Inegalit at˘i simetrice ^ n 3 variabile · PDF fileInegalit at˘i simetrice ^ n 3 variabile...

4
Inegalit˘at ¸i simetrice ˆ ın 3 variabile 1.Dac˘a a,b,c > 0 astfel ˆ ıncˆat a 2 + b 2 + c 2 = 2, determinat ¸i valoarea minim˘ a a expresiei E = ab c + bc a + ca b 2. Fie a, b, c R,n N * . Demonstrat ¸ic˘a: (a)Dac˘a a + b + c 0 atunci a 3 + b 3 + c 3 3abc. (b) (a 2 - bc) 3 +(b 2 - ca) 3 +(c 2 - ab) 3 3(a 2 - bc)(b 2 - ca)(c 2 - ab). (c) a 4 + b 4 + c 4 abc(a + b + c). (d) a 4 n + b 4 n + c 4 n (abc) 4 n -1 3 (a + b + c). (e) a 6n-2 + b 6n-2 + c 6n-2 (abc) 2n-1 (a + b + c). 3.Dac˘a a, b, c > 0 demonstrat ¸ic˘a: (a + b + c) 3 9 4 [(a + b) 2 c +(b + c) 2 a +(c + a) 2 b] 4. Fie a, b, c (0, 1) astfel ˆ ıncˆ at abc = (1 - a)(1 - b)(1 - c). Demonstrat ¸i a abc 1/8, cu egalitate pentru a = b = c =1/2. 5. Fie a, b, c > 0 astfel ˆ ıncˆ at a + b + c = 1. Demonstrat ¸i c˘ a: a a + b b + c c q a 4 + b 4 + c 4 + 24abc 3 abc 6. Determinat ¸i numerele reale strict pozitive a, b, c ¸ stiind c˘aˆ ındeplinesc simultan condit ¸iile: a 2 + b 2 + c 2 =1 b 2 + c 2 a + c 2 + a 2 b + a 2 + b 2 c 2 3 1

Transcript of Inegalit at˘i simetrice ^ n 3 variabile · PDF fileInegalit at˘i simetrice ^ n 3 variabile...

Page 1: Inegalit at˘i simetrice ^ n 3 variabile · PDF fileInegalit at˘i simetrice ^ n 3 variabile 1. Dac a a;b;c > 0 astfel ^ nc^at a2 + b2 + c2 = 2, determinat˘i valoarea minim a a expresiei

Inegalitati simetrice ın 3 variabile

1. Daca a, b, c > 0 astfel ıncat a2 + b2 + c2 = 2, determinati valoareaminima a expresiei

E =ab

c+

bc

a+

ca

b

2. Fie a, b, c ∈ R, n ∈ N∗. Demonstrati ca:

(a) Daca a + b + c ≥ 0 atunci a3 + b3 + c3 ≥ 3abc.

(b) (a2 − bc)3 + (b2 − ca)3 + (c2 − ab)3 ≥ 3(a2 − bc)(b2 − ca)(c2 − ab).

(c) a4 + b4 + c4 ≥ abc(a + b + c).

(d) a4n

+ b4n

+ c4n ≥ (abc)

4n−13 (a + b + c).

(e) a6n−2 + b6n−2 + c6n−2 ≥ (abc)2n−1(a + b + c).

3. Daca a, b, c > 0 demonstrati ca:

(a + b + c)3 ≥ 9

4[(a + b)2c + (b + c)2a + (c + a)2b]

4. Fie a, b, c ∈ (0, 1) astfel ıncat abc = (1− a)(1− b)(1− c). Demonstratica abc ≤ 1/8, cu egalitate pentru a = b = c = 1/2.

5. Fie a, b, c > 0 astfel ıncat a + b + c = 1. Demonstrati ca:

a√a + b

√b + c

√c ≥

√a4 + b4 + c4 + 24abc

3√abc

6. Determinati numerele reale strict pozitive a, b, c stiind ca ındeplinescsimultan conditiile:

a2 + b2 + c2 = 1

b2 + c2

a+

c2 + a2

b+

a2 + b2

c≤ 2√

3

1

Page 2: Inegalit at˘i simetrice ^ n 3 variabile · PDF fileInegalit at˘i simetrice ^ n 3 variabile 1. Dac a a;b;c > 0 astfel ^ nc^at a2 + b2 + c2 = 2, determinat˘i valoarea minim a a expresiei

7. Fie a, b, c > 0, distincte doua cate doua. Notam cu :

S(a, b, c) =(a2 − b2)3 + (b2 − c2)3 + (c2 − a2)3

(a− b)3 + (b− c)3 + (c− a)3

Demonstrati ca:

(a) Daca abc = 1, atunci S(a, b, c) ≥ 8.

(b) Daca a + b + c = 1, atunci S(a, b, c) ≤ 8/27.

(c) Daca ab + bc + ca = 1, atunci S(a, b, c) ≥ 8√

3/9.

8. Daca a, b, c sunt lungimile laturilor unui triunghi oarecare, demonstratica:

9

4(a + b + c)≤ 1

2a + b + c+

1

a + 2b + c+

1

a + b + 2c<

7

3(a + b + c)

9. Daca a, b, c ∈ [0, 1], atunci:

0 ≥ 3abc− (ab + bc + ca) ≥ abc− 1 ≥ a + b + c− 3

10. Sa se arate ca ın orice triunghi ABC are loc relatia:

(a3 + b3 + c3)(ab + bc + ca) ≥ abc(a + b + c)2

11. Fie a, b, c > 0 astfel ıncat 4abc + a + b + c = 18. Demonstrati ca2abc ≤ ab + bc + ca.

12. Daca a, b, c > 0, a + b + c = 1, atunci:

3(a2 + b2 + c2)− 2(a3 + b3 + c3) ≥ 7

9

13. Daca a, b, c > 0 si abc = 1, atunci(a− 1 +

1

b

)(b− 1 +

1

c

)(c− 1 +

1

a

)≤ 1

14. Fie a, b, c > 0 astfel ıncat a + b + c ≥ abc. Atunci

bc

a3(b + c)+

ca

b3(c + a)+

ab

c3(a + b)≥ 1

2

2

Page 3: Inegalit at˘i simetrice ^ n 3 variabile · PDF fileInegalit at˘i simetrice ^ n 3 variabile 1. Dac a a;b;c > 0 astfel ^ nc^at a2 + b2 + c2 = 2, determinat˘i valoarea minim a a expresiei

15. Fie a, b, c > 0 cu a2 + b2 + c2 = 3. Atunci

a

a + 3+

b

b + 3+

c

c + 3≤ 3

4

16. Fie x, y, z > 0 cu 1/x + 1/y + 1/z = 3. Atunci (x + 1)(y + 1)(z + 1) ≤(x + y)(y + z)(z + x).

17. Fie a, b, c > 0. Atunci

ab

c(a + b)+

bc

a(b + c)+

ca

b(c + a)≥ 3

2

18. Fie a, b, c > 0 cu abc = 1. Atunci

a2

b + c + 1+

b2

c + a + 1+

c2

a + b + 1≥ 1

19. Fie a, b, c > 0. Atunci

a

a + 2b + 3c+

b

b + 2c + 3a+

c

c + 2a + 3b≥ 1

2

20. Daca a, b, c ≥ 0, atunci

(a + b + c)6 ≥ (2a + b)(2b + a)(2a + c)(2c + a)(2b + c)(2c + b)

21. Daca a, b, c > 0 si abc + a2 + b2 + c2 < 4, atunci a + b + c < 3.

22. Daca a, b, c ≥ 0 si a + b + c = 1, atunci

ab

c + 1+

bc

a + 1+

ca

b + 1≤ 1

4

23. Daca a, b, c > 0 si abc = 1, atunci

1

a(1 + b)+

1

b(1 + c)+

1

c(1 + a)≥ 3

2

24. Daca a, b, c ≥ 0 si a2 + b2 + c2 = 12, atunci (a + 1)(b + 1)(c + 1) ≤ 27.

3

Page 4: Inegalit at˘i simetrice ^ n 3 variabile · PDF fileInegalit at˘i simetrice ^ n 3 variabile 1. Dac a a;b;c > 0 astfel ^ nc^at a2 + b2 + c2 = 2, determinat˘i valoarea minim a a expresiei

25. Daca a, b, c > 0 si a + b + c = 1, atunci

8

(a

1− a2+

b

1− b2+

c

1− c2

)≤ a + 1√

bc+

b + 1√ca

+c + 1√

ab

26. Daca a, b, c > 0, atunci

a3

2a + 3b+

b3

2b + 3c+

c3

2c + 3a≥ a2 + b2 + c2

5

27. Daca a, b, c > 0 si a2 + b2 + c2 = 3, atunci

ab

ab + a + b+

bc

bc + b + c+

ca

ca + c + a≤ 1

28. Daca a, b, c > 0 si abc ≥ 1, atunci

1

1 + b + c+

1

1 + c + a+

1

1 + a + b≤ 1

29. Daca a, b, c ≥ −3 si a3 + b3 + c3 = 0, atunci a + b + c ≤ 3.

30. Daca a, b, c ≥ 0, atunci a3 + b3 + c3 ≥ ab2 + bc2 + ca2. (rearanjamentesau medii!)

Nota: Inegalitatile 13, 19, 23, 26 si 30 nu sunt simetrice ci numai circularsimetrice.

4