un curent de minim 5A aș fi avut nevoie

de o secțiune a conductorului de 1mm, dar deoarece nu putea să utilizez decât conductor cu o

secțiune de maxim 0.4mm fiind limitat de frecvență am folosit 5 conductoare în paralel care ar

putea să furnizeze un curent de 10A .

51

Page 52: Licenta Traistaru Adrian 2012

Pentru a avea unu cuplaj magnetic cât mai bun între primar și secundar, am împărțit

înfășurarea primară în două semi-înfășurări, astfel am bobinat prima jumătate din înfășurarea

primară, după care am bobinat înfășurare secundară și la urmă cealaltă înfășurare primară.

Înfășurarea secundară auxiliară a fost bobinată îmreună cu cea secundară. Dispunerea

înfășurărilor este prezentată în figura 3.2.1.4.1.

Figura 3.2.1.4.1 - Dispunerea înfășurărilor

3.2.1.5 Redresorul și filtrul de ieșire

Redresorul din secundar prezentat în figura 3.2.1.5.1 este un redresor monoalternanță

realizat cu o diodă BYQ28E200 care are în aceași capsulă două diode. Am conectat în paralel

cele două diode din capsulă pentru a putea obține o capabilitate în curent mai mare. După cele

două diode am mai adăgat două condensatoare de 1000uF pentru filtrarea tensiunii.

Tranzistorul Q2 comandat de microcontroller limitează curentul de încărcare al

acumulatorului.

52

Page 53: Licenta Traistaru Adrian 2012

Figura 3.2.1.5.1 – Redresarea și filtrarea secundară

3.2.2 Convertorul DC/DC

Convertorul DC/DC este un convertor în comutație push-pull. Am folosit acestă topologie

pentru că este foarte fiabil până la 500W.

3.2.2.1 Circuitul de comandă

Circuitul de comandă al convertorului este realizat cu un circuit integrat specializat de la firma ST, SG3525. Acest integrat este foarte utilizat în comanda convertoarelor push-pull

deoarece are două ieșiri de PWM defazate cu 180∘

.

Frecvența pwm-ului am calculat-o folosind formula din datele de catalog ale circuitului, f

=

1Ct (0 . 7∗R t+3∗Rd ) , în care Ct este condensatorul conectat la pinul 5 în cazul nostru C41, Rt

este rezistența conectată la pinul 6 adică R39, R¿ d ¿ ¿¿ este rezistența conectată la pinul 7 adică R36.

Am ales o frecvență de 100Khz, Rt =2K7, R¿ d ¿ ¿¿=33 și am înlocuit în formula de mai sus și am

obținut Ct =5nF dar cum această valoare nu este una standard am ales una apropiată si anume 4.7nF și am obținut o frecvență f=107Khz.

53

Page 54: Licenta Traistaru Adrian 2012

Rezistența R36 limitează timpul de descărcare al condensatorului C41, astfel am obținut un timp scurt între comutări în care nici unul dintre pwm-uri nu este activ, și am eliminat posibilitatea ca tranzistoarele de pe ambele înfășurări să fie în acelaș timp în conducție.

Pinul 10 al circuitului integrat este pinul de shutdown care este activ pe unu logic iar când este zero logic circuitul funcționează. Astfel am posibilitatea ca din microcontroller-ul principal să opresc funcționarea acestuia.

Bucla de reacție este realizată cu rezistențe deoarece nu a mai fost nevoie de izolare galvanică în acest caz. Componentele buclei de reacție se calculează folosind formula divizorului de tensiune. Se stie că tensiunea de referință este 5V, am ales una dintre rezistențe de 400K, fiind formată din 4 rezistențe de 100K, și am determinat cealaltă rezistență care este egală cu 6K3 dar cum această valoare nu este una standard am utilizat o rezistență de 6K8 în paralel cu una de 36K.

Schema circuitului de comandă este prezentată în figura 3.2.2.1.1.

Figura 3.2.2.1.1 –Schema circuitului de comandă

54

Page 55: Licenta Traistaru Adrian 2012

3.2.2.2 Circuitul de putere

Circuitul de putere prezentat în figura 3.2.2.2.1 este format din tranzistoarele mosfet care

realizează comutarea tensiunii de alimentare și transformatorul ridicător. Pe partea de alimentare

a circuitului am atilizat două condensatoare de 2200uF care mențin tensiunea constantă în

momentul comutării și înseriat cu acestea dinspre partea cu acumulatorul o bobină de 10uF care

sa limiteze curentul de încărcare al condensatorilor la conectarea acumulatorului. Cele două

înfășurări sunt alimentate alternativ cu câte două tranzistoare puse în paralel. Am folosit câte

două tranzistoare în paralel pentru a scădea rezistența lor în conducție și deci pentru a scădea

puterea disipată.

În cazul întreruperii circuitului de grilă tranzistoarele sunt menținute blocate de către

rezistențele de 22K dintre grilă și sursă plasate local, pentru a preveni apariția unui scurtcircuit.

Grilele sunt încărcate prin rezistențele de 10Ω și descărcate prin diode pentru a păstra o rampă

simetrică la încărcare și la descărcare.

Figura 3.2.2.2.1 –Schema circuitului de putere

3.2.2.3 Transformatorul

Pentru realizarea transformatorului am ales un miez de ferită E42 care la frecvența de

lucru propusă de 100Khz poate transfera 500W. Miezul și carcasa au fost recuperate dintr-o sursă

ATX, acest miez are o arie de 1.74cm2

.

55

Page 56: Licenta Traistaru Adrian 2012

Cunoscând tensiunea maximă din primar ca fiind Vp=29V, fluxul maxim prin miez

B=1200 Gauss, aria miezului A=1.74 cm2

și frecvența de lucru f=100Khz am înlocuit în formula

33 și am obținut în primar un numar de spire Np =4 spire.

După ce am determinat număr de spire din primar și cunoscând tensiunea de ieșire

Vs =330V am înlocuit în formula 34 și am obținut un număr de spire în secundar Ns =45 spire.

Pierderile în transformatorul de putere se datorează pierderilor în miezul de ferită şi

pierderilor în conductorul de cupru. Pierderile din miezul de ferită sunt datorate în mare parte

pierderilor de histerezis şi cresc odată cu creșterea frecvenței şi creșterea fluxului, din acest motiv

densitatea maximă de flux s-a ales la valoarea de 0.12T (1200 G), la această valoare pierderile în

miezul de ferită ajung la 70mW/cm3 iar la volumul total de 20 cm3 pierderile totale din miez se

situează la valoarea de 1.4W.

Pierderile din cupru se împart la rândul lor în două categorii pierderi datorate efectului

pelicular şi pierderi datorate efectului de proximitate.La 100Khz diametrul maxim al

conductorului nu trebuie să fie mai mare de 0.4 mm, în acest scop la confecționarea

transformatorului am utilizat sârmă de bobinaj cu grosimea de 0.4mm.

La o putere maximă de 500W prin înfășurarea primară va circula un curent de maxim 17A

și la o densitate de curent de 5A/mm aș fi avut nevoie de o secțiune a conductorului de 3.4mm dar

deoarece nu putea să utilizez decât conductor cu o secțiune de maxim 0.4mm fiind limitat de

frecvență am folosit 10 conductoare în paralel care ar putea să furnizeze un curent de 20A

Înfășurarea secundară mi-am propus să reziste la un curent de minim 2A aș fi avut nevoie

de o secțiune a conductorului de 0.4mm, ar fi fost de ajuns folosirea unui singur conductor de

0.4mm dar pentru siguranță am folosit două conductoare în paralel.

Pentru a avea unu cuplaj magnetic cât mai bun între primar și secundar, am împărțit

înfășurarea primară în două semi-înfășurări, astfel am bobinat prima jumătate din înfășurarea

primară, după care am bobinat înfășurare secundară și la urmă cealaltă înfășurare primară.

Înfășurarea secundară auxiliară a fost bobinată îmreună cu cea secundară. Dispunerea

înfășurărilor este prezentată în figura 3.2.1.4.1.

56

Page 57: Licenta Traistaru Adrian 2012

3.2.2.4 Redresorul și filtrul de ieșire

Redresorul din secundarul convertorului DC/DC prezentat în figura 3.2.2.4.1 este un redresor dublă alternanță realizat cu diode rapide. Am utilizat un redresor dublă alternanță deoarece astfel trebuie să dublez numărul de spire din secundar dacă foloseam unul monoalternanță.

Pentru filtarea tensiunii de ieșire am folosit un condensator electrolitic de 150uF.

Figura 3.2.2.4.1 –Schema redresorului și filtrului ieșire

3.2.3 Puntea H

Piesa principală a invertorului este o punte H. Aceasta este integrată într-un singur cip

împrună cu partea de comandă a comutatoarelor de forță. Ea este o punte trifazată însă poate fi

utilizată și monofazat. Pentru aplicația aceasta am folosit doar două din cele trei brațe ale ei.

Capsula arată ca în figura 3.2.3.1., fiind ușor de utilizat și în aplicațiile realizate de către amatori.

Figura 3.2.3.1–Puntea H IRAM136

57

Page 58: Licenta Traistaru Adrian 2012

Pentru conectarea punții în circuit m-am inspirat din datele de catalog ale acesteie în care

era prezantat un exemplu. Partea de comandă a punții se alimentează la 15V iar pentru comada

punții mai sunt 6 intrări de pwm, din care am folosit doar 4 în această aplicație. Condensatoarele

C5, C6, C10 sunt folosite pentru ridicarea tensiunii cu care se comandă comutatoarele de pe

partea de plus, valoarea acestora a fost aleasă folosind un grafic din datasheet.

Figura 3.2.3.2–Circuitul punții H

3.2.4 Sursele de alimentare pentru partea logică

Partea logică a montajului are nevoie de o alimentare de 15V pentru puntea H și pentru circuitul integrat SG3525, și de 5V pentru microcontroller, amplificatoarele operaționale și pentru LCD.

Pentru a coborâ tensiunea de la 24V la 15V și 5V am folosit două surse în comutație buck realizate cu circuitul dedicat MC34063 care poate debita pănâ la 1.5A fără un alt tranzistor extern, este destul de ieftin și deasemenea foarte fiabil, el funcționează alături de alte câteva componente, care impreună realizează un convertor de dimensiuni mici și randament crescut de până la 80%.

58

Page 59: Licenta Traistaru Adrian 2012

3.2.4.1 Sursa de 5 volți

Pentru dimensionarea convertorului de 5V m-am folosit de datele de catalog din care am folosit formulele de calcul prezentate mai jos. Schema convertorului este prezentată în figura 3.2.4.1.1.

t on

toff =

V out+V F

V in−V sat−V out (37) toff =

ton+tofftontoff

+1 (38)

ton+toff =

1f (39) ton=( ton+toff )−toff (40)

Ipk=2∗I out (41) Ct=4∗10−5∗ton (42)

Rsc =

0 .3Ialignl ¿ pk ¿ ¿

¿ (43) L

¿min ¿¿¿=(

V in−V sat−V out

I pk )*t¿ on ¿ ¿¿ (44)

C0=

I pk∗( ton+ toff )8∗V riplu (45)

Figura 3.2.4.1.1–Convertorul buck 5V

Am ales frecvența de comutație f=40Khz, VF=0.4V fiind căderea de tensiune de pe dioda

D1, Vsat =0.2V tensiunea de saturare a tranzistorului intern, Vin=24V, Vout =5V și curentul de

ieșire Iout =0.10A.

Prima dată am calculat valoare condensatorului Ct folosind formulele 37,38,39,40 și 42.

Și am obținut:

59

Page 60: Licenta Traistaru Adrian 2012

t ontoff =

5+0. 424−0 .2−5 = 0.28 s t

off=0 . 0000250 .28+1 = 0.000019 s

ton+toff =

140000 =0.000025 s ton = 0.000025-0.000019=0.000006 s

Ct =4*10−5

*0.000006 = 240pF

Pentru a determina valoarea rezistenței de șunt am folosit formulele 41 și 43 și am obținut:

Ipk=2 *0.10 = 0.2A

Rsc =

0 .30 .2 = 0.15Ω

Dar pentru că nu este o valoare standard am ales 0.182Ω valoarea rezistenței de șunt.

Pentru a calcula valoarea minimă pe care trebuie să o aibă bobina am folosit formula 44 și

am obținut o valoare minimă de L=40uH și am ales o bobină cu valoarea de 47uH.

Valoarea condensatorului Co am calculat-o folosind formula 45 pentru care am ales o

tensiune de riplu Vriplu=0.1V și am obținut o valoare de 6.25uF dar am ales o valoare apropiată și

anume 10uF.

Pentru bucla de reacție am calculat valoarea rezistențelor folosindu-mă de formula

divizorului de tensiune. Tensiunea de referință este 1.25V, tensiunea de ieșire este 5V și alegem

una din rezistențe, de exemplu R7=10K și rezultă valoarea lui R8=

5∗R71.25

−R7=30K.

La ieșirea din convertorul buck am mai adăugat un regulator de tensiune liniar pentru a

reduce valoare tensiunii de riplu.

Ledul Led8 semnalizează prezența tensiunii, rezistența R81 am folosit-o pentru a limita

curentul prin led și am calculat-o astfel:

R =

U−U led

Iled =

5−20 .005 = 600Ω

Deoarece nu este o valoare standard am eles 510Ω.

60

Page 61: Licenta Traistaru Adrian 2012

3.2.4.2 Sursa de 15 volți

Pentru dimensionarea convertorului de 15V m-am folosit de datele de catalog din care am folosit formulele de calcul. Schema convertorului este prezentată în figura 3.2.4.2.1.

Figura 3.2.4.2.1–Convertorul buck 15V

Am ales frecvența de comutație f=40Khz, VF=0.4V fiind căderea de tensiune de pe dioda

D1, Vsat =0.2V tensiunea de saturare a tranzistorului intern, Vin=24V, Vout =5V și curentul de

ieșire Iout =0.10A.

Prima dată am calculat valoare condensatorului Ct folosind formulele 37,38,39,40 și 42.

Și am obținut:

t ontoff =

15+0 . 424−0 . 2−5 = 0.81 s t

off=0 .0000250 .81+1 = 0.000013 s

ton+toff =

140000 =0.000025 s ton = 0.000025-0.000013=0.000012 s

Ct =4*10−5

*0.000012 = 480pF

Pentru a determina valoarea rezistenței de șunt am folosit formulele 41 și 43 și am obținut:

Ipk=2 *0.10 = 0.2A

Rsc =

0 .30 .2 = 0.15Ω

Dar pentru că nu este o valoare standard am ales 0.182Ω valoarea rezistenței de șunt.

61

Page 62: Licenta Traistaru Adrian 2012

Pentru a calcula valoarea minimă pe care trebuie să o aibă bobina am folosit formula 44 și

am obținut o valoare minimă de L=36uH și am ales o bobină cu valoarea de 47uH.

Valoarea condensatorului Co am calculat-o folosind formula 45 pentru care am ales o

tensiune de riplu Vriplu=0.1V și am obținut o valoare de 6.25uF dar am ales 2200uF pentru a

reduce tensiunea de riplu cât mai mult.

Pentru bucla de reacție am calculat valoarea rezistențelor folosindu-mă de formula

divizorului de tensiune. Tensiunea de referință este 1.25V, tensiunea de ieșire este 15V și alegem

una din rezistențe, de exemplu R7=10K și rezultă valoarea lui R8=

15∗R71.25

−R7=112K, și am ales

o valoare imediat apropiată 110K.

Ledul Led3 semnalizează prezența tensiunii, rezistența R16 am folosit-o pentru a limita

curentul prin led și am calculat-o astfel:

R =

U−U led

Iled =

15−20 .01 = 1300Ω

3.2.5 Modulul de măsurare current

Pentru a putea măsura curentul de încărcare al acumulatorului, deoarece căderea de

tensiune este foarte mică pe șunt am folosit un amplificator pentru a măsura această tensiune,

acelaș lucru am făcut și pentru curentul de ieșire, schema este prezentată în figura 3.2.5.2.

Stiind că valoarea șuntului este de 5mΩ și curentul maxim care va trece prin el va fi 5A

deci căderea de tensiune maximă va fi 25mV, stiind că tensiunea de alimentare a amplificatorului

este 5V putem avea o amplificare de cel mult 200 ori.

Formula pentru determinarea rețelei de rezistențe ale amplificatorului neinversor:

A=1+

R2R1 (46)

R=R1||R2=

R1×R2R1+R2 (47)

62

Page 63: Licenta Traistaru Adrian 2012

Figura 3.2.5.1 - Amplificatorul neinversor

Am folosit formula 46 stiind că amplificarea A=200 și alegem R20=1k rezultă R3=(A-

1)*R20=199*1K=199K, am ales o valoare apropiată și anume 180K.

Valoarea rezistenței R21 se calculează folosind formula 47 și am obținut R21=100K.

Stiind că valoarea șuntului este de 340mΩ și curentul maxim care va trece prin el va fi 2A

deci căderea de tensiune maximă va fi 640mV, stiind că tensiunea de alimentare a

amplificatorului este 5V putem avea o amplificare de cel mult 7 ori.

Am folosit formula 46 stiind că amplificarea A=7 și alegem R18=1k rezultă R17=(A-

1)*R20=6*1K=6K, am ales o valoare apropiată și anume 5K7.

Valoarea rezistenței R12 se calculează folosind formula 47 și am obținut R12=1K.

Figura 3.2.5.2 - Modulul de măsurare current

La ieșirea din fiecare amplificator am adăugat câte un filtru trece jos pentru a mă asigura

că frecvențele înalte nu trec spre microcontroller. Formula de calcul pentru filtru trece jos RC

este: ft =

12×π×R×C (48)

Alegem frecvenţa de tăiere ft =750 Hz şi valoarea condensatorului C=100nF rezultă

R =

12×π×f t×C =

1

2×3 .14×750×100×10−9 = 2.123 K dar alegem o valoare apropiată pentru

că aceasta nu este standard și anume 2.2K.

63

Page 64: Licenta Traistaru Adrian 2012

3.2.6 Modulul de afișare

Pentru afișarea tensiunii din acumulatori, prezenței rețelei și starea UPS-ului am folosit un

afișaj alfanumeric cu 16 caractere pe două rânduri. Schema de conectare a acestuia este

prezentată în figura 3.2.6.1. Transmisia datelor se face pe 4 biți, din microcontroller se mai

setează și starea pinilor de enable și reset ai lcd-ului. Potențiometrul R2 este folosit pentru setarea

contrastului, valoarea lui fiind dată în datele de catalog ale lcd-ului.

Figura 3.2.6.1 - Modulul de afișare

3.2.7 Modulul de comandă al montajului

Comanda fucționării sursei este făcută de către microcontroller-ul principal, care este un DSPIC30f4011. Schema de conectare a acestuia este prezentată în figura 3.2.7.1. Pe fiecare alimentare are câte un condensator de decuplare de 100nF, alimentarea este la 5V.

64

Page 65: Licenta Traistaru Adrian 2012

Figura 3.2.7.1 - Modulul de comandă al montajului

3.2.8 Modulul de comutare

Pentru a realiza comutarea între rețea și ups am folosit relee electromecanice cu un timp

de comutare de sub 10ms. Schema acestora este prezentată în figura 3.2.8.1. Pentru comanda

acestora am folosit un circuit ULN2003, care are în aceași capsulă 7 tranzistoare darlington.

Diodele D4,D5,D6 le-am folosit pentru a proteja tranzistoarele de comandă, deoarece la bornele

bobinelor releelor apare o supratensiune datorată energiei stocate în armătura bobinei releului în

momentul când se blochează tranzistoarele și circuitul se închide prin diode astfel se descarcă

energia stocată.

Figura 3.2.8.1 - Modulul de comutare

3.2.9 Realizarea fizică a montajului

Pentru realizarea montajului fizic am utilizat un program pentru simulare de circuite

electronice, Orcad Pspice 16.3 și pentru realizarea schemei și al layout-ului Eagle 5.8. După ce

am realizat schema bloc a schemei am desenat schema electronică și am făcut layoutul. Layoutul

65

Page 66: Licenta Traistaru Adrian 2012

l-am făcut pe două straturi și este prezentat în Anexa 1. Pentru dimensionarea traseelor în funcție

de curent am folosit tabelul din Anexa 2.

După ce am terminat de rutat layoutul am printat cele două straturi pe hărtie de calc, topul

în oglindă și bottomul normal și am expus pcb-ul la ultraviolete timp de 307 secunde pe cele două

părți. După ce am expus pcb-ul acesta a trebuit developat în soluție de sodă caustică în

concentrație de 10g/l pentru a îndepărta fotorezistul ars.

După developare acesta a fost introdus în clorură ferică pentru a se coroda, urmat de

găurire și îndepărtarea fotorezistului de pe cupru cu alcool tehnic, în Anexa 3 este prezentat pcb-

ul după aceste operțiuni. Pentru a rezista în timp și a nu se oxida am dat pe placă cu flux de lipit

după care am lipit piesele.

3.2.10 Programarea microcontroller-ului

Programul pentru microcontroller a fost realizat Mplab 8.83 folosind compilatorul C30,

fiind scris în limbaj C.

3.2.10.1 Schema bloc a programului

Schema bloc a programului este prezentată în figura 3.2.10.1.1.

66

Page 67: Licenta Traistaru Adrian 2012

Figura 3.2.10.1.1 – Schema bloc a programului

3.2.10.2 Realizarea programului în Mplab

Pentru a realiza un program în Mplab a trebuit să urmez câțiva pași. Primul pas constă în

apăsarea butonului din meniu, Project Project Wizard, ca în figura 3.2.10.2.1.

67

Page 68: Licenta Traistaru Adrian 2012

Figura 3.2.10.2.1 – Crearea unui proiect

Pasul doi constă în alegerea dispozitivului pentru care am creat programul, acesta este

prezentat în figura 3.2.10.2.2.

Figura 3.2.10.2.2 – Alegerea dispozitivului

După ce am ales dispozitivul, selectăm programatorul folosit pentru compilare. În cazul

acesta am folosit compilatorul C30.

68

Page 69: Licenta Traistaru Adrian 2012

Figura 3.2.10.2.3 – Alegerea compilatorului

După ce am ales programatorul, alegem apăsând butonul ”Browse” locul unde va fi salvat

proiectul și îi asignăm un nume.

Figura 3.2.10.2.3 – Alegerea locației proiectului

În pasul următor putem aduce fișiere în proiectul creat. Dacă nu avem nici un fișier de

adăugat la proiect apăsăm next, urmat de încheierea creării noului program.

69

Page 70: Licenta Traistaru Adrian 2012

Figura 3.2.10.2.4 – Importarea fișierelor în proiect și încheierea

După care se crează fișierele componente ale proiectului și se compilează pentru a vedea

eventualele erori.

Figura 3.2.10.2.5 – Proiectul compilat

3.2.10.3 Programarea microcontroller-ului

Programarea efectivă a microcontrolerului a fost realizată utilizând dispozitivul Pickit2,

prezentat în figura 3.2.10.3.1, care nu este programatorul original ci o copie realizată după acesta.

Prin intermediul acestuia, fișierul „.hex”, realizat prin compilarea programului principal în

Mplab, l-am transferat în memoria microcontrolerului.

70

Page 71: Licenta Traistaru Adrian 2012

Figura 3.2.10.3.1 – Pickit 2 (copie)

Cap. 4 Concluzii

Sursa realizată are un randament mai mare decât sursele neîntreruptibile clasice. Forma

curentului de la ieșire este sinusoidală, consumatorii pe care i-am alimentat s-au comportat

normal.

Randamentul convertorului dc/dc este prezentat în figura 4.1, stiind că tensiunea de

alimentare este 22V, tensiunea de la ieșire 327V, rezultă un randament η=

327V∗0 .226 A22V∗4 .39 A

=0.75

Figura 4.1 – Randament convertor

dc/dc

Semnalul de comandă al

invertorului este prezentat în figura 4.2.

71

Page 72: Licenta Traistaru Adrian 2012

Figura 4.2 – Semnalul de comandă al invertorului

Formele de undă de la ieșirea invertorului sunt prezentate in figura 4.3 și 4.4. În figura 4.3

este prezentată oscilograma în care consumatorul este un bec cu incandescență, iar în figura 4.4

consumatorul este un motor asincron monofazat cu rotor în scurt. Se observă că prin bec curentul

este dreptunghiular iar prin motor este sinusoidal.

72

Page 73: Licenta Traistaru Adrian 2012

Figura 4.3 Figura 4.4

Comutarea pe ups se face foarte repede, acest lucru se poate observa și din figura 4.4.,

consumatorul rămâne nealimentat cel mult o alternantă, consumatorul nefiind afectat de acest

lucru.

Figura 4.5

Măsurătorile prezentate mai sus au fost realizate cu osciloscopul Tektronix TDS3034B.

Cap. 5 Bibliografie

1. Kelemen, A. şi col.: Electronică de putere, EDP, Bucureşti, 19832. Maschalko, R.: Convertoare de c.a./c.c. cu modulare în durată a impulsurilor, Ed.

Mediamira, Cluj-Napoca, 19973. Ionescu, F.: Electronică de putere, Ed. Tehnică, Bucureşti, 19984. Alexa, D.: Convertoare de putere cu circuite rezonante, Ed. Tehnică, Bucureşti,

19985. Popescu, V.: Stabilizatoare de tensiune în comutaţie, Ed. De Vest, Timişoara, 19926. Popescu, V. ş.a.: Convertoare de putere în comutaţie, Ed. De Vest, Timişoara, 19997. Popescu, V. ş.a.: Electronică de putere, Ed. De Vest, Timişoara, 19988. Popescu, M.O.: Convertoare statice de c.c. – c.c. cu comutaţie forţată, Ed. ICPE,

Bucureşti, 19999. http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en010337

73

Page 74: Licenta Traistaru Adrian 2012

10. http://www.bmh.nu/pdf/Igbt%20transistorer/L6565Quasiresonant%20contr %20appnote.pdf

11. http://www.datasheetcatalog.org/datasheet/motorola/SG3525AN.pdf 12. http://www.nomad.ee/micros/mc34063a/ 13. http://www.irf.com/product-info/datasheets/data/iram136-3063b.pdf 14. http://www.okaya.com/RC1602-J.pdf

Cuprins

Cap. 1 Introducere..........................................................................................................................5

Cap. 2 Analiza şi sinteza literaturii de specialitate......................................................................7

2.1 Studiul surselor în comutație...................................................................................................7

2.1.1 Generalități..........................................................................................................................7

2.1.2 Convertoare neizolate........................................................................................................8

2.1.2.1 Convertorul coborâtor (buck) ........................................................................................9

2.1.2.2 Convertorul ridicâtor (bust)..........................................................................................10

2.1.2.3 Convertorul coborâtor- ridicâtor (buck-bust)................................................................12

2.1.3 Convertoare izolate...........................................................................................................13

2.1.3.1 Convertorul Flyback.....................................................................................................13

2.1.3.2 Convertorul Forward.....................................................................................................17

2.1.3.3 Convertorul Push-pull...................................................................................................21

2.1.3.4 Convertorul Half-Bridge...............................................................................................24

2.1.3.5 Convertorul Full-Bridge................................................................................................27

2.1.4 Convertoare cvasirezonante.............................................................................................28

2.1.4.1 Generalități....................................................................................................................28

2.1.4.2 Comutarea la curent zero (ZCS)...................................................................................29

2.1.4.3 Comutarea la tensiune zero (ZVS)................................................................................30

2.1.5 Transformatoarele cu miez de ferită...............................................................................31

2.2 Studiul microcontroller-ului DSPIC30F4011.......................................................................35

2.2.1 Introducere ......................................................................................................................35

74

Page 75: Licenta Traistaru Adrian 2012

2.2.2 Unitatea de intrare-ieșire (I/O).........................................................................................37

2.2.3 Modulul de generare PWM..............................................................................................38

2.2.4 Modulul de ADC..............................................................................................................39

2.3 Studiul surselor neîntreruptibile de energie.........................................................................40

2.3.1 Surse neîntreruptibile Offline..........................................................................................40

2.3.2 Surse neîntreruptibile Online ..........................................................................................41

2.3.3 UPS cu tensiune de ieșire dreptunghiulară .....................................................................41

2.3.4 UPS cu tensiune de ieșire sinus-modificat.......................................................................42

2.3.5 UPS cu tensiune de ieșire sinusoidală..............................................................................43

2.3.6 Comparație între formele de undă....................................................................................43

Cap. 3 Contribuții proprii............................................................................................................44

3.1 Schema bloc a proiectului......................................................................................................45

3.2 Proiectarea schemei electronice.............................................................................................45

3.2.1 Încărcătorul pentru acumulatori.....................................................................................45

3.2.1.1 Redresorul și filtrul de intrare.......................................................................................45

3.2.1.2 Circuitul de putere.........................................................................................................46

3.2.1.3 Circuitul de comandă....................................................................................................47

3.2.1.4 Transformatorul............................................................................................................49

3.2.1.5 Redresorul și filtrul de ieșire.........................................................................................50

3.2.2 Convertorul DC/DC .........................................................................................................51

3.2.2.1 Circuitul de comandă....................................................................................................51

3.2.2.2 Circuitul de putere.........................................................................................................53

3.2.2.3 Transformatorul............................................................................................................53

3.2.2.4 Redresorul și filtrul de ieșire.........................................................................................55

3.2.3 Puntea H............................................................................................................................55

3.2.4 Sursele de alimentare pentru partea logică....................................................................56

3.2.4.1 Sursa de 5 volți .............................................................................................................57

3.2.4.2 Sursa de 15 volți............................................................................................................59

3.2.5 Modulul de măsurare current..........................................................................................60

75

Page 76: Licenta Traistaru Adrian 2012

3.2.6 Modulul de afișare............................................................................................................62

3.2.7 Modulul de comandă al montajului................................................................................62

3.2.8 Modulul de comutare........................................................................................................63

3.2.9 Realizarea fizică a montajului.........................................................................................63

3.2.10 Programarea microcontroller-ului................................................................................64

3.2.10.1 Schema bloc a programului........................................................................................64

3.2.10.2 Realizarea programului în Mplab...............................................................................65

3.2.10.3 Programarea microcontroller-ului...............................................................................67

Cap. 4 Concluzii............................................................................................................................68

Cap. 5 Bibliografie........................................................................................................................70

Anexa 1...........................................................................................................................................74

Anexa 2...........................................................................................................................................75

Anexa 3...........................................................................................................................................76

Anexa 4...........................................................................................................................................77

76

Page 77: Licenta Traistaru Adrian 2012

Anexa 1

77

Page 78: Licenta Traistaru Adrian 2012

Anexa 2

78

Page 79: Licenta Traistaru Adrian 2012

TOP

Bottom

Anexa 3

79

Page 80: Licenta Traistaru Adrian 2012

Top

Bottom

Anexa 4

80

Page 81: Licenta Traistaru Adrian 2012

81

Page 82: Licenta Traistaru Adrian 2012

82

Page 83: Licenta Traistaru Adrian 2012

83

Page 84: Licenta Traistaru Adrian 2012

84

Page 85: Licenta Traistaru Adrian 2012

85

Page 86: Licenta Traistaru Adrian 2012

86

Page 87: Licenta Traistaru Adrian 2012

DECLARAŢIE DE AUTENTICITATE ALUCRĂRII DE FINALIZARE A STUDIILOR

Subsemnatul _________________________________________________________

____________________________________________________________________ ,

legitimat cu ________________seria ________nr. ___________________________,

CNP ________________________________________________________________

autorul lucrării ________________________________________________________

_____________________________________________________________________

_____________________________________________________

elaborată în vederea susținerii examenului de finalizare a studiilor de ______

______________________________________organizat de către Facultatea

_______________________ ______________________________din cadrul

Universităţii “Politehnica” din Timișoara, sesiunea ____________________ a anului

universitar __________________, luând în considerare conţinutul art. 39 din RODPI –

UPT, declar pe proprie răspundere, că această lucrare este rezultatul propriei activități

intelectuale, nu conține porțiuni plagiate, iar sursele bibliografice au fost folosite cu

respectarea legislației române și a convențiilor internaționale privind drepturile de

autor.

Timișoara,

Data Semnătura

_______________________ ______________________________

87

Page 88: Licenta Traistaru Adrian 2012

88