i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

172

Click here to load reader

Transcript of i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

Page 1: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

UNIVERSITATEA “TRANSILVANIA” DIN BRASOVFACULTATEA DE INGINERIE MECANICA

SPECIALIZAREA AUTOVEHICULE RUTIERE

LUCRARE DE LICENTA

ci CU PUTEREA DE 125 KW SI TURATIA 5000 rot/min

Coordonator stiintific:Conf. dr. ing. ŞOICA ADRIAN

Absolvent:

BRASOV2010

Page 2: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

REZUMATUL PROIECTULUI DE LICENTA

Lucrarea intitulată “Proiectarea unui autoturism cu 5 locuri avand un motor cu aprindere prin scanteie cu puterea de 125 kw si turatia 5000 rot/min” cuprinde si un studiu care abordează o temă de mare actualitate privind siguranta autovehiculului.

Lucrarea contine 7 capitole şi o lista bibliografică.În capitolul 1 se prezintă studiul de nivel asupra unor modele de autoturisme alese ca

model in proiectare.În capitolul 2 se prezintă un studiu privind siguranta autovehiculului.În capitolul 3 se prezintă calculul dinamic al autovehiculului Pn=125Kw şi nn=5000

rot/min.În capitolul 4 se prezintă calculul ambreiajului ce echipeaza acest autovehiculIn capitolul 5 se prezintă calculul cutiei de viteza ce echipeaza acest autovehicul.În capitolul 6 se prezinta tehnologia de fabricare a arborelui secundar.În capitolul 7 se prezintă studiul economic al acestui autovehicul.

Cuvinte cheie:cutie de viteza, ambreiaj, siguranta autovehiculului.

Page 3: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

CUPRINS

CAP. I. STUDIUL DE NIVEL AL AUTOTURISMELOR EXISTENTE DIN GAMA CELUI CERUT PRIN SARCINA DE PROIECTARE............................5

CAP. II. STUDIU PRIVIIND SISTEME DE SIGURANŢĂ PENTRU AUTOVEHICULE RUTIERE..............................………………….………… ... 8

CAP. III. DINAMICA AUTOVEHICULULUI..………………………………. 42

1. Calculul de tractiune........... ………………..……………………………. 421.1. Stabilirea parametrilor geometrici generali …………..……………….. 421.2. Stabilirea şi repartizarea greutăţii pe punţi ………………....………………. 421.3. Alegerea pneului şi stabilirea razei dinamice……………….... . 421.4. Calculul caracteristicii externe a motorului…………….................... 431.4.1 Stabilirea vitezei maxime ………....….………….. 461.5. Determinarea raportului de transmitere a reductorului central (i0)………… 461.6. Determinarea raportului de transmitere din cutia de viteze...……………… 471.6.1. Determinarea raportului de transmitere pentru treapta I din cutia de viteze. 571.6.2. Determinarea raportului de transmitere pentru celelalte trepte din cutia de viteze..........……........................................................................................ 481.6.3. Determinarea vitezei maxime pe trepte......................................................... 482. Performantele autovehiculului.....…………………………………………... 492.1. Caracteristica de tracţiune..…………………………………..………… 492.2. Caracteristica dinamica ……………………..……………………………….. 542.3.1. Acceleraţia……….………………………………………..…………. 562.3.2. Inversul acceleraţiei…………………...........…………………………. 582.3.3. Timpul şi spaţiul de demaraj………………………………………………. 592.4. Bilanţul de putere………….…………………...……………………….. 632.5. Frânarea autovehiculului …………..........…..…………………………. 672.5.1. Spaţiul de frânare minim………………………..……………………. 672.5.2. Spaţiul de frânare minim ţinând cont de rezistenta aerului………………. 672.5.3. Spaţiul de oprire ……........……………………………..……………. 702.6. Calculul de stabilitate………….………………………………………….. 732.6.1. Stabilitatea transversală la derapare…..........……………………………. 732.6.2. Stabilitatea de răsturnare………………………………..……………. 732.7. Economicitatea automobilului……………………………………………. 58

CAP. IV. CALCULUL AMBREIAJULUI..………………………………. 78

1.Rolul ambreiajului................……………………………..………………. 782.Alegerea tipului de ambreiaj. Justificarea schemei consctuctive………….. 793. Calculul propriu-zis al ambreiajului..………………......…………..……. 803.1. Calculul momentului de frecare……………………..…………………. 80

Page 4: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

3.2. Calculul razelor suprafeţei de frecare.……………………………………….. 803.3 Calculul arcului central tip diafragma …………………....….…………….. 813.4. Calculul arborelui ambreiajului….………………………………..…… 843.5. Calculul elementelor de fixare şi de ghidare………….…...………………… 863.6. Calculul elementului elastic………………..…....................………..…. 873.7. Calculul presiunii specifice………………..................................…..….. 883.8. Calculul lucrului mecanic specific de patinare................................................. 883.9. Calculul termic al ambreiajului ………………..…....................…………. 894. Sistemul de actionare............………………..................................…….... 90

CAP. V. CALCULUL CUTIEI DE VITEZA..………………………………. 95

CAP. VI. PROCESUL TEHNOLOGIC DE FABRICATIE A ARBORELUI SECUNDAR……………………....….............……………………………. 114

CAP. VII. JUSTIFICAREA ECONOMICA A SOLUTIILOR ADOPTATE.......................................……..................................................... 116

BIBLIOGRAFIE…….................................................................................... 120

Page 5: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

CAP.I. STUDIUL DE NIVEL AL AUTOTURISMELOR EXISTENTE DIN GAMA CELUI CERUT PRIN SARCINA DE PROIECTARE

Tabelul 1.1

Marca CITROEN RENAULTModel C5 2.0 i Euro 4 LAGUNAPutere [Kw] 105 110Turaţie [rot/min] 6000 6000Moment maxim [Nm la rot/min] 200/4000 195/3750Puntea motoare faţă spateAmpatament [Nm la rot/min] 2750 2700Ecartament faţă/spate [mm] 1528/1495 1418/1431Dimensiuni exterioarelungime x lăţimexînălţime [mm]

4745x1780x1476 4695x2060x1445

Masa proprie [kg] 1394 1444Masa totală [kg] 1914 1810Acceleraţia 0-100Km/h [s] 9.1 9.1Viteza maximă [km/h] 210 210

Tabelul 1.2Marca TOYOTA SKODAModel AVENSIS 2.0 SUPERBPutere [Kw] 108 110Turaţie [rot/min] 5800 5700Moment maxim [Nm la rot/min] 196/4000 210/1750Puntea motoare faţă FaţăAmpatament [Nm la rot/min] 2540 2803Ecartament faţă/spate [mm] 1422/1415 1521/1514Dimensiuni exterioarelungime x lăţimexînălţime [mm]

4070/1688/1399 4803x1765x1469

Masa proprie [kg] 1102 1438Masa totală [kg] 1590 2015Acceleraţia 0-100Km/h [s] 9.4 9.5Viteza maximă [km/h] 210 216

Page 6: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Tabelul 1.3Marca SKODA MERCEDESModel SUPERB LAURIN C200

KOMPRESORPutere [Kw] 120 115Turaţie [rot/min] 6000 5200Moment maxim [Nm la rot/min] 280/3200 230/3000Puntea motoare faţă spateAmpatament [Nm la rot/min] 2803 2540Ecartament faţă/spate [mm] 1521/1514 1483/1423Dimensiuni exterioarelungime x lăţimexînălţime [mm]

4803x1765x1468 4011x1759x1430

Masa proprie [kg] 1501 1485Masa totală [kg] 2078 1970Acceleraţia 0-100Km/h [s] 8 9.9Viteza maximă [km/h] 237 223

Tabelul 1.4Marca AUDI VOLVOModel A4 1.8 t S40Putere [Kw] 120 125Turaţie [rot/min] 5700 6000Moment maxim [Nm la rot/min] 210/2550 230/4400Puntea motoare faţă faţăAmpatament [Nm la rot/min] 2648 2640Ecartament faţă/spate [mm] 1510/1505 1535/1531Dimensiuni exterioarelungime x lăţimexînălţime [mm]

4586x1772x1427 4477x1770x1454

Masa proprie [kg] 1390 1467Masa totală [kg] 1940 1940Acceleraţia 0-100Km/h [s] 8.6 8.2Viteza maximă [km/h] 228 220

Page 7: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Tabelul 1.5Marca BMWModel 320 iPutere [Kw] 125Turaţie [rot/min] 6200Moment maxim [Nm la rot/min] 210/4250Puntea motoare faţăAmpatament [Nm la rot/min] 2760Ecartament faţă/spate [mm] 1500/1513Dimensiuni exterioarelungime x lăţimexînălţime [mm]

4520x2013x1418

Masa proprie [kg] 1505Masa totală [kg] 1970Acceleraţia 0-100Km/h [s] 8.4Viteza maximă [km/h] 226

Concluzii:

Din studiul de nivel al autovehiculelor din gama de cinci locuri, reiese că tendinţele actual duc la realizarea unui autoturism cu următoarele caracteristici:

Caroseria este prevăzută cu patru uşi şi în interior cu cinci scaune şi are o formă cât mai aerodinamică şi mai compactă pentru ca forţele de rezistenţă ale aerului să fie cât mai mici.

Puntea motoare e dispusă în faţă având o suspensie McPherson, braţ suspensie, bară stabilizatoare.

Puntea spate are o suspensie multibraţ, arc elicoidal, bară stabilizatoare. Cutia de viteze se tinde să fie manuală, în cinci trepte şi nu automată pentru această

cutie are o fiabilitate scăzută şi se pierde plăcerea de a conduce un autoturism. Frânele autovehiculului tind să fie cu discuri ventilate faţă şi tambur spate. Anvelopele se aleg ţinând cont de aderenţa cursorului şi de amortizare cât mai bună

a oscilaţiilor şi a vibraţiilor ce apar în sistemul de rulare al autoturismului.

Page 8: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

CAP. II. STUDIU PRIVIIND SISTEME DE SIGURANŢĂ PENTRU AUTOVEHICULE RUTIERE

Volvo Cars continuă cercetările în domeniul siguranţei auto pe şosele: un nou sistem de avertizare în caz de coliziune şi frână automată, un sistem Cruise Control şi un sistem de avertizare pentru şoferii ce sunt prea obosiţi la volan au fost dezvoltate.

Compania Volvo a dezvoltat un sistem în caz de coliziune cu un automobil din faţă ce staţionează sau este în mişcare. Acesta ne avertizează acustic şi va frâna automat pentru a evita coliziunea. Sistemul Cruise Control va adapta viteza în funcţie de automobilul din faţă automat sau ne va atenţiona atunci când suntem prea aproape de el. Aceste sisteme vor fi disponibile pe noile versiuni ale modelelor Volvo S80, V70 si CX70 începând cu sfârşitul anului 2007.

La mai mult de 50% din accidentele întâmplate din cauza coliziunii din spate cu un alt autovehicul, şoferii vinovaţi nu frânează destul de mult pentru a evita accidentul. Acest sistem intervine automat, previne şoferul, îl avertizează şi în caz contrar acţionează sistemul de frânare în funcţie de viteza avută pentru a evita cât se poate de mult coliziunea şi rănirea ocupanţilor din vehicul.

Primul sistem introdus pe Volvo S80 foloseşte unde radar pentru a detecta potenţialii factori de accident. Noul sistem foloseşte şi unde radar dar şi o camera video. Raza undelor radar este de 150 de metri în faţă autovehiculului iar cea a camerei video este de 50 de metri. Sistemul prelucrează datele şi daca cumva ceva este în neregulă intervine. Daca şoferul nu observă obstacolul din faţă sistemul îl previne vizual cu un semnal roşu de avertizare şi unul sonor, “încarcă” sistemul de frânare. Acestea ajuta şoferul sa reacţioneze şi sa frâneze. O reducere a vitezei de la 60 la 50 km/h în momentul impactului reduce cu 30% energia produsă, deci mai puţine daune automobilului şi mai puţine răni pasagerilor.

Fig.2.1

Page 9: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Fig.2.2

Adaptive Cruise Control ne permite reglarea vitezei şi menţinerea sa între 30 şi 200 km/h. Dar aceasta se poate adapta automat în funcţie de vehiculul care rulează în faţă automobilului. Daca acesta din faţă are o viteză mai mică sistemul va frâna automat menţinând o distanţă suficientă pentru evitarea oricărui pericol. Sistemul are şi el limitele sale: dacă şoseaua este slab iluminată sau ceaţa, fumul, ninsoarea o acoperă nu poate opera la capacitatea sa maximă si atunci trebuie sa facem totul manual.

Un alt sistem introdus de Volvo va fi Driver Alert Control. Acesta atenţionează şoferii care nu sunt destul de concentraţi la volan din cauza oboselii. Lane Departure Warning funcţionează atunci când şoferul depăşeşte marcajele de pe sensul său de mers fără nici un motiv întemeiat sau fără să semnalizeze.

Compania Volvo a analizat modul în care se comporta în spatele volanului şoferii în diferite condiţii de stres şi oboseală. În fiecare an din cauza şoferilor care adorm la volan se produc peste 100000 de accidente în Statele Unite ale Americii, din care 1500 sunt mortale şi peste 70000 de pasageri şi şoferi sunt răniţi. Aceeaşi situaţie este similară şi în Europa.

Sistemele Driver Alert Control şi Lane Daparture Control sunt unice. Acestea analizează toţi parametrii automobilului şi cei ai şoferului. O cameră instalată în interior măsoară permanent distanţa între autovehicul şi marcajele de pe sosea. Astfel se află dacă şoferul face mişcări bruşte ale volanului fără nici un motiv anume şi îl avertizează printr-un semnal sonor şi luminos şi un text pe ecranul din bord ”Driver alert - Time for a break” (Alerta pentru şofer - este timpul pentru o pauză). Aceste sisteme nu pot funcţiona în parametrii normali daca şoseaua nu este marcată corespunzător sau dacă condiţiile meteo sunt nefavorabile (ceaţă, ninsoare, polei).

Audi are cel mai rapid super-computer pentru simulările de crash-test. Clusterul - format din 320 de servere ce lucrează în paralel - are o putere de calcul de 15 teraflops (15 miliarde de calcule pe secundă), fiind cel mai rapid sistem din industria auto şi unul dintre cele mai rapide 150 super-calculatoare din lume.

„Noul super-computer accelerează munca de simulare de câteva ori. Prin creşterea constantă a numărului de modele din gama Audi, este esenţial ca fiecare model să aibă

Page 10: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

ocazia de a fi testat în timpul dezvoltării, pentru orice tip de accident posibil”, a spus Dr. Ulrich Widmann, director al Departamentului de Siguranţă a Vehiculelor la Audi. Cu cât este mai rapid calculatorul, cu atât simulările vor putea fi mai exacte şi mai realiste. Dezvoltatorii conduc aproape 5.000 de simulări în fiecare săptămână - de la simulări de crash-test frontal - până la testarea unor componente individuale - permiţându-le să determine şi să corecteze eventualele puncte slabe înainte de construcţie, chiar înaintea realizării primului prototip. Simulările fac posibilă dezvoltarea maşinilor conform condiţiilor curente de pe piaţă, cu nevoile clienţilor sau cu informaţiile primite de la Audi Accident Research Unit, al cărui director, Hans-Ulrik von Bulow a spus: „Noua reţea de calculatoare ajută la îmbunătăţirea calităţii tuturor componentelor Audi”.

Noul sistem este şi foarte eficientă. Cele 320 de servere HP ProLiant BL460c sunt montate câte opt în rack-uri înalte de 2 metri şi astfel necesită cu până la 30% mai puţin spaţiu decât calculatoarele tipice folosite în simulările de crash-test. Sistemul de răcire al clusterului foloseşte de asemenea cu până la 25% mai puţină energie, consumând doar 86 kW (făţă de 115 kW).

Fig.2.3

Fig.2.4

Page 11: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Fig.2.5

Audi AG are un motiv foarte întemeiat de a-şi extinde inventarul de calculatoare şi a ţine pasul cu noile tehnologii, având în vedere creşterea modelelor din gama sa de vehicule. Fără aceste simulări extensive, dezvoltarea noilor maşini nu ar fi posibilă datorită creşterii complexităţii acestora precum şi a reglementărilor în domeniu. Calitatea produselor poate fi îmbunătăţită semnificativ prin aceste simulări.

Fig.2.6

Un singur model trece prin aproximativ 1000 de simulări pe săptămână în timpul celor 48 de luni ale fazei de dezvoltare. Înainte de producţia primului prototip, maşina virtuală a făcut deja 100.000 de simulări pe computer. Programarea acestora poate dura de la 30 de minute până la o săptămână, în funcţie de complexitatea accidentului. Când dezvoltatorii realizează testele de siguranţă reale, maşina deja a primit un înalt standard de siguranţă prin folosirea simulărilor pe calculator.

Page 12: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Fig.2.7

Unele principii nu se schimba niciodata. Si dupa 80 de ani de inovatii indomeniul sigurantei, filozofia exprimata de fondatorii companiei Volvo este mai actuala ca niciodata: “Masinile sunt conduse de catre oameni. De aceea, principiul debaza din spatele a tot ceea ce noi realizam la Volvo este- si trebuie sa ramana- siguranta.” (Assar Gabrielsson si Gustaf Larson)

Filozofia membrilor fondatori a oferit baza pentru multe alte noi elemente de siguranta de-a lungul timpului. Un exemplu este celula de siguranta (“safety cage”) care a fost introdusa la Volvo PV 444 in 1944, impreuna cu parbrizul laminat, si a reprezentat unul dintre primele elemente de siguranta importante implementate pe autoturismele Volvo. Centura de siguranta cu prindere in trei puncte- cea mai importanta dintre toate inovatiile Volvo-a aparut in 1959. Aceasta este considerata una dintre inventille tehnice care a salvat cele mai multe vieti din istoria omenirii. Sistemul de protectie impotriva impactului lateral (“SIPS”) a fost introdus in 1991 iar sistemul WHIPS, care asigura deplasarea inainte-inapoi a scaunului din fata in cazul coliziunilor din spate, conform miscarii corpului, in 1998. La modelele de azi, zonele de deformare (”crumple zones”), introduse in 1996, au fost imbunatatite prin intermediul a patru bare de otel diferite, menite sa absoarba socul coliziunii.

Echipa de cercetare a accidentelor de la Volvo studiaza accidentele in care au fost implicate masini Volvo de mai bine de 37 de ani. Echipa asigura in permanenta cunostinte importante functiei de cercetare si dezvoltare a Volvo.

Volvo ia in considerare ideea unui viitor in care traficul auto va fi complet sigur. In spiritul acestei viziuni, masinile vor fi echipate cu sisteme inteligente care nu doar ca vor ajuta la sporirea vigilentei soferului, dar chiar vor putea prelua controlul masinii daca soferul nu reactioneaza in timp util pentru a evita un pericol iminent. Aceste demersuri sunt deja in desfasurare. Cele mai recente modele Volvo incorporeaza mai multe sisteme de siguranta avansate care ofera asistenta soferului in aceasta privinta. Acestea includ sistemul “BLIS”, care avertizeaza soferul asupra obiectelor care se deplaseaza in asa-numitul “unghi mort” din raza sa vizuala,si sistemul “Collision Warning with Brake Support” care, pe langa avertizarile vizuale si sonore, “pregateste” franele pentru a contribui la evitarea coliziunii cu vehiculul din fata. “Principala idee a noii noastre filozofii a sigurantei este de a pozitiona capacitatea umana in centrul muncii noastre de cercetare si al viitoarei dezvoltari a

Page 13: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

sistemelor. Obiectivul este acela de a ajuta soferul sa isi mentina mainile pe volan si privirea pe carosabil”, explica Ingrid Skogsmo, directorul Volvo Cars Safety Centre, care a fost numita Femeia Anului 2006 de catre influenta revista Automotive News.

Sistemul City Safety, care a fost dezvaluit pentru prima data pe conceptul XC60, la Salonul Auto de la Detroit de anul acesta, reprezinta inca un pas catre aceasta viziune. Sistemul insusi poate folosi franele, in anumite situatii, pentru a evita o coliziune, iar Volvo Cars spera ca utilizarea sa va preveni jumatate din totalul accidentelor cu coliziune din spate.City Safety este programat sa apara pe piata in urmatorii doi ani.

NOŢIUNI INTRODUCTIVE DESPRE SISTEMELE DE SIGURANŢĂ ACTIVĂ

IstoricCompania germană Robert Bosch GmbH (cunoscută, mai popular, drept Bosch)

dezvoltă tehnologia ABS din anii 1930, dar primele automobile de serie care să folosească sistemul electronic Bosch au fost disponibile în 1978. Au apărut prima dată pentru camioane şi limuzine nemţeşti Mercedes-Benz. Ulterior sistemele au fost portate şi pentru motociclete.

Iniţial, sistemele ABS au fost dezvoltate pentru aeronave. Unul din primele sisteme a fost Maxaret al companiei Dunlop, prezentat în anii 1950, şi încă în uz pe unele modele de aeronave. Acesta a fost un sistem complet mecanic. A fost utilizat şi pe automobile în anii 1960 (maşina de curse Ferguson P99, Jensen FF şi maşina experimentală Ford Zodiac cu tracţiune integrală) dar pentru automobile s-a dovedit scump şi nu a fost în totalitate de încredere. Un sistem complet mecanic, cosntruit şi vândut de Lucas Girling, a fost echipat din fabrică pe Ford Fiesta generaţia a 3-a. S-a numit Stop Control System (sistemul de control al opririi).

Sistemele care fac parte din siguranţa activă a unui automobil sunt următoarele:

Sistemul de frânare antiblocare - ABS – Când roţile se blochează pe drumuri ude sau alunecoase datorita unei frânari bruşte, vehicululul datorită aderenţei scăzute pote derapa necontrolat. Sistemul de frânare antiblocare (ABS) are calitaţi considerabil de lăudabile de prevenire a blocajului roţilor, oferindui conducătorului un control foarte mare asupra autovehiculului în cazul unor frânări bruşte în situaşii de urgenţă. Cele mai multe autovehicule oferă ABS fie ca echipament standard fie ca echipament optional.

Page 14: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Fig.2.8. Sistemului de frânare cu ABS

Sistemul de control al tracţiunii-TCS- Printre nenumăratele pericole cu care se confruntă conducătorii auto se numără drumurile ude sau alunecoase. Autovehicolele pot intra pe neaşteptate in derapaj atunci când sunt frânate sau accelerate reluarea controlului asupras autovehiculului fiind imposibilă. Sistemul de control al tracţiunii-TCS- ajută în astfel de situaţii, prevenind derapajul roţilor înbunătăţind acceleraţia si menţinând direcţia de mers. Senzorii informează sistemul TCS când roţile încep să patineze, acesta trimite un semnal şi un instrument de bord informează conducătorul auto de faptul că TCS este activ.

Asistenţa la frânare – BA- Asistenţa la frânare este o tehnologie care ajută la îmbunătăţirea timpului de reacţie a conducătorului auto in situaşia frânării de urgenţă.sistemul se bazează pe descoperirile studiilor accidentelor de circulaţie prin coleziune efectuate în paralel de firmele Mercedes şi Toyota, în care 90% din participanţi au ezitat să aplice toată forţa de frânare, sau să nu aplice toată forţa de frânare ăn situaţii de urgenţă. Sistemul asistenţei frânării de urgenţă foloseşte senzorii pentru a măsura cât de uşor trebuie apăsată pedala de frână. Când sistemul descoperă intenţia conducătorului auto dea aplica întreaga forţă de frănare asistenţa de frânare livrează întraga presiune de frânare reducând considerabil distanţa de frânare a autovehiculului. Asistenţa la frănare este disponibila pe un număr mare de noi autovehicule, incluzând Ford Taurus, Ford Focus şi Ford Expedition.

Page 15: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Fig2.10. Rata de penetrare a sistemului ESP în lume

Fig. 2.9. Elementele sistemului ABS/ASR

Page 16: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Programul electronic de stabilitate-ESP- Aproape 10000 de oameni au murit anul trecut ca urmare a accidentelor prin coliziune, multe dintre ele având loc când vehiculele rulau pe drum ud sau la deplasarea în curbe. Programul electronic de stabilitate este un sistem interactiv de stabilitate dezvoltat, proiectat pentru a detecta ţi asista electronic situaţiile critice în timpul rulării autovehiculului. Este automat furnizând un înalt control in condiţii nefavorabile de trafic, comparând constant intenţia de menţinere a direcţiei a conducătorului auto cu direcţia pe care tinde să o aibă autovehiculul şi compensând orice diferenţă. Numeroşi producători de automatizări oferă sisteme electronice de control al stabilităţii, pe care le vând sub diferite denumiri. Clienţii pot întâlni aceste produse sub numele diverselor brand-ri atunci când îşi achiziţionează un nou autovehicul:ESP (Audi, Mercedes,Volswagen), DSC-Dynamic Stability Program (BMW), TM-Advance Trac (Ford, Lincoln,Mercury), Stability Management System (Porsche) and Vehicle Skid Control (Toyota).

Scurt istoric al sistemelor de siguranţă activă

Inginerii nici nu au visat că sistemul de frânare antiblocaj patentat acum aproximativ 70 de ani de catre Karl Wessel in 1928, pentru controlul forţei de frânare , va fi dezvoltat şi construit. Sistemul a fost fundamentat şi perfecţionat de catre Robert Bosch (1936) şi Fritz Osthaus în 1940. Sistemul ABS a fost patentat în 1936 când Fritz Ostwald, supranumit părintele ABS, îşi susţinea examenul de doctorat în ingineria mecanică la Universitatea Tehnică din München. Îndrumătorul sau nu a fost interesat această temă, astfel că îşi termină doctoratul in fizică, după care lucrează la ATE, ITT, Continental Teves din 1950 până cănd se retrage în 1978. Deoarece a fost convins că o frână poate lucra corect numai dacă şasiul este corect proiectat, el a facut câteva imbunatatiri: unghiul de cădere negativ şi o nouă concepţie a punţii spate pentru acea vreme, amândouă fiind folosite la majoritatea maşinilor de azi.

Unghiul negativ al roţii este important când în timpul tracţiunii întâlnim suprafeţe neregulate sau obstacole în afara drumului, explozie de cauciuc sau defecte ale frânelor. Poate fi numit ESP mecanic şi va fi arătat mai jos ce i-a inspirat invenţia. Numele de ABS este derivat din cuvântul Antiblockiersystem. Heinz Leiber la Daimler – Benz a lucrat la ABS-ul automobilelor in 1964 la Teldix si mai târziu la Bosch si Daimler – Benz. El este părintele primului sistem ABS care a lucrat pe automobile. Un prototip ABS pe autovehicul a fost arătat în 1970. Dar a fost nevoie de mai mulţi ani pentru a dezvolta un sistem care să fie îndeajuns de fiabil, utilizând circuitele digitale integrate în locul componentelor analogice. Bosch a început prima serie de producţie în 1978 cu sistemul ABS 2S fiind folosit de legendarul Euro 81 500SEL Mercedes Benz. ABS-ul era opţional pentru 2599 de mărci, aproape 5% din preţul maşinii care este echivalentul a 5000 de dolari astăzi.

Page 17: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Fig.2.11. ABS 2S in '81 500SEL

În 1995 ESP se lansează în producţie după opt ani de intense cercetări şi perfecţionări ale sistemului. Dupa ce faza de concepţie a fost validată, intreaga durată de realizare a sistemului poate fi împărţită în trei mari decade. În 1959 Prof. Dr. Fritz Nallinger , inginer şef la Daimler Benz a patentat un sistem de control proiectat pentru a preveni alunecarea roţilor prin intervenţia asupra motorului transmisiei şi frânelor. Până atunci senzorii şi sistemele de control nu erau capabile de performanţe necesare operaţiei de stabilizare cu frecvenţa necesară sistemului. Totuşi mult timp asemenea dispozitive au rămas doar o teorie.

1971-1986

Fundamentele ESP au fost realizate de Mercedes Benz între anii 70 , 80 când compania a dezvoltat sistemul de antiblocare a frânelor (ABS, "Antiblockiersystem"). Bazat pe tehnologia ABS-ului, Mercedes-Benz a dezvoltat Acceleration Skid Control –ASR (controlul alunecarii la accelerare, "Antischlupfregelung") ASR intervine atât în sistemul de frânare cât şi asupra motorului în reglând forţa la roată in funcţie de suprafaţa drumului. Acest sistem nu acţionează numai în timpul frânării ca sistemul ABS ci şi în timpul accelerării. ASR a debutat pentru prima dată în 1981 pe Mercedes W-126 S class. În 1985 ASR a fost urmat de sistemul ASD-Automatic Locking Diferenţial şi de inovativul 4Mation un sistem care monitorizează tot timpul cele patru roţi. Inginerii de la Mercedes au o nouă ţintă, să dezvolte o nouă siguranţă activă în toate situaţiile: in viraje, manevre evazive sau alte manevre ale autovehiculului care ar afecta dinamica laterală a automobilului şi să inducă un risc mare de derapaj.

1987

ABS + (ASR + ASD) = ESP

Urmărind vastele simulări realizate cu ajutorul computerului şi a cercetărilor preliminare, în 1987 are loc prima testare a unor vehicule echipate cu aşa numitul Transverse Slip Control System. Acest sistem identifica momentul de alunecare al vehiculului şi îl va corecta prin intervenţii asupra şasiului , motorului şi transmisiei.

1992

După succesul simulărilor dezvoltate de un înalt standard de producţie începute în1992, mai mult de 40 de ingineri de la Mercedes-Benz AG şi Robert Bosch GmbH au luat parte la acest proiect de bază. Împreună inventatorii de la Mercedes-Benz AG şi Robert Bosch GmbH au exploatat milioane în timpul experimentelor şi de asemenea şi alte resurse.

Page 18: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Fig.2.12. Modul de operare al ESP

1994-1996

În primăvara lui 1995 prima generaţie de sisteme ESP, intră în producţie la Mercedes-Benz/Stuttgart în S 600 coupe. În 1996 sitemul RAM a fost crescut de la 48 de kilobytes la 56 de kilobytes.

1997-2000

În 1997 a doua generaţie de sisteme ESP a fost introdusă în producţie. Pentru o dezvoltare rapidă a presiunii de frânare sistemul de asistenţă al frânării Brake Assist System (BAS, "Bremsassistent") este acum utilizat. Acest lucru face posibilă renunţarea la pompa de presurizare şi la pistonul de încărcare micşorând greutatea cu mai mult de 50%. Cea de-a treia generaţie de sisteme ESP, cu nume de proiect MK20, a fost introdusă în producţie în MAI 2000 la noile Mercedes-Benz C-class.

Operatii motor

Operatii franare

Unitate controlABS/ASR

electrovalva modulator franare

Sistem deManagementmotor

Pompa de injectie

Page 19: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

SISTEME DE FRÂNARE ANTIBLOCARE ABS

Fig.2.13.

Automobilele moderne sunt echipate cu sisteme de frânare performante şi fiabile, capabile să atingă excelente valori de frânare chiar şi la viteze ridicate. Totuşi, chiar şi cele mai sofisticate sisteme de frânare nu sunt în măsură să evite reacţiile necontrolate şi o frânare excesivă din partea conducătorului maşinii, confruntat cu condiţii de circulaţie critice sau cu o situaţie neaşteptată. Specialiştii au estimat că 10 % dintre accidentele de pe drumurile publice au fost produse datorită faptului că vehiculele devin necontrolabile si derapează ca urmare a blocării roţilor. Sistemul anti-blocaj (ABS) permite remedierea acestei probleme. Vehiculele echipate cu acest dispozitiv îşi conservă maniabilitatea si stabilitatea direcţională, chiar şi în cazul frânarii violente. Sistemul ABS contribuie într-o masură importantă la siguranţa rutieră. La ora actuală cumpărătorii de automobile consideră sistemul ABS ca fiind cea mai importantă opţiune ( 60% din preferinţe), devansând airbag-ul ( 53% ) şi direcţia asistată ( 51% ).

Prezentarea sistemelor de frânare

Rolul frânării: -să încetinescă, -să oprească, -să mentină oprirea.

În cele mai bune condiţii, aceasta înseamnă :

EFICACITATE : în timp şi pe o distanţă maximă.

Page 20: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

STABILITATE : cu păstrarea traiectoriei vehiculului.PROGRESIVITATE : cu o frânare proporţionala efortului conducătorului.CONFORT : cu un efort minim pentru conducător.

Sistemul de frânare convenţional

Conform cu dispoziţiile legale, funcţionarea echipamentului de frânare pe un autovehicul este repartizată în două dispozitive :-dispozitivul de frânare principal,-dispozitivul de frânare de securitate.

Aceste două dispozitive comportă comenzi în întregime independente şi uşor accesibile. Ele sunt completate de un sistem de frânare în staţionare.

Compunerea

1 : Pedala de frână : Transmite forţa de apăsare a şoferului către cilindrul principal.

2 : Servofrâna cu depresiune : Utilizează o sursă de energie exterioară (depresiunea din admisie) pentru a mări forţa de apăsare a conducătorului.

3 : Pompă centrală tip tandem: Generează şi distribuie frânei lichidul atunci când conducătorul apasă pedala de frână.

Fig.2.14.

4 : Rezervorul de lichid de frână : Stochează lichidul de frână.5 : Frâna cu disc (faţă) : Transformă energia cinetică în energie calorică.6 : Repartitorul forţei de frânare : Evită blocarea roţilor spate modificând presiunea din cilindrii receptori.7 : Frâna cu tambur (spate) : Transformă energia cinetică în energie calorică.Conductele şi lichidul de frână : Transmit presiunea (forţa) din cilindrul principal în cilindrii receptori.

Principiul de bază

Page 21: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Principiul de bază îl constituie crearea unei forţe care se opune avansării vehiculului, ţinând cont de 3 factori : factorul mecanic, factorul fiziologic, factorul fizic.

Factorul mecanicOprirea roţilor este obţinută prin frecarea unui element fix al şasiului de un element

solidar cu roata în mişcare de rotaţie. Aceasta va duce la degajare de căldură. Frânarea transformă energia cinetică în energie calorică. De unde apar alte două calităţi indispensabile ale sistemului de frânare :-O bună eficienţă la temperaturi înalte,-Un timp de recuperare minim.

Factorul fiziologic

Timpul de reacţie : este timpul care se scurge între perceperea obstacolului si începutul efectiv de frânare. Acest timp, variabil după fiecare individ şi după starea lui generala, este în medie de 0,75 s.

Distanţa de oprire : este distanţa parcursă în timpul de reacţie, plus distanţa de frânare.

Distanţa de frânare optimă este funcţie de: viteza vehiculului, coeficientul de frecare, deceleraţia posibilă (caracteristică frânarii vehiculului).

Diagrama : Reprezentarea distanţei de oprire în funcţie de viteză (pe un sol dur şi uscat

cu o deceleraţie medie de 6 m/s2 = 0,59g):

Fig.2.15.

Factorul fizic – aderenţa.

Dacă roata este oprită brutal, ea se blochează şi alunecă fără să se învârtă, vehiculul continuând să înainteze : se spune atunci că roata nu mai are aderenţă.

Page 22: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Forţa de aderenţă Fa se opune deplasării unui corp în raport cu suprafaţa pe care este aşezat în repaus.

Ea este influenţată de: forţa verticală produsă de greutatea corpului Fz, coeficientul de aderenţă µ.

Forţa de aderenţă = greutatea corpului coeficientul de aderenţă Dacă Fx Fa : Corpul rămâne imobil.

Dacă Fx Fa : Corpul va aluneca.

Coeficientul de aderenţă este funcţie de: -natura materialelor, -starea suprafeţelor, -ungerea dintre suprafeţe.

Fa = Fz µ

G

Fz

Fx

Fa

w

Fa : Forţa de aderenţă

Ulei.

Fa

Page 23: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Fig.2.16. Forţa de aderenţă în funcţie de alunecare

Dacă alunecarea creşte peste o anumită valoare, forţa de aderenţă scade. Blocajul unei roţi este de asemenea obţinut cu o alunecare de 100 %. Alunecarea si forţa de aderenţă sunt strâns legate, deci pentru a obţine cea mai bună forţă de aderenţă între anvelopă si şosea este necesar să se atingă o anumită valoare de alunecare.

Această alunecare provoacă o uzură a anvelopelor. Se remarcă pe curbe că o creştere importantă a alunecării până la blocajul roţii, provoacă o diminuare a forţei de aderenţă longitudinală. Pe de alta parte, provoacă în egală măsură o scădere foarte importantă a forţei de aderenţă transversală şi deci posibilitatea derapării laterale creşte.

De asemenea, dacă se priveşte vehiculul în totalitate, blocajul roţilor din faţă provoacă o pierdere a « dirijabilităţii » vehiculului, iar blocajul roţilor spate produce o pierdere a stabilităţii acestui vehicul (risc de „tête à queue” – de răsucire). Constatăm că o alunecare situată în jurul a 20 %, dă un bun compromis între stabilitatea şi maniabilitatea direcţionala a forţei de frânare.

Dacă automobilul dotat cu ABS se află în curbă şi se produce o frânare de urgenţă, vehiculul rămâne pe traiectoria impusă de conducător în 85% din situaţii. În absenţa ABS-ului numai 38% din vehicule rămân pe traiectoria impusă.

Situaţiile de derivă în frânare

Observăm un vehicul lansat în linie dreaptă :

Page 24: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Fig.2.17. Toate cele 4 roţi blocate

Dacă se efectuează o frânare de urgenţă, vehiculul are tendinţa de a se aşeza transversal pe drum : acest fenomen îşi găseşte originea în diferenţa de aderenţă a solului, între roti, înainte de blocarea lor. Blocajul astfel obţinut, vehiculul urmează atunci traiectoria sa învârtindu-se în jurul sau. Dacă nu vom mai apăsa pedala de frână, vehiculul se va stabiliza pe o nouă traiectorie rectilinie, diferită de prima şi suprapusă cu axa sa longitudinală.

Roţile deblocateFrânare până la blocarea roţilor.

Page 25: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Fig.2.18. Cele 2 roţi faţă blocate

Se constată că, dacă roţile faţă sunt blocate, direcţia devine inoperantă.

Concluzie : Maşina este instabilă cu roţile blocate. Maşina îşi revine când relaxăm pedala.

Roţile faţă deblocate.

Roţile faţă blocate.

Page 26: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Caracteristicile A.B.S.-ului

Scop : Să păstreze controlul vehiculului în frânarea de urgenţă.Rol : Să evite blocarea roţilor.Caracteristicile sistemelor ABS : ABS-ul trebuie să se adapteze foarte rapid condiţiilor

de aderenţă aleatoare.

ABS-ul trebuie să răspundă următoarelor cerinţe : Dirijabilitate (împiedicarea roţilor faţă să de blocheze). Deceleraţie maximă (utilizarea maximă a aderenţei).

Stabilitate direcţională (împiedicarea roţilor spate să se blocheze); reglarea presiunii

de frânare spate.

Gestionarea cuplului de forţe diferite care apare în timpul frânării pe o şosea cu

aderenţă diferită la roţi.

Să pună la dispoziţie informaţia de viteză.

Observaţie : Un câştig de distanţă de oprire poate fi efectiv adus doar în anumite condiţii.

Fig.2.19. Amplasarea elementelor pe vehicul

1.Unitate hidraulică2.Captor viteză roată3.Coroană dinţată4.Contactor STOP5.Rulment instrumentat6.Martor Nivocode+Stop+Service7.Martor ABS

A. DiscB. Tambur

- - - - Circuit electric____Circuit hidraulic

Page 27: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Componenţa sistemului A.B.S.

S istemul adiţional

Sistemul se compune dintr-un bloc hidraulic adiţional care vine în completarea sistemului de frânare convenţional (cilindrul principal şi servofrâna).

Fig.2.10.În regularizare, un volum de lichid este prelevat din roata care are tendinţa de blocare şi

"reinjectat" în intrarea în cilindrul principal (circuit închis).

SyP- sinteză vocală

Fig. 2.21. Schema A.B.S.-ului

Bloc hydraulique RoţiBloc hydrauliqueBloc hidraulic Ro

EVITER LE BLOCAGE

DES ROUES

Capteurs vitesses de roues

Contacteur de stop

Information vitesse véhicule

Voyants +SyP

Electrovannes

Moteur -Pompe

Outil de diagnostic

Système Antiblocage de Roues

Alimentation

EVITER LE BLOCAGE

DES ROUES

Capteurs vitesses de roues

Contacteur de stop

Information vitesse véhicule

Voyants + SyP

Électrovannes

Moteur - Pompe

Outil de diagnostic

Système Antiblocage de Roues

Alimentation

EVITER LE BLOCAGE

DES ROUES

Capteurs vitesses de roues

Contacteur de stop

Information vitesse véhicule

Voyants +SyP

Electrovannes

Moteur -Pompe

Outil de diagnostic

Système Antiblocage de Roues

Alimentation

EVITAREA BLOCAJULUI

ROTII

Captorul de viteză al roţii

Contactorul de stop

Informaţia de viteză

Martor + SyP

Electrovane

Motor - Pompa

Utilaj de diagnostic

Sistemul de Antiblocare al Roţilor

Alimentare

Page 28: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Captorii: Captorii roţii- măsoară viteza roţii

Captorul pasiv (inductiv).

Captorul pasiv nu este alimentat. El funcţionează după principiul inducţiei. În capătul captorului se găsesc doi magneţi permanenţi şi o bobină. Fluxul magnetic se modifică datorită trecerii dinţilor coroanei dinţate. Variaţia câmpului magnetic care traversează bobina generează o tensiune alternativă sinusoidală a cărei frecvenţă este proporţională cu viteza roţii.

N

S

3

1

2

N

S

N

S

N

S

N

S

33

1

2

1 Captor.2 Coroana dinţată.3 Întrefier.

Fig.2.22.

Avem nevoie de o anumită viteză de defilare a dinţilor ( viteză roată ) pentru a se obţine un semnal de formă cvasisinusoidală la bornele traductorului (în general o viteză de 5 – 10 km/h). Frecvenţa şi amplitudinea semnalului sunt variabile cu viteza de rotaţie! Numai amplitudinea semnalului se modifică odată cu întrefierul!

Page 29: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Captorii activi

Captorii activi sunt alimentaţi. Ei funcţionează după principiul măsurării unui câmp magnetic. În capăt se găseşte un element sensibil electronic. Fluxul magnetic este modificat prin defilarea dinţilor coroanei dinţate. Variaţia câmpului magnetic care traversează partea activă a captorului generează un semnal de ieşire rectangular (pătrat) a cărui frecvenţă este proporţionala cu viteza roţi. Amplitudinea semnalului este constantă oricare ar fi valoarea de întrefier până la o valoare de întrefier maximă. La aceasta valoare de întrefier maximă, semnalul corespunde unei viteze a roţii egală cu zero.

1

2

1

2

1 Rulment cu coroană magnetică .

2 Captor.

Captorul magneto-rezistiv

U

0 t

U

0 timp

U

0

Page 30: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Fig.2.23.

Contactorul de stop

Calculateur ABS

Informatie

Pedală de frână

Este un captor de tipul totul sau nimic şi are rolul de a informa calculatorul în vederea întreruperii fazei de reglare a presiunii în sistemul de frânare atunci când acest lucru este necesar. Informaţia contactorului becului de stop are rolul de a permite să se părăsească modul ABS cât mai rapid. Într-adevăr, dacă ABS-ul este în funcţionare, şi dacă conducătorul relaxează pedala de frână ca să întrerupă frânarea, semnalul transmis de contactorul de stop va permite să se întrerupă reglarea mai rapid. Informaţia de la acest contactor este folosită şi pentru a anticipa începerea regularizării în cazul debutului fânării.

Grupul A.B.S.

Grupul ABS este compus din: grup hidraulic (electrovane, pompă hidraulică, acumulator de joasă presiune, clapetă de anti-retur), motorul pompei, calculator.

Alimentare

Calculator ABS

Informa

Grupul hidraulic

Calculator.

Motorul pompei.

.

Calculatr.Calculat.

Page 31: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Precauţii :

-a se respecta poziţia prescrisă pentru manipulare şi transport;-a nu se solicita mecanic cablajul electric;-protectoarele se vor demonta în momentul montajului;-evitarea şocurilor;-piesele vor avea ambalaj individual;-a se evita intrarea în contact cu umiditatea sau cu alte medii ostile;-a nu se utiliza lichide de frână în amestec;-respectarea timpului de stocaj;-a nu se pune în funcţiune pompa electrică de manieră externă atunci când pedala de frână a fost blocată;-a se respecta ordinea operaţiilor prescrise în M.R. pentru purjarea sistemului;

Electrovanele

Fig. 2.24. Versiunea cu 2 electrovane

Rol : Acţionarea separata sau simultana a electrovanelor care permite modularea presiunii în circuitul de frânare.

1 Electrovană de admisie.2 Electrovană de evacuare.3 Clapetă anti-retur.4 Pompă.5 Bobină.6 Roată.

Funcţionare :

Electrovanele sunt constituite dintr-un solenoid şi un miez mobil care asigură funcţia de închidere şi de deschidere. Poziţia de repaus este asigurată prin acţiunea conjugată a unui resort încorporat şi a presiunii hidraulice. Toate intrările si ieşirile din şi înspre electrovane sunt protejate de filtre. Pentru a putea să se reducă în toate momentele presiunea în frâne, independent de starea electrică a electrovanelor, o clapetă de anti-retur a fost încorporată în vana de admisie. Clapeta se deschide in momentul în care presiunea din cilindrul principal este inferioară presiunii din cilindrul receptor.

Alimentarea poate să se facă prin :

1 2

3

4

5

6

1 2

3

4

5

6

Page 32: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

intermediul unui releul, intermediul unui etaj de putere integrat în calculator.Ansamblul motor-pompa

Ansamblul motor-pompa este constituit dintr-un motor electric şi dintr-o pompă hidraulică cu dublu circuit.

Rol : În cursul unei faze de regulare (cădere de presiune), pompa aspiră lichidul de frână şi îl refulează spre cilindrul principal. Aceasta refulare este perceptibilă prin mişcarea pedalei de frână. Ea evită în acelaşi timp coborârea la fund a acesteia din urma.

Fig. 2.25

A 1 A 2

R 1 R 2123

5

4

A 1 A 2

R 1 R 2

A 1 A 2

R 1 R 2112233

55

44

1 Arborele pompei.

2 Excentric.

A1 Circuit primar al cilindrului principal.

A2 Circuit secundar al cilindrului principal.

Pompe Electrovann

Cylindrerécepteur

Maîtrecylindre

Réservoir

Pompă Electrovane

Cilindrureceptor

Cilindruprincipal

Rezervor

Page 33: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

3 Piston.

4 Clapetă de aspiraţie.

5 Clapetă de refulare.

R1 Circuit de refulare al circuitului primar.

R2 Circuit de refulare al circuitului secundar.

Fig.2.26

Funcţionare :

Arborele motorului electric este prevăzut pentru antrenarea unui excentric care transformă mişcarea de rotaţie într-o mişcare de curse alternative a două pistoane dispuse faţă în faţă.

Procedura de control :

Supravegherea motorului este efectuată prin calculator, fie controlând în timpul fazei de oprire tensiunea indusă generată, fie printr-un captor inductiv care detectează rotaţia motorului.

Calculatorul

Rol : Calculatorul de ABS îndeplineşte următoarele funcţii :

-reglarea ABS, supravegherea componentelor electronice ale sistemului, memorizarea defectelor apărute, selectare Low, tahimetru, R.E.F. (Repartitor Electronic de Frânare), E.B.V. (Electronic Braking Ventil) – supapă electronică de frânare.

Şi după caz, următoarele funcţii :

-E.S.P. : Control dinamic al stabilităţii. -M.S.R. : Regularizarea cuplului motor.

-A.S.R. : Sistemul anti-patinaj.-A.F.U. : Asistenţa de frânare de urgenţă electronică.

Mod de operare

Calculatorul comandă electrovanele şi pompa hidraulică utilizând :

Viteza vehiculului :

Calculatorul determină viteza vehiculului făcând media vitezelor celor 4 roţi. Această medie este numită viteza de referinţă. Viteza de referinţă este calculată cu ajutorul informaţiilor furnizate de captorii roţilor, dacă vehiculul este echipat cu 4 captori. Pentru vehiculele echipate cu 2 captori, mai este necesar un captor de acceleraţie care participă la determinarea vitezei de referinţă. Pentru vehiculele 4X4, acest tip de captor determină dacă vehiculul este în mişcare.

Page 34: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Acceleraţia şi deceleraţia fiecărei roţi :

Informaţiile măsurate de captor sunt transformate electric şi analizate în paralel prin doua microprocesoare. După procesare, semnalele de ieşire asigură comanda electrovanelor şi a motorului de pompă. El calculează viteza de referinţă a vehiculului raportată la deceleraţia (sau acceleraţia) roţilor (captori de viteză ai roţilor) şi în consecinţă deducând alunecarea.

Purjarea circuitului hidraulic

Sunt posibile două metode de purjare în funcţie de intervenţia pe sistem :

-Purjarea grupului hidraulic, Purjarea convenţională.

Purjarea grupului hidraulic se efectuează după înlocuirea acestuia din urmă. Această operaţie se va efectua cel mai bine după o purjare clasică. Înlocuirea lichidului de frână sau a elementelor situate în aval de grupului hidraulic necesită o purjare cu ajutorul cu ajutorul testerului (CLIP) în modul actuatori.

Purjarea convenţională (clasică) se efectuează după o intervenţie la sistemul de frânare, dacă se înlocuiesc elemente situate în amonte de grupul hidraulic (de exemplu : înlocuirea cilindrului principal).

După o încercare pe drum cu o regularizare ABS, se controlează cursa pedalei de frână. Dacă această cursă nu este normală, aşa cum este indicată de constructor în NT sau MR, se efectuează o purjare a grupului hidraulic.

Moduri de funcţionare

Regularizarea A.B.S.

Schema buclei de regularizare A.B.S.

Page 35: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Fig.2.27

Circuitul hidraulic

În verde: partea numai hidraulicăÎn albastru : comanda electrovanelor şi a motorului pompei (M).

Page 36: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

1 : Pedală de frână.2 : Servofrână.3 : Cilindrul principal şi rezervorul de lichid de

frână4 : Circuit primar.5 : Circuit secundar.6 : Bloc hidraulic.7 : Roată faţă stânga.8 : Roată spate dreapta.9 : Roată spate stânga10 : Roată faţă dreapta.

a : Electrovane de admisie faţă stânga / dreapta.b : Electrovane de admisie spate stânga / dreapta.c : Electrovane de evacuare faţă stânga / dreapta.d : Electrovane de evacuare spate stânga / dreapta.e : Acumulatori de joasă presiune.f : Pompă hidraulică.g : Motor de pompă hidraulică. i : Clapetă anti-retur.

Fig.2.28

Notă :

Independent de starea electrică a electrovanelor, este posibil în toate momentele să se reducă presiunea de frânare prin relaxarea pedalei de frână. Diminuarea presiunii se efectuează prin intermediul clapetei de anti-retur, dispusă în paralel cu electrovana de

admisie.

Page 37: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

În aprinderea martorilor, 3 cazuri pot să survină :Martorul ABS se aprinde singur : ABS in afara serviciului, dar REF rămâne în

funcţionare.Martorul NIVOCODE se aprinde singur : nivelul lichidului de frână este prea

scăzut.Martorii ABS şi NIVOCODE se aprind simultan : ABS şi REF în afara serviciului. În acest caz conducătorul trebuie să se oprească (martor roşu) risc de "tête à

queue".Nota : În timpul în care ABS-ul adiţional este defect, conducătorul păstrează o frânare

clasică.

Avantajele ABS:

Împiedică blocarea roţilor, folosind astfel la maxim aderenţa la sol Utilizarea maximă a aderenţei între roţi şi carosabil şi astfel scurtarea distanţa de

frânare Creşte stabilitatea vehiculului, acesta rămânând manevrabil şi putând vira chiar şi la

o frânare totală mai bună distribuţie a forţei de frânare între axele faţă-spate Auto-verificare şi monitorizare chiar când sistemul nu este activ Sistem fără întreţinere şi fără componente de uzură, fiabilitate deosebită garantată de

milioanele de sisteme Bosch instalate pe autovehicule Funcţionare independentă faţă de celelalte componente ale autoturismului şi de

starea acestora

Exemple

Prezentarea a două exemple în care funcţionarea sistemului Anti-Blocare ABS are ca urmare evitarea unui accident sau a unui eveniment nedorit pe carosabil (pierderea stabilităţii, intrarea în derapaj, etc.)

Frână şi evitarea unui obstacol:

Fără ABS:1. Şoferul recunoaşte pericolul şi frânează2. Şoferul încearcă să vireze pentru a evita maşina care staţionează3. Maşina nu reacţionează la rotirea volanului şi rămâne pe traiectoria iniţială

Page 38: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Cu ABS:1. Şoferul recunoaşte pericolul şi frânează2. Şoferul încearcă să vireze pentru a evita maşina care staţionează3. Maşina virează şi reuşeşte să oprească, evitând accidentul

Frână pe carosabil parţial acoperit cu gheaţă, zăpadă, apă, ulei sau frunze uscate:

Fără ABS:1. Şoferul frânează şi roţile de pe partea dreaptă se blochează2. Şoferul încearcă să evite deraparea3. Maşina nu reacţionează la rotirea volanului şi derapează

Cu ABS:1. Şoferul frânează şi ABS-ul recunoaşte tendinţa roţilor din dreapta de a se bloca2. ABS-ul împiedică blocarea roţilor 3. Maşina rămâne pe bandă şi opreşte în siguranţă

Page 39: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Ce trebuie să ştim despre ABS:

Pentru celmai bun randament de frânare pedala trebuie ţinută apăsată constant Pulsaţiile pedalei sunt un lucru normal ce arată că sistemul funcţionează ABS-ul asigură forţa maxim posibilă pentru frînare şi deci cea mai scurtă distanţă de

frânare Autoturismul rămâne manevrabil în timpul frânării ABS-ul nu poate modifica legile fizicii. Prudenţa, anticiparea reacţiilor celorlalţi

şoferi, păstrarea unei distanţe de siguranţă faţă de vehicolul din faţă precum şi adaptarea vitezei la condiţiile de drum sunt cele mai bune măsuri de siguranţă!

PROGRAMUL DE STABILITATE ELECTRONIC ESP

Limite

ESP este un sistem bazat pe sistemul de frânare al autovehiculului ca un instrument de conducere al autovehiculului. Atunci când funcţia de control a stabilităţii este activată comută priorităţiile care guvernează sistemul de frânare. Funcţia de bază a frânei roţii este decelrarea sau oprirea autovehiculului şi devine secundară atunci când ESP este activ pentru a menţine rularea stabilă pe traiectorie, indiferent de condiţii.

Fig.2.29. Forţele care acţionează asupre autovehiculelor

Page 40: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Funcţii specifice de frânare sunt dirijate individual la roţi (de exemplu roata stângă pentru a contracara subvirarea sau roata faţă dreapta pentru a compensa supravirarea aşa cum se arată în figura 1 şi 2. Pentru implemetare optimă a obiectivelor de stabilitate ESP nu intervine numai asupra funcţiei de frânare ci şi de partea motorului pentru a accelera roţile motoare.

Fig.2.30. Modul de acţiune al ESP în cazul subvirării şi supravirării

Deoarece acest concept “discriminator” de control se bazează pe două strategii idividuale de inetrvenţie, sistemul are două opţuni pentru “virarea” autovehiculului: poate frâna individual roţile(frânarea selectivă) sau accelera forţele motoare. În cadrul limitelor impuse de legile fizicii ESP menţine autovehiculul pe şosea şi reduce riscul de accidente şi momentul girator al autovehiculului. Se prezintă patru exemple comparative pentru vehicule cu şi fără ESP în timpul rulării la limită. Toate manevrele de conducere analizate reflectă condiţiide operare actuale se bazează pe programe de simulare actuale care folosesc date experimentale . rezultatele au fost confirmate în teste pe traseu repetate.

Acţiunea de virare a generat rapid forţe laterale semnificative la roţile frontale, fiind o întârziere faţă de momentul când roţile spate sunt supuse aceloraşi forţe. Autovehiculul reacţionează cu o deplasare în sens orar în jurul axei verticale. Etapa următoare este faza 3 cu a doua intervenţie asupra direcţiei. Autovehiculul fără ESP nu răspunde la solictarea conducătorului de a contravira devenind incontrolabil. Forţa de giraţie şi alunecarea laterală cresc radical (faza 4).

Faraa

Cu

Incepereafranarii

Fara

Cu

Incepereafranarii

Page 41: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Conceptul ESP

Aplicarea controlului stabilităţii în buclă închisă pentru situaţiile limită definite de dinamica autovehiculului are ca scop controlul:

-vitezei longitudinale-vitezei laterale-gradul de giraţie definit ca unghiul de rotaţie în jurul axei verticale-care depăşesc limitele de stabilitate.

Presupunând semnale de intrare ale conducătorului, acestea sunt transpuse în răspuns dinamic al autovehiculului adaptat la caracteristicile căii de rulare într-un proces menit să asigure maximum de siguranţă. După cum se arată în figură primul pas este determinarea modului de răspuns la solictarea conducătorului în timpul funcţionării în limitele de siguranţă (răspuns ideal) şi cum răsounde în mod real. Sunt prevăzute elemente de execuţie pentru a minimiza diferenţa dintre răspunsul ideal şi cel efectiv prin influenţarea indirectă a forţelor care acţionează pe pneuri.

Sistemul şi structura de comandă

Sistemul de stabilitate ESP cuprinde facilităţi care includ funcţiile ABS şi TCS. Pe baza elementelor confirmate ale sistemelor integrate ABS/TCS permite frânarea activă pe toate patru roţile cu o sensibilitate dinamică de mare acurateţe. Răspunsul este adoptat ca un element în bucla închisă de comandă. Sistemul controlează frânarea, forţele de tracţiune şi pe cele laterale astfel încât răspunsul efectiv converge spre răspunsul ideal pentru circumstanţe date. Un sistem de management al motorului cu interfaţă CAN, poate determina modificarea momentului motor pentru a corecta rata de alunecare la roată.

Figura 3.3. ilustrează sistemul ESP schematizat cu: senzori care determină parametri de interare pentru controler, unitatea centrală cu controlerul ierarhizat structural compus din controlerul ESP şi elementele de control a alunecării, actuatorii utilizaţi pentru controlul definitiv al frânării, tracţiunii şi forţelor laterale.

Ierarhia controlerului

Controlerul ESP are prioritatea principală (nivelul 1) în cadrul ierarhiei controlerului. Defineşte rata ideală de alunecare a pneului pentru controlere subordonate ale ABS şi TCS. Monitorizarea realizată de ESP vizează alunecarea laterală (diferenţă dintre direcţia momentană şi axa longitudinală a autovehiculului. Următoarele componente înregistrarea opţiunea conducătorului; şi sistemul procesează semnalul ca bază pentru definirea răspunsului ideal:

-managementul motorului (de ex. presiunea pe pedala de acceleraţie);-presiune de frânare şi-senzor poziţie volan.

Page 42: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Fig.2.31. Schema bloc a ESP

La acest punct răspunsul specificat este definit ca intenţia conducătorului. Coeficientul de frecare şi viteza autovehiculului sunt de asemnea procesate ca parametri suplimentari. Sistemul de monitorizare evaluează aceşti factori pe baza semnalelor transmise de senzori pentru: turaţia roţii, acceleraţie laterală, presiune de frânare, unghi de giraţie.

Procesul de intervenţie este proiectat pentru a menţine carcteristicile de manevrabilitate pe care producătorul a intenţionat să le imprime autovehiculului şi să realizeze baza pentru un control în condiţii de siguranţă. Controlerul ESP generează momentul de giraţie specificat prin generarea unei modulări corespunzătoare a alunecării la roţile controlate. Controlerele subordonate ale ABS şi TCS acţionează elementele de execuţie care comandă sistemul hidraulic de frânare şi sistemul de management al motorului folosind datel generate de controlerul ESP.

Page 43: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Fig.2.32. Schema de control a ESP

Regulator ESP

ABS/TCS RegulatorMSR MotorRegulator moment de franre

Senzori Elemente finale de control

Lantul elementelor ESP pe vehicule: 1 senzor de giratie si acceleratie laterala, 2 senzor de inclinare a rotii, 3 senzor de presiune primara, 4 Senzor de viteza a rotii, 5 Unitate control ESP, 6 Moduplator hidraulic, 7 Franele, 8 Unitate de control electronic a motorului, 9 Unghi de initiere, 10 Injectia de combustibil, 11 Supapa de reglare.

Page 44: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

CAP. III. DINAMICA AUTOVEHICULULUI

1. CALCULUL DE TRACTIUNE

1.1. Stabilirea parametrilor geometrici generali

Autoturismul care face subiectul acestui proiect este propulsat de un motor cu aprindere prin scanteie având următoarele caracteristici tehnice:

Puterea: P = 125 [kW];Turaţia: n = 5000 [rot/min];Sarcina utilă:5 persoana.Parametrii geometrici generali ai autoturismului:Lungime totală L = 4520 [mm];Lăţime totală D = 1418 [mm];Înălţimea totală H = 1750 [mm];Ampatament A = 2760 [mm];Ecartament E1 = 1466 [mm] – faţă;

E2 = 1456 [mm] – spate;Consola C1 = 900 [mm] – faţă;

C2 = 860 [mm] – spate;

1.2. Stabilirea şi repartizarea greutăţii pe punţi

Masa proprie (m) 1505 [kg]Masa proprie puntea faţă (m01) 985 [kg]Masa proprie puntea spate (m02) 985 [kg]Masa totală maximă (ma) 1970 [kg]Sarcina utilă maximă (Q) 465 [kg]

Înălţimea centrului de greutate: hg = 0,7 [m] – gol; 0,8 [m] – încărcat.

a = = 1643 [mm] ;

a – distanţa de la centru de greutate la puntea faţă

b = = 986 [mm] ;

b – distanţa de la centru de greutate la puntea spate

1.3. Alegerea pneului şi stabilirea razei dinamice

Se alege următorul tip de pneu: 205/55 R16* dimensiunea jenţii:16”.* lăţimea secţiunii : 235 [mm] (max.); în exploatare se admite o creştere a secţiunii cu maxim 8%;* raza statică : 308 [mm];* presiunea anvelopă faţă: 1,8 [bar];

Page 45: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

* presiunea anvelopă spate: 2,4 [bar];Raza de lucru : r = ·rn = 0,98·308 = 302 [mm] = (0,94...0,98) – coeficient de deformare.

1.4. Calculul caracteristicii externe a motorului

Caracteristica externă a motorului este absolut necesară pentru efectuarea calculului de tracţiune şi pentru studiul performanţelor automobilului. Aceasta prezintă două puncte foarte importante: – puterea maximă Pn la turaţia nn;– puterea corespunzătoare cuplului maxim PM la turaţia nM.

În cazul în care nu se cunoaşte caracteristica externă, ea poate fi calculată cu următoarele relaţii:

Curba puterii: Pi = Pn [kW] [4]

unde pentru coeficientul de elasticitate: c = = 0,55

1 = = 0.88 [4];

2 = = 1.22 [4];

3 = = – 1.1 [4].

Aceşti coeficienţi trebuie să îndeplinească următoarea condiţie: 1 + 2 + 3 = 1

Curba momentului motor: Me = [N·m] [4]

Curba consumului specific: ci = ce [kg/kW·h] [4]unde: ce= 250 [g/kW·h] – consumul specific la regim nominal;

Curba consumului orar: Ci = ·ci·Pi [kg/h] [4]

Valorile pentru caracteristica externă sunt date în tabelul 1.1.

ni [r/min]

Pei [kW] Mei [Nm]

ci [g/kWh]

C [kg/h]

1000 27,224 249,698 215,615 5,8701200 33,549 256,422 209,961 7,0441400 40,042 262,332 205,231 8,2181600 46,651 267,426 201,321 9,3921800 53,322 271,705 198,151 10,566

Page 46: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

2000 60,002 275,168 195,657 11,7402200 66,637 277,817 193,792 12,9142400 73,175 279,650 192,521 14,0882600 79,562 280,668 191,823 15,2622750 84,220 280,897 191,667 16,1422800 89,744 280,871 191,684 17,2023000 94,668 280,259 192,103 18,1863200 100,281 278,831 193,087 19,3633400 104,530 276,589 194,652 20,3473600 109,361 273,531 196,828 21,5253800 113,721 269,658 199,655 22,7054000 117,556 264,969 203,188 23,8864200 120,814 259,466 207,498 25,0694400 122,940 253,147 212,677 26,1474600 124,382 246,013 218,844 27,2204800 124,787 238,064 226,152 28,2215000 125,000 229,299 234,796 29,350

Caracteristica este prezentată în figura 1.3.

Page 47: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Caracteristica externa

0

50

100

150

200

250

300

1000

1200

1400

1600

1800

2000

2200

2400

2600

2750

2800

3000

3200

3400

3600

3800

4000

4200

4400

4600

4800

5000

n [rot/min]

Mei

[N

m];

ci [

g/k

Wh

]

0

10

20

30

40

50

60

70

80

90

100

110

120

130

Pei

[kW

]; C

[kg

/h]

Mei [Nm] ci [g/kWh] Pei [kW] C [kg/h]

Fig. 1.3 Caracteristica exterioara

Page 48: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

1.4.1 Stabilirea vitezei maxime

Viteza maximă este cea mai mare viteză stabilită de autovehicul la deplasarea pe un drum orizontal în treapta superioară de viteze.

Pentru determinarea pe cale analitică, ecuaţia pentru determinarea vitezei maxime este:

v3max+ A·vmax B = 0

unde: A = ;

B = .

f = 0,01...0,018 coeficientul de rezistenta la rulareSe adoptă : f = 0,015

k = ··cx = ·1,226·0,4 = 0,245 [kg/m3] coeficient aerodinamic [4];

cx = 0,4 ; = 1,226 [kg/m3] coeficient de rezistenta a aerului.Suprafaţa secţiunii transversale, cu aproximaţie se determină cu relaţia: S = E·H = 1,74·1,48 = 2,48 [m2] [4].Randamentul transmisiei are valori cuprinse în intervalul: tr = (0,82...0,95)Se alege tr = 0,93Rezolvând ecuaţia rezultă:

vmax = [4]

vmax =

vmax = 44 [m/s] vmax = 158 [km/h]Puterea la viteza maximă are valoarea:

PV max = 125 [kW] corespunzătoare pentru nV max = nn = 5000 [rot/min]Verificare:

tr·PV max = Ga·f·vmax + K·S·vmax3 [4]

1.5. Determinarea raportului de transmitere a reductorului central (i0)

Valoarea raportului de transmitere al transmisiei principale i0 se stabileşte din condiţia obţinerii vitezei maxime în priză directă a cutiei de viteze, pe un drum orizontal de calitate foarte bună.

Se exprimă viteza unghiulară a motorului în funcţie de viteza unghiulară a roţii motoare: = R·ik·i0

în care înlocuim cu:

= viteza unghiulară a motorului;

R = viteza unghiulară a roţii motoare

Page 49: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Particularizând pentru viteza maximă:

i0 =

ik v max = 0,84

rr = 0,308 [m] i0 =

1.6. Determinarea raportului de transmitere din cutia de viteze

1.6.1. Determinarea raportului de transmitere pentru treapta I din cutia de viteze

Pornind de la valoarea rezistenţei autovehiculului la înaintare pe panta maximă:FR + Fp = Ga·(f·cos maxs + sin max) = Ga·max

Considerăm panta maximă: max = 22o

Puterea la roata motoare în treapta I:PRI = tr·PM = Ga·max· vcr I [4]

unde: PM - puterea corespunzătoare momentului maxim;vcr I - viteza critică în treapta I la urcarea rampei maxime.

Raportul de transmitere din treapta I este:

iKI = 2.33

Condiţie:* forţa maximă la roata să fie mai mare ca rezistenţa la înaintare pe panta maximă.

2.33 = iKI 2.33

* forţa la roata din treapta I să nu depăşească forţa de aderenţă a roţilor motoare pe rampa maximă.

2.33 = iKI 2.33

= 0,8 coeficient de aderenţăGm = G2 = 1970 [kg]mm = m2 = 0.9 coeficientul schimbărilor dinamice a reacţiunilor la puntea motoare

Page 50: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

1.6.2. Determinarea raportului de transmitere pentru celelalte trepte din cutia de viteze

Se adoptă: n = 5 trepte de vitezăq = De unde rezultă: iKm = iKI·q (m1) Din considerente constructive pentru obţinerea unor performanţe cât mai bune

etajarea cutiei de viteze s-a făcut după o lege exponenţială a raţiei. Au rezultat astfel următoarele rapoarte:

iKII = 1.89iKIII = 1,53iKIV = 1.24iKV = 0.85

n1 = [rot/min] > nM = 4000 [rot/min]

n2 = nm = 5000 [rot/min]

1.6.3. Determinarea vitezei maxime pe trepte

vI min = = 15.27 [m/s]

vI max = = 19.09 [m/s]

vII min = = 18.83 [m/s]

vII max = = 23.53 [m/s]

vIII min = = 23.26 [m/s]

vIII max = = 29.07 [m/s]

vIV min = = 28.70 [m/s]

vIV max = = 35.87 [m/s]

vV min = = 35.58 [m/s]

vV max = = 44 [m/s]

Page 51: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

2. PERFORMANŢELE AUTOVEHICULULUI

Determinarea performanţelor automobilului este necesară pentru stabilirea şi corectarea calităţilor dinamice, în cazul automobilelor nou proiectate sau pentru studierea comparativă a automobilelor existente, în scopul analizei comportării lor în exploatare.

Performantele reprezintă posibilităţile maxime ale autovehiculelor în privinţa vitezei, demarajului şi capacităţii de frânare, precum şi indicii de apreciere a acestora. Studiul performantelor autovehiculelor se face cu ajutorul bilanţului de tracţiune şi de putere, caracteristicilor de tracţiune, dinamica şi de viteze pe baza cărora se obţin parametri şi indicii caracteristici deplasării cu regim tranzitoriu de accelerare sau de frânare.

2.1. Caracteristica de tracţiune

Caracteristica de tracţiune sau caracteristica forţei la roata reprezintă curbele de variaţie ale acesteia în funcţie de viteza autovehiculului FR = f (va) pentru fiecare treapta a cutiei de viteze utilizată.

Construirea caracteristicii de tracţiune se face pe baza caracteristicii externe a motorului, pornind de la curba puterii efective sau de la curba momentului efectiv, utilizând relaţiile pentru forţa la roată:

FR = [N] [4] sau FR = [N] [4]

v = [m/s]

Variaţia parabolică a forţei la roată în funcţie de viteza automobilului este determinată de caracterul variaţiei momentului efectiv al motorului în funcţie de turaţie.

Caracteristica de tracţiune a automobilului se utilizează atât la studiul performanţelor acestuia cât şi la studiul posibilităţilor de trecere de la o treaptă de viteză la alta.Valorile caracteristica de tracţiune sunt date în tabelul 2.1.

Tabelul 2.1

v [m/s] FR [N] Da [m/s2]

1/a [s2/m]

Treapta1 3.818 4242.189 0.614 2.209 0.4534.582 4356.492 0.630 2.268 0.4415.345 4456.806 0.644 2.320 0.4316.109 4543.387 0.656 2.364 0.4236.872 4616.065 0.665 2.397 0.4177.636 4674.942 0.673 2.427 0.4128.400 4719.932 0.678 2.445 0.4099.163 4751.070 0.682 2.460 0.4079.927 4768.356 0.683 2.464 0.40610.690 4771.823 0.682 2.460 0.40711.454 4761.404 0.679 2.449 0.40812.218 4737.167 0.674 2.430 0.41212.981 4699.077 0.667 2.405 0.41613.745 4647.084 0.657 2.368 0.422

Page 52: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

14.508 4581.307 0.646 2.327 0.43015.272 4501.661 0.632 2.275 0.44016.036 4408.145 0.617 2.220 0.45016.799 4300.811 0.599 2.154 0.46417.563 4179.590 0.579 2.080 0.48118.326 4044.534 0.557 1.999 0.50019.090 3895.643 0.533 1.910 0.524

Treapta2          4.707 3441.089 0.497 1.954 0.5125.648 3533.807 0.510 2.007 0.4986.590 3615.178 0.520 2.047 0.4897.531 3685.409 0.530 2.088 0.4798.472 3744.362 0.537 2.116 0.4739.414 3792.120 0.542 2.136 0.46810.355 3828.614 0.546 2.153 0.46411.296 3853.872 0.548 2.161 0.46312.238 3867.894 0.548 2.161 0.46313.179 3870.706 0.546 2.153 0.46414.121 3862.255 0.543 2.140 0.46715.062 3842.595 0.537 2.116 0.47316.003 3811.698 0.530 2.088 0.47916.945 3769.523 0.521 2.051 0.48817.886 3716.168 0.511 2.011 0.49718.827 3651.562 0.498 1.958 0.51119.769 3575.705 0.484 1.901 0.52620.710 3488.640 0.468 1.836 0.54521.651 3390.311 0.450 1.763 0.56722.593 3280.760 0.431 1.686 0.59323.534 3159.985 0.409 1.597 0.626

Treapta3          5.814 2785.643 0.401 1.661 0.6026.977 2860.701 0.411 1.704 0.5878.140 2926.572 0.419 1.738 0.5759.303 2983.426 0.425 1.764 0.56710.466 3031.150 0.430 1.786 0.56011.629 3069.812 0.433 1.799 0.55612.792 3099.355 0.435 1.807 0.55313.954 3119.801 0.435 1.807 0.55315.117 3131.152 0.434 1.803 0.55516.280 3133.429 0.431 1.790 0.55917.443 3126.587 0.427 1.773 0.56418.606 3110.672 0.421 1.747 0.57219.769 3085.660 0.413 1.712 0.58420.932 3051.519 0.404 1.674 0.59722.094 3008.326 0.393 1.626 0.61523.257 2956.026 0.381 1.575 0.63524.420 2894.619 0.367 1.515 0.660

Page 53: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

25.583 2824.137 0.352 1.450 0.69026.746 2744.538 0.335 1.377 0.72627.909 2655.853 0.317 1.299 0.77029.072 2558.083 0.296 1.209 0.827

Treapta4          7.174 2257.646 0.323 1.386 0.7228.609 2318.476 0.330 1.418 0.70510.044 2371.863 0.335 1.440 0.69411.479 2417.940 0.339 1.458 0.68612.913 2456.618 0.342 1.472 0.67914.348 2487.952 0.343 1.476 0.67815.783 2511.895 0.342 1.472 0.67917.218 2528.466 0.341 1.467 0.68218.653 2537.666 0.337 1.449 0.69020.088 2539.511 0.333 1.431 0.69921.522 2533.966 0.327 1.404 0.71222.957 2521.067 0.319 1.368 0.73124.392 2500.796 0.310 1.328 0.75325.827 2473.126 0.300 1.283 0.77927.262 2438.120 0.288 1.229 0.81428.697 2395.734 0.275 1.170 0.85530.131 2345.965 0.260 1.103 0.90731.566 2288.843 0.244 1.031 0.97033.001 2224.331 0.227 0.954 1.04834.436 2152.456 0.208 0.869 1.15135.871 2073.218 0.187 0.774 1.292

Treapta5          8.896 1820.682 0.257 1.120 0.89310.675 1869.739 0.261 1.138 0.87912.454 1912.792 0.264 1.152 0.86814.233 1949.952 0.265 1.157 0.86416.013 1981.144 0.265 1.157 0.86417.792 2006.413 0.263 1.148 0.87119.571 2025.722 0.260 1.134 0.88221.350 2039.086 0.256 1.115 0.89723.129 2046.505 0.250 1.087 0.92024.909 2047.993 0.242 1.050 0.95226.688 2043.521 0.234 1.013 0.98728.467 2033.119 0.223 0.962 1.04030.246 2016.771 0.212 0.912 1.09632.025 1994.457 0.199 0.851 1.17533.805 1966.226 0.184 0.782 1.27935.584 1932.043 0.169 0.713 1.40337.363 1891.908 0.151 0.629 1.59039.142 1845.841 0.133 0.546 1.83240.921 1793.815 0.113 0.453 2.20842.700 1735.852 0.091 0.352 2.841

Page 54: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

44.000 1671.950 0.072 0.000 5.600

Page 55: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Forta la roata

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20 25 30 35 40 45

v [m/s]

FR

[N

]

FR1

FR2

FR3

FR4

FR5

Fig. 2.1

Page 56: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

2.2. Caracteristica dinamica

Curbele de variaţie ale factorului dinamic în funcţie de viteza autovehiculului pentru toate treptele de viteza reprezintă caracteristica dinamică. Forţa de tracţiune disponibilă F e = FR – Fa, care se utilizează la învingerea rezistenţelor drumului şi rezistenţei la accelerare, caracterizează dinamicitatea automobilului, însă nu poate fi utilizată ca un indice de comparaţie între diferite automobile. Pentru a putea face o apreciere comparativă între performanţele automobilelor, cu greutăţi diferite se utilizează un parametru numit factor dinamic.

Raportul dintre forţa de tracţiune excedentara (FR Fa) şi greutatea totală a autovehiculului Ga reprezintă factorul dinamic care este un parametru adimensional.

în priza directă: D =

pentru o treaptă oarecare: Dk = D·ik +

Valorile factorului dinamic sunt date în tabelul 2.1.

Page 57: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Caracteristica dinamica

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30 35 40 45

v [m/s]

D

D1

D2

D3

D4

D5

Fig. 2.2

Page 58: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

2.3.1. Acceleraţia

Acceleraţia autovehiculului caracterizează calităţile dinamice deoarece, în condiţii egale, cu cât acceleraţia este mai mare cu atât creste viteza medie de exploatare. Valoarea acceleraţiei autovehiculului aa se poate determina cu ajutorul caracteristicii dinamice utilizând relaţia factorului dinamic, de unde:

aa = (D )· [m/s2] [4] unde:

coeficientul maselor de rotaţie = f·cos + sin [4]; pentru = 0o = f = 0,015

= 1 + [4] sau = 1 + · [4]

unde: Im momentul de inerţie al pieselor care se rotesc cu turaţia motorului; IR momentul de inerţie al rotii motoare; = 0,04…0,09 – constantă.

Adoptând = 0,04 rezultă: 1 = 1,33; 2 = 1,21; 3 = 1,14; 4 = 1,09; 5 = 1,06.Valorile acceleraţiei sunt date în tabelul 2.1.

Page 59: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Acceleratia

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35 40 45

v [m/s]

a [m

/s2]

a1

a2

a3

a4

a5

Fig. 2.3.1.1

Page 60: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

2.3.2. Inversul acceleraţiei

Variaţia acestei curbe este necesară pentru determinarea timpului şi spaţiului de demaraj a automobilului. Valorile inversului acceleraţiei sunt date în tabelul 2.1.

Page 61: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Inversul acceleratiei

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45

v [m/s]

1/a

[s2/

m]

1/a1

1/a2 1/a3

1/a4

1/a5

fig.2.3.2.1

Page 62: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

2.3.3. Timpul şi spaţiul de demaraj

Capacitatea de demarare a autovehiculelor este caracterizată de acceleraţie, însă pentru a avea indici de apreciere mai uşor de utilizat în compararea diferitelor tipuri de autovehicule, este necesară determinarea timpului şi spaţiului de demarare.

Prin timp de demarare td se înţelege timpul în care autovehiculul, plecând din loc, atinge 0,9 din viteza maximă.Spaţiul de demaraj Sd reprezintă spaţiul parcurs de autovehicul în acest timp.

td = ti1 + ; i = 1…n; n numărul de intervale

Sd = Si-1 + (ti ti-1)·vi (ti ti-1)·

Valorile timpul şi spaţiul de demaraj sunt date în tabelul 2.2.Tabelul 2.2

va [m/s] td [s] Sd [m]

1/a [s2/m]

3.818 0.865 1.651 0.4534.582 1.207 2.304 0.4415.345 1.540 3.067 0.4316.109 1.866 3.938 0.4236.872 2.186 4.915 0.4177.636 2.503 6.004 0.4128.400 2.817 7.203 0.4099.163 3.128 8.509 0.4079.927 3.439 9.934 0.40610.690 3.749 11.473 0.40711.454 4.060 13.135 0.40812.218 4.373 14.928 0.41212.981 4.689 16.858 0.41613.745 5.009 18.935 0.42214.508 5.334 21.169 0.43015.272 5.666 23.577 0.44016.036 6.006 26.173 0.45016.799 6.355 28.971 0.46417.563 6.716 32.003 0.48118.326 7.090 35.287 0.50019.090 7.481 38.870 0.52419.769 7.837 42.268 0.52620.710 8.341 47.250 0.54521.651 8.864 52.666 0.56722.593 9.410 58.577 0.59323.534 9.984 65.061 0.62624.420 10.554 71.768 0.66025.583 11.339 81.353 0.69026.746 12.162 91.880 0.72627.909 13.032 103.515 0.770

Page 63: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

29.072 13.961 116.479 0.82730.131 14.879 129.823 0.90731.566 16.226 150.116 0.97033.001 17.674 172.970 1.04834.436 19.252 199.008 1.15135.871 21.005 229.191 1.29237.363 23.155 267.752 1.59039.142 26.199 324.618 1.83240.921 29.793 394.956 2.20842.700 34.284 486.844 2.84144.000 39.771 603.991 5.600

Page 64: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Timpul de demarare

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45

v [m/s]

td [

s]

Fig. 2.3.3.1

Page 65: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Spatiul de demarare

0

50

100

150

200

250

300

350

400

450

500

550

600

650

0 5 10 15 20 25 30 35 40 45

v [m/s]

Sd

[m

]

Fig. 2.3.3.2

Page 66: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

2.4. Bilanţul de putere

Bilanţul de putere al autovehiculelor reprezintă echilibrul dintre puterea la roată PR şi suma puterilor necesare învingerii rezistenţelor la înaintarea acestora. Forma cea mai generală este dată în relaţia de mai jos:

PR = tr·Pe = Pr + Pp + Pa + Pd [kW] unde:Pr = Ga·f·v·cos – puterea necesară învingerii rezistenţelor la rulare [kW];Pp = Ga·v·sin – puterea necesară învingerii rezistenţelor la urcarea pantei [kW];Pa = k·S·v3 – puterea necesară învingerii rezistenţei aerului [kW];

Pd = – puterea necesară învingerii rezistenţei la demaraj [kW];

tr – randamentul transmisiei automobilului.Făcând înlocuirile necesare relaţia de mai sus devine:

PR = Ga·f·v·cos + Ga·v·sin + k·S·v3 [kW] pentru drum orizontal ( = 0o) Pp = 0 [kW].

În cazul regimul 4x2 calculele s-au efectuat pentru următoarele valori ale pantelor: 2.5o ; 5o ; 7.5o şi max = 10o.

Curbele puterii efective ale motorului, puterii la roată şi a celorlalte puteri necesare învingerii rezistenţelor la înaintare, în funcţie de viteza automobilului sau de turaţia motorului, reprezintă graficul bilanţului de putere.

Punctul de intersecţie dintre curba puterii la roată şi curba tuturor puterilor pierdute la învingerea rezistenţelor determină viteza maximă a automobilului pentru condiţiile date.Valorile necesare trasării bilanţului de putere sunt date în tabelul 2.3.

Tabelul 2.3

Viteza PRPr+p+a 0o

Pr+p+a 2,5o

Pr+p+a 5o

Pr+p+a 7,5o

Pr+p+a 10o

[m/s] [kW] [kW] [kW] [kW] [kW] [kW]3.82 16205.16 205.48 1187.29 4011.12 8460.50 14518.28 Treapta14.58 19952.73 271.25 1467.95 4898.02 10277.07 17584.505.35 23843.91 351.67 1776.92 5845.84 12191.39 20789.546.11 27760.09 446.92 2110.22 6838.04 14165.91 24066.356.87 31712.37 560.19 2475.71 7894.61 16236.97 27471.907.64 35716.56 695.63 2882.93 9038.93 18446.05 31069.958.40 39647.43 851.99 3325.36 10249.37 20747.91 34783.249.16 43519.80 1033.13 3812.02 11548.30 23182.52 38673.519.93 47349.78 1244.21 4354.32 12962.77 25796.83 42811.8610.69 51010.79 1482.03 4942.21 14464.13 28535.08 47107.0011.45 54518.08 1751.37 5586.40 16078.11 31442.26 51627.3712.22 57888.18 2058.72 6300.60 17836.38 34572.27 56453.3212.98 60994.02 2398.35 7070.29 19701.37 37855.95 61475.6913.75 63897.41 2781.51 7919.86 21730.38 41392.07 66843.1314.51 66474.76 3200.50 8831.28 23878.81 45100.93 72432.4015.27 68740.36 3662.30 9819.13 26180.10 49039.07 78327.3916.04 70706.65 4176.12 10902.02 28675.77 53275.17 84628.14

Page 67: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

16.80 72253.62 4730.88 12055.88 31309.08 57711.34 91187.1617.56 73393.60 5335.19 13298.23 34119.37 62412.99 98100.1618.33 74136.31 6000.30 14651.28 37155.34 67459.55 105481.5119.09 74367.82 6711.18 16083.92 40346.22 72732.07 113155.67             4.71 16207.53 283.79 1518.26 5054.34 10594.71 18118.20 Treapta25.65 19966.01 387.26 1904.90 6230.32 12960.04 22068.666.59 23824.02 516.22 2337.06 7497.35 15461.95 26201.247.53 27751.13 674.92 2822.33 8870.59 18123.17 30546.228.47 31714.75 867.60 3368.27 10365.18 20966.42 35133.919.41 35683.85 1098.51 3982.46 11996.28 24014.43 39994.6010.36 39664.44 1375.02 4680.26 13798.86 27326.06 45215.2811.30 43548.75 1695.61 5454.61 15750.26 30854.52 50716.5912.24 47343.02 2067.19 6320.01 17883.78 34656.15 56582.1213.18 51015.91 2494.00 7284.04 20214.55 38753.68 62842.1714.12 54535.04 2980.29 8354.28 22757.74 43169.81 69527.0415.06 57869.48 3530.29 9538.30 25528.48 47927.28 76667.0316.00 60987.17 4148.25 10843.67 28541.92 53048.82 84292.4316.95 63893.41 4846.15 12293.95 31849.47 58617.89 92523.0317.89 66482.25 5613.59 13866.24 35396.76 64540.20 101216.1218.83 68758.91 6461.76 15582.69 39232.37 70894.97 110485.8419.77 70691.69 7394.89 17450.88 43371.45 77704.95 120362.5020.71 72249.73 8417.24 19478.37 47829.14 84992.84 130876.3821.65 73400.23 9533.04 21672.74 52620.59 92781.37 142057.7822.59 74112.37 10746.54 24041.57 57760.95 101093.28 153937.0123.53 74354.45 12061.97 26592.42 63265.37 109951.27 166544.35             5.81 16184.59 407.29 1975.03 6439.14 13375.63 22758.39 Treapta36.98 19967.69 578.21 2531.51 8053.34 16545.44 27976.438.14 23822.30 795.82 3169.22 9825.71 19946.10 33493.799.30 27745.86 1069.37 3906.82 11797.86 23646.43 39410.7110.47 31736.14 1410.04 4766.42 14018.30 27725.59 45841.2111.63 35701.91 1820.03 5747.66 16477.74 32156.86 52732.7212.79 39640.75 2309.94 6871.62 19222.61 37016.27 60195.0913.95 43521.22 2887.74 8152.52 22281.38 42346.53 68285.2515.12 47343.02 3567.66 9617.91 25713.41 48243.07 77138.9316.28 51012.22 4346.09 11257.08 29488.70 54648.12 86662.1417.44 54527.68 5236.39 13096.03 33663.55 61652.49 96984.4518.61 57889.61 6255.79 15167.65 38308.04 69367.72 108263.0519.77 61003.50 7394.89 17450.88 43371.45 77704.95 120362.5020.93 63868.29 8669.85 19976.71 48920.06 86769.97 133432.3522.09 66453.92 10088.64 22759.37 54982.35 96605.51 147529.5523.26 68757.16 11673.45 25840.65 61646.16 107349.73 162846.7924.42 70686.60 13405.22 29182.22 68826.25 118861.96 179179.5825.58 72241.42 15304.80 32823.45 76605.66 131273.18 196711.0326.75 73416.39 17398.85 36814.07 85088.15 144745.43 215665.6527.91 74124.86 19659.59 41100.22 94157.41 159091.41 235776.78

Page 68: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

29.07 74363.47 22112.12 45728.86 103911.64 174464.87 257257.86             7.17 16187.32 610.36 2629.72 8331.16 17083.71 28855.16 Treapta48.61 19962.08 899.47 3455.24 10599.09 21406.85 35839.8010.04 23813.50 1276.76 4436.08 13173.41 26183.16 43420.2011.48 27757.95 1762.69 5613.04 16144.25 31560.65 51810.6512.91 31714.94 2365.50 6996.60 19524.00 37545.11 61001.9114.35 35702.11 3108.81 8633.18 23414.07 44301.46 71230.8415.78 39637.70 3997.30 10526.88 27814.09 51816.33 82462.6517.22 43540.18 5058.57 12731.25 32839.75 60276.04 94962.7218.65 47327.47 6292.90 15242.50 38474.87 69643.56 108664.7420.09 51018.78 7732.70 18122.82 44852.43 80131.14 123868.6321.52 54530.95 9373.00 21359.04 51937.49 91673.56 140470.5222.96 57883.70 11251.91 25023.48 59883.29 104513.50 158810.9024.39 60994.41 13358.36 29092.09 68633.13 118553.09 178742.3325.83 63880.84 15736.95 33648.82 78363.51 134069.90 200651.8727.26 66463.15 18369.68 38657.22 88992.95 150928.89 224342.5128.70 68757.57 21308.53 44214.42 100724.25 169447.07 250253.8830.13 70683.93 24527.70 50270.04 113448.12 189447.72 278133.3931.57 72258.77 28087.38 56935.86 127396.67 211291.77 308479.2633.00 73402.92 31953.15 64146.12 142429.81 234756.32 340977.3134.44 74130.58 36194.23 72028.73 158811.95 260250.76 376190.3635.87 74366.33 40766.75 80501.04 176369.19 287501.47 413736.62                           Treapta58.90 16204.07 968.23 3640.30 11093.47 22333.94 37321.7110.68 19968.81 1478.70 4934.11 14443.66 28497.98 47049.0512.45 23814.26 2157.60 6526.56 18386.84 35545.09 57945.3514.23 27747.82 3041.27 8486.81 23069.92 43708.47 70338.4716.01 31718.12 4155.20 10858.24 28575.34 53105.34 84376.2717.79 35694.09 5528.19 13692.26 35005.95 63890.01 100264.4419.57 39643.38 7189.03 17040.31 42464.62 76216.76 118208.7421.35 43534.49 9166.52 20953.82 51054.22 90239.89 138414.8823.13 47335.66 11489.48 25484.22 60877.59 106113.71 161088.5924.91 51015.51 14186.70 30682.94 72037.62 123992.49 186435.5926.69 54541.58 17286.98 36601.43 84637.16 144030.55 214661.6228.47 57882.90 20819.13 43291.10 98779.07 166382.16 245972.4030.25 61007.32 24811.94 50803.39 114566.22 191201.64 280573.6632.03 63882.46 29294.23 59189.73 132101.48 218643.27 318671.1333.81 66478.10 34294.78 68501.55 151487.70 248861.35 360470.5335.58 68742.09 39809.66 78729.67 172702.22 281815.48 405909.5137.36 70681.68 45929.85 90040.83 196087.12 318031.58 455706.2739.14 72246.22 52654.54 102431.49 221631.00 357486.15 509820.9940.92 73402.91 60012.56 115953.07 249436.73 400333.49 568459.4042.70 74120.88 68032.69 130657.00 279607.16 446727.89 631827.2244.00 74366.33 74325.02 142172.49 303195.08 482941.43 681213.75

Page 69: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Bilantul de puteri

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

0 5 10 15 20 25 30 35 40 45

v [m/s]

PR

; P

r+p

+a

[kW

]

PR [kW] Pr+p+a 0o [kW] Pr+p+a 2,5o [kW] Pr+p+a 5o [kW] Pr+p+a 7,5o [kW] Pr+p+a 10o [kW]

Fig. 2.4.1

Page 70: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

2.5. Frânarea autovehiculului

Frânarea este procesul prin care se reduce parţial sau total viteza autovehiculului. Capacitatea de frânare prezintă o importanţă deosebită deoarece influenţează mult posibilitatea utilizării integrale a vitezei şi acceleraţiei autovehiculului în timpul exploatării.

2.5.1. Spaţiul de frânare minim

Aprecierea capacităţii de frânare a automobilului se face pe baza spaţiului de frânare minim Sf în funcţie de viteză.

Sf min = [m] unde:

Zf = Ga·cos – suma reacţiunilor normale ale drumului asupra roţilor frânate;– coeficientul maselor de rotaţie în timpul frânării cu motorul decuplat;

v1 – viteza de la care se frânează autovehiculul;v2 – viteza până la care se frânează autovehiculul;

Particularizând: = 1, forţa aerului neglijabilă (Fa = 0), v2 = 0, v1 = va, frânare pe toate roţile (Zf = Ga·cos), coeficientul de rezistenţă la rulare f = 0, rezultă relaţia:

Sf min = [m]

efectuăm calculul pentru următoarele categorii de drum:tip drum asfalt uscat 0,8asfalt umed 0,6pământ bătătorit umed 0,4zăpada bătătorită 0,2

2.5.2. Spaţiul de frânare minim ţinând cont de rezistenta aerului

Pornind de la relaţia generală a spaţiului de frânare minim şi ţinând cont în acest caz de forţa de rezistenţă a aerului, rezultă relaţia:

Sf min = [m]

Tabelul 2.6v

[m/s] Sfmin Sfmin Sfmin Sfmin Sfmin Sfmin Sfmin Sfmin

 Fi=0,2 Fa=0

Fi=0,4 Fa=0

Fi=0,6 Fa=0

Fi=0,8 Fa=0

Fi=0,2 Fa<>0

Fi=0,4 Fa<>0

Fi=0,6 Fa<>0

Fi=0,8 Fa<>0

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.002 1.02 0.51 0.34 0.25 0.93 0.49 0.33 0.254 4.08 2.04 1.36 1.02 3.71 1.94 1.32 0.996 9.17 4.59 3.06 2.29 8.34 4.37 2.96 2.248 16.31 8.15 5.44 4.08 14.83 7.77 5.26 3.9810 25.48 12.74 8.49 6.37 23.17 12.14 8.22 6.2212 36.70 18.35 12.23 9.17 33.36 17.47 11.84 8.95

Page 71: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

14 49.95 24.97 16.65 12.49 45.41 23.79 16.11 12.1816 65.24 32.62 21.75 16.31 59.31 31.07 21.05 15.9118 82.57 41.28 27.52 20.64 75.06 39.32 26.64 20.1420 101.94 50.97 33.98 25.48 92.67 48.54 32.88 24.8622 123.34 61.67 41.11 30.84 112.13 58.74 39.79 30.0824 146.79 73.39 48.93 36.70 133.44 69.90 47.35 35.8026 172.27 86.14 57.42 43.07 156.61 82.03 55.57 42.0228 199.80 99.90 66.60 49.95 181.63 95.14 64.45 48.7330 229.36 114.68 76.45 57.34 208.51 109.22 73.99 55.9432 260.96 130.48 86.99 65.24 237.23 124.27 84.18 63.6534 294.60 147.30 98.20 73.65 267.82 140.28 95.03 71.8536 330.28 165.14 110.09 82.57 300.25 157.27 106.54 80.5538 367.99 184.00 122.66 92.00 334.54 175.23 118.71 89.7540 407.75 203.87 135.92 101.94 370.68 194.17 131.53 99.4542 449.54 224.77 149.85 112.39 408.67 214.07 145.01 109.6444 493.37 246.69 164.46 123.34 448.52 234.94 159.15 120.34

Page 72: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Spatiul de franare minim

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45

v [m/s]

Sfm

in [

m]

fi=0.8

fi=0.2

fi=0.4

fi=0.6

Fig. 2.5.2.1

Page 73: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

2.5.3. Spaţiul de oprire

Determinarea spaţiului de frânare Sf min s-a făcut în ipoteza că toate frânele intră în acţiune cu forţa maximă în momentul apăsării pedalei de frână. În realitate, chiar dacă forţele de frânare ar atinge instantaneu, la toate roţile, valoarea maximă limitată de aderenţă, durata procesului de frânare şi deci a spaţiului de frânare este mai mare, datorită timpului necesar reacţionării conducătorului şi inerţiei mecanismelor din sistemul de frânare. În figura 2.2. este prezentată diagrama frânării unui automobil, care include variaţia vitezei v a, a forţei la pedala de frână QP, a forţei de frânare Ff şi variaţia deceleraţiei automobilului af, în funcţie de timp.

Soprire = Sf min + Ss = [m]

Ss spaţiul suplimentar de frânare [m];Ss = va·(t0 + t1) ; cu t1 = t1

I + t1II

unde: t0 = (0,45…1) [s] timpul de reacţie al conducătorului auto;t1

I = (0,2…0,5) [s] timpul ce trece de la începutul cursei utile a pedalei până la începerea acţiunii de frânare;

t1II = (0,1…0,2) [s] întârzierea din momentul începerii dezvoltării forţei de frânare

până la atingerea valorii maxime. Se aleg: t0 = 0,7 [s]; t1

I = 0,3 [s]; t1II = 0,15 [s] t0

+ t1 = 0,7 + 0,3 + 0,15 = 1,15 [s]Calculul se efectuează pentru = 0o şi = 0,2; 0,4; 0,6; 0,8.Valorile necesare trasării caracteristicilor de frânare sunt date în: tabelul 2.5.

Fig. 2.5.3.1.

Page 74: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Tabelul 2.5v

[m/s] Sop Sop Sop Sop Sop Sop Sop Sop

 Fi=0,2 Fa=0

Fi=0,4 Fa=0

Fi=0,6 Fa=0

Fi=0,8 Fa=0

Fi=0,2 Fa<>0

Fi=0,4 Fa<>0

Fi=0,6 Fa<>0

Fi=0,8 Fa<>0

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.002 1.36 0.68 0.45 0.33 1.24 0.65 0.44 0.334 5.43 2.71 1.81 1.36 4.93 2.58 1.76 1.326 12.20 6.10 4.07 3.05 11.09 5.81 3.94 2.988 21.69 10.84 7.24 5.43 19.72 10.33 7.00 5.2910 33.89 16.94 11.29 8.47 30.82 16.15 10.93 8.2712 48.81 24.41 16.27 12.20 44.37 23.24 15.75 11.9014 66.43 33.21 22.14 16.61 60.40 31.64 21.43 16.2016 86.77 43.38 28.93 21.69 78.88 41.32 28.00 21.1618 109.82 54.90 36.60 27.45 99.83 52.30 35.43 26.7920 135.58 67.79 45.19 33.89 123.25 64.56 43.73 33.0622 164.04 82.02 54.68 41.02 149.13 78.12 52.92 40.0124 195.23 97.61 65.08 48.81 177.48 92.97 62.98 47.6126 229.12 114.57 76.37 57.28 208.29 109.10 73.91 55.8928 265.73 132.87 88.58 66.43 241.57 126.54 85.72 64.8130 305.05 152.52 101.68 76.26 277.32 145.26 98.41 74.4032 347.08 173.54 115.70 86.77 315.52 165.28 111.96 84.6534 391.82 195.91 130.61 97.95 356.20 186.57 126.39 95.5636 439.27 219.64 146.42 109.82 399.33 209.17 141.70 107.1338 489.43 244.72 163.14 122.36 444.94 233.06 157.88 119.3740 542.31 271.15 180.77 135.58 493.00 258.25 174.93 132.2742 597.89 298.94 199.30 149.48 543.53 284.71 192.86 145.8244 656.18 328.10 218.73 164.04 596.53 312.47 211.67 160.05

Page 75: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Spatiul de oprire

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40 45

v [m/s]

So

p [

m]

fi=0.8

fi=0.2

fi=0.4

fi=0.6

Fig. 2.5.3.1.

Page 76: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

2.6. Calculul de stabilitate

Stabilitatea automobilului este caracterizată de posibilitatea acestuia de a efectua cu uşurinţă schimbarea direcţiei de mers, de a menţine constantă direcţia mişcării dorite şi de a se deplasa cu viteze mari fără a se răsturna sau aluneca în direcţie transversală. Stabilitatea depinde de forţele care acţionează asupra automobilului la mersul rectiliniu şi în curbă sau la mersul pe pantă şi pe drumuri cu înclinare transversală, de elasticitate pneurilor, de calitatea suspensiei şi de construcţia generală a automobilului.

2.6.1. Stabilitatea transversală la derapare

Când reacţiunile din planul căii de rulare ajung la limita de aderenţă sub efectul forţelor transversale începe deraparea. Viteza de derapaj pentru viraj cu raza şi viteza constantă este dată de formula:

vd = [km/h] ;

în care Rv raza de viraj

Rv = ; i = 40o

Rv – unghiul de bracare al roţii de pe interior Rv min = 3,6 m Rv max = 220 m

Calculul se face pentru: = 0,2; 0,4; 0,6 ;0,8 şi = 0o; 2o; 3o

Valorile acestui calcul sunt date în tabelul 2.6.

Fig. 2.6.1.1

Page 77: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

2.6.2. Stabilitatea de răsturnare

Viteza critică de răsturnare apare în momentul în care roţile de pe aceeaşi parte a autovehiculului încep să piardă contactul cu calea de rulare.

vr = [km/h]

Calculul se face pentru: = 0o; 2o; 3o, iar Rv max = 400 [m]Valorile acestui calcul sunt date în tabelul 2.6.

Tabelul 2.6Beta= 0 O 2 O 3 O

R [m]vcr 0 [m/s]

vcd 0 [m/s]

vcr 2 [m/s]

vcd 2 [m/s]

vcr 3 [m/s]

vcd 3 [m/s]

50 20.004 19.809 20.591 20.526 20.898 20.89060 21.913 21.700 22.556 22.485 22.893 22.88470 23.669 23.438 24.363 24.286 24.727 24.71880 25.303 25.057 26.045 25.963 26.434 26.42490 26.838 26.577 27.625 27.538 28.037 28.027100 28.289 28.014 29.120 29.028 29.554 29.543110 29.670 29.382 30.541 30.444 30.996 30.985120 30.989 30.688 31.899 31.798 32.374 32.363130 32.255 31.941 33.201 33.096 33.696 33.685140 33.472 33.147 34.455 34.346 34.968 34.956150 34.647 34.310 35.664 35.551 36.196 36.183160 35.784 35.436 36.833 36.717 37.383 37.370170 36.885 36.526 37.967 37.847 38.533 38.520180 37.954 37.585 39.068 38.944 39.650 39.636190 38.994 38.615 40.138 40.012 40.737 40.723200 40.007 39.618 41.181 41.051 41.795 41.781210 40.995 40.597 42.198 42.065 42.827 42.812220 41.960 41.552 43.191 43.055 43.835 43.820230 42.903 42.486 44.161 44.022 44.820 44.805240 43.826 43.400 45.111 44.969 45.784 45.768250 44.729 44.294 46.041 45.897 46.728 46.712260 45.615 45.172 46.953 46.805 47.653 47.637270 46.484 46.032 47.848 47.697 48.561 48.545

Fig. 2.6.2.1

Page 78: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

280 47.337 46.877 48.726 48.572 49.452 49.435290 48.175 47.707 49.588 49.432 50.327 50.310300 48.999 48.522 50.436 50.277 51.188 51.170310 49.809 49.324 51.270 51.108 52.034 52.016320 50.606 50.113 52.090 51.926 52.866 52.849330 51.390 50.890 52.898 52.731 53.686 53.668340 52.163 51.656 53.693 53.524 54.493 54.475350 52.925 52.410 54.477 54.306 55.289 55.270360 53.675 53.153 55.250 55.076 56.073 56.054370 54.416 53.887 56.012 55.836 56.847 56.828380 55.146 54.610 56.764 56.585 57.610 57.590390 55.867 55.324 57.506 57.325 58.363 58.343400 56.579 56.029 58.238 58.055 59.106 59.087

Page 79: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Viteza critica de rasturnare

20

25

30

35

40

45

50

55

60

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420

R [m]- raza de curbura

v [m

/s]

vcr 0 [m/s] vcr 2 [m/s] vcr 3 [m/s]

Fig. 2.6.2.2

Page 80: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Viteza critica de derapare

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420

R [m]- raza de curbura

v [m

/s]

vcd 0 [m/s] vcd 2 [m/s] vcd 3 [m/s]

Fig. 2.6.2.3

Page 81: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

2.7. Economicitatea automobilului

Cheltuielile pentru combustibil reprezintă aproximativ 20% din preţul de cost al transportului auto şi de aceea economicitate automobilului constituie o problemă importantă.Pentru aprecierea economicităţii motorului de automobil se utilizează relaţiile:

Curba consumului specific: ci = ce [kg/kW·h] [4]unde ce = 293 [g/kW·h] – consumul specific la regim nominal;

Curba consumului orar: Ci = ·ci·Pi [kg/h] [4]

Valorile calculate cu relaţiile de mai sus sunt date în tabelul 1.1.Analizând graficul consumului orar, respectiv specific funcţie de viteză se observă

faptul că în treapta a V-a (adică în suprapriză) se obţine un consum mai mic pentru o anumită viteză, faţă de consumul din treapta a IV-a la aceeaşi viteză.

Page 82: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

CAP.IV CALCULUL AMBREIAJULUI

1.ROLUL AMBREAJULUI

Includerea ambreajului in transmisia autovehiculului are drept scop compensarea principalelor dezavantaje ale motorului cu ardere interna,care constau in:

imposibilitatea pornirii sub sarcina existenta unei zone de functionare instabila mersul neuniform al arborelui cotit

Introducerea ambreajului in transmisia autovehiculului este determinata si de particularitatile functionarii acestuia,caracterizate de cuplarea si decuplarea motorului de restul transmisiei.Decuplarea este necesara la oprire si franare totala a autovehiculului,precum si la schimbarea treptelor de viteza,iar cuplarea la pornirea din loc si la schimbarea treptelor de viteza.

Cuplarea lina a transmisiei cu motorul,care are o turatie ridicata, asigura cresteerea treptata si fara socuri a sarcinii la dintii rotilor dintate si la piesele transmisiei,fapt care reduce uzura si elimina posibilitatea ruperii lor.

Prin decuplarea transmisiei de motor,rotile dintate din cutia de viteze nu se mai afla sub sarcina si cuplarea lor se poate face fara eforturi mari intre dinti,in caz contrar schimbarea treptelor de viteze e imposibila.

Cerintele principale impuse ambreajelor de autovehicule sunt urmatoarele: la cuplare sa izoleze rapid si complet motorul de transmisie pentru a face posibila

scimbarea treptelor fara socuri. la cuplare sa imbine lin organele motorului cu cele ale transmisiei,pentru a evita

pornirea brusca din loc a autovehiculului si socurile din mecanismele transmisiei. in stare cuplata sa asigure o imbinare perfecta intre motor si transmisie. sa limiteze valoarea maxima a momentului transmis. sa aiba o functionare sigura si de lunga durata. actionarea sa fie usoara. regimul termic sa aiba valori reduse. constructia sa fie simpla si tehnologica. sa aiba o manevrare usoara si rapida astfel ca efortul pe pedala sa nu depaseasca

15 kgf la autoturisme si 25 kgf la autocamioane.

Page 83: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

2.ALEGEREA SCHEMEI AMBREAJULUI SI JUSTIFICAREA SOLUTIEI ADOPTATE

Pentru acest autoturism s-a ales un ambreaj mecanic simplu cu un singur disc cu arc central.

Ambreiajul adoptat este un ambreiaj monodisc cu arc central tip diafragma. Aceasta soluţie a fost adoptată datorită simplităţii constructive, greutăţii reduse şi nu în ultimul rând a preţului de cost mai mic. Sistemul de acţionate se adoptă cel hidraulic datorită avantajelor precum:* randament mai ridicat decât sistemul de acţionare mecanic;* simplitatea schemei şi posibilitatea acţionării la distanţă;* cuplare lină a ambreiajului; rigiditate bună, întreţinere şi reglare uşoară.

Fig 2.1

Page 84: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

3.CALCULUL PROPRIU-ZIS AL AMBREIAJULUI

3.1.Calculul momentului de frecare al ambreiajului

3.CALCULUL PROPRIU-ZIS AL AMBREIAJULUI

3.1.Calculul momentului de frecare al ambreiajului

Se defineste coeficientul de siguranta care la autoturisme variaza intre limitele:=1.2....1.75.Se adopta:

β=1.6Momentul maxim transmis de motor este:Mm=250.8 [N m ]Formula de calcul a momentului de frecare al ambreiajului este:Ma MM N mDeci:Ma=401.28 N m

3.2.Calculul razei suprafetei de frecare

n 1 -nr. discurilor de frictiune

i 2 n 2 1 2Deci: i 2 -nr. garniturilor de frictiumeSe defineste raportul dintre suprafata de frecare ( A ) si momentul maxim al motorului notat-:

A

MM

Valorilelui pentru autoturisme cu ambreiaje cu un singur disc de frictiune: =2.5....3Se adopta:

3 cm2

N mRaportul dintre raza minima si cea maxima a discului de frictiune este:

cRmin

Rmax0.53....0.75 Se adopta:c=0.65

Raza maxima a suprafetei de frecare:

Rmax

MM

1 c2 i

=> 112mm

Rmax=120mmRaza minima a suprafetei de frecare:Rmin c Rmax

Page 85: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Suprafata de frecare este definita de relatia:

A Rmax2

Rmin2

i

3.3.Calculul arcului central tip diafragma

Page 86: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Fig. 3.3.1.

Constructiv se vor adopta urmatoarele dimensiuni pentru calculul arcului diafragma:S-grosimea discului , [mm]: S 2 [mm]

D1-diametrul exterior, [mm]: D1 190 [mm]

D2-diametrul exterior al dispunerii bratelor , [mm]:D2 130 [mm]

D3 160 [mm]

D3-diametrul de sprijin , [mm]:D4-diametrul interior [mm]D4 34 [mm]

-unghiul de inclinare , [grade]: 8 [grade]z-nr. de brate: z 18b-latimea bratului la baza , [mm]: b 15 [mm]

b1-latimea bratului la varf , [mm]: b1 3 [mm]

Inaltimea zonei pline in stare libera:

h

D1 D2 tan

180

2

rezulta:

Page 87: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

h190 130( )

2tan 8

180

h 4.216 [mm]

Alegerea materialului:

Se alege otel de arc conform STAS 795-49 cu urmatoarele proprietati:-modulul de elasticitate al materialului:

E 2.1 104 [daN/mm^2]

-coeficientul lui Poisson: 0.25Sageata diametrului D2: - f2f2max 1.6 h

f2max 6.746 [mm]

k11

1D2

D1

2

D1 D2

D1 D2

2

lnD1

D2

rezulta: k1 0.503

k26

lnD1

D2

1

D1

D2

1

lnD1

D2

rezulta: k2 1.088

k33

lnD1

D2

D1

D2

1

rezulta: k3 1.161

Forta maxima care solicita dintele:

F2max

4 E S f2max

1 2

k1 D12

h f2max hf2max

2

S2

=>F2max 124.262 [daN]

Verificarea arcului:1. Efortul unitar tangential:

Page 88: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

tmax

4 E f2max

1 2

k1 D12

k2 hf2max

2

k3 S

tmax 107.844 [daN/mm^2]

rezulta: tmax tadm

tadm 200 [N/mm^2]

Deci efortul unitar tangential nu reprezinta o solicitare periculoasa.Efortul unitar de incovoiere la baza dintelui:Se defineste coeficientul neuniformitatii repartizarii efortului pe brate:CN 1.2

imax

3 F2max D1 D2

z b S2

CN

imax 24.852 [N/mm^2]

iadm 60 [N/mm^2]

imax iadm

Page 89: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

3.4.Calculul arborelui ambreiajului

Fig. 3.4.1.

Momentul de torsiune pentru verificarea arborelui se considera majorat cu 20% pentru a tine seama si de solicitarea de incovoiere:

Momentul de torsiune pentru verificarea arborelui se considera majorat cu 20% pentru a tine seama si de solicitarea de incovoiere:Mt 1.2 MM [Nm]

Mt=537.6 Nm

*Verificarea la torsiune:Se adopta efortul unitar de torsiune admis:at 130 [N/mm^2]

Di

36 MM

at

rezulta:Di=26 [mm]Se adopta conform STAS 6858/63 urmatoarele dimensiuni pentru arborele canelat primar al cutiei de viteze:Di x De x b = 26 x 32 x 4Di=26mm [mm]z 6 -nr. de caneluriDi=32mmb 5 [mm]Se calculeaza lungimea portiunii canelate pentru conditii grele de lucru a arborelui:l=34mml De => l=32mm [mm]

Page 90: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Verificarea canelurilor arborelui si butucului canelat la strivire si forfecare:

s

8 MM

z l De2

Di2

Atunci:

s 9.73 [N/mm^2]

s as 20 30 [N/mm^2]

f

4 MM

z l b De Di

Rezulta:

f 1.946 [N/mm^2]

f af 20 30 [N/mm^2]

3.5. Calculul elementelor de fixare si ghidare

Fixarea si ghidarea discului de presiune pe carcasa ambreiajului sau pe volant se va face cu ureche de ghidare.

Fig.3.5.1

Verificarea urechilor de ghidare se ve face la strivire si forfecare pe suprafetele de contact.

Page 91: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Se considera: z 6 -nr. de urechi folosite,dispuse concentric la 45[grade].R=94 mm -raza de dispunere.a 8 [mm]b 11 [mm]1.Verificarea la strivire:

s

MM 103

z a b R s 5.827 [N/mm^2]

as 10...12[N/mm^2]

rezulta:s as

2. Verificarea la forfecare:

f

MM 103

2 a b R rezulta:

f 17.481 [N/mm^2]

rezulta:f af

af 10...12[N/mm^2]

3.6. Calculul elementelor amortizorului de torsiune

Fig. 3.61

In relatia de calcul a momentului limita al arcului care solicita arcul si limiteaza rigiditatease definesc urmatorii termeni:-greutatea ce revine puntii motoare:G==10290

[N]

-raza dinamica a rotilor motoare :rd=334[mm]-raportul de transmitere al reductorului central :i0=3.48-raportul de transmitere la treapta ntai din cutia de viteze:icv1=2.69

-coeficientul de adrenta pe drumuri e calitate superioara: max 0.8

Relatia de calcul a momentului limita al arcului este:

Marc

Gm max rd

i0 iCV1 =>Marc 2.73 10

7 [N*mm]

Se adopta:

Page 92: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

-raza la care sunt dispuse arcurile amortizoare:R=51mm-nr. de arcuri amortizoare: z 6Forta care solicita arcul amortizor este:

Fa

Marc

z R

Fa 1.3 105 [N]

Lungimea ferestrei lf se face mai mica decat lungimea minima a arcului si de aceea va apare n moment de pretensionare in arc:Mpret. 1.15 MM

rezulta: Mpret. 293.664 [N*m]

Se adopta constructiv:

-dimensiunile ferestrelor: lf 25 [mm]

-dimensiunile arcului amortizor:d=8 [mm]-diametrul sarmei de arc.

ds 3 [mm]

-diametrul mediu al arcului.D=14 [mm]-nr. total de spire. n 6

Verificarea arcurilor amortizorului de torsiune:

Calculul se va face la solicitarea de torsiune: Forta necesara fiecarui arc in stare de lucru,luand in considerare neuniformitatea actiunii arcurilor,in sensul ca nu toate arcurile de presiune pot fi obtinute cu aceeasi rigiditate,este:

F0a

Fa

0.85

rezulta: F0a 1.53 10

5 [N]

Forta la care se calculeaza arcurile si care apare cand ambreiajul este complet decuplat este:

F1a 1.17 F0a

F1a 1.79 105 [N]

Efortul unitar la solicitarea de torsiune este:

t

8 F1a D

ds3

=>t 1.603 105 [N/mm^2]

rezulta:t at

at 800....1000[N/mm^2]

Page 93: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

3.7 Calculul presiunii specifice pe suprafata de frecare

Se defineste:- coeficientul de frecare 0.36Presiunea specifica se calculeaza cu relatia:

p0F

a

F MM 10

3

i Rmax Rmin

4

10

rezulta: F 2.325 10

3 [N]

p016 Mmax

i D d( )2 D d( )

p0 0.185 [N/mm^2]

Aceasta presiune reprezinta si incarcarea specifica pe garniturile de frictiune. unde: ps=0,17...0,35Conditia este satisfacuta.

3.8. Calculul lucrului mecanic specific de patinare

Se vor defini urmatorii parametrii:

- turatia in momentul pornirii din loc: n0 1000s1

- raza rotii:r=309 mm - raportul de transmitere total:

itr 9.14

- greutatea automobilului:Ga=20590 N-coeficientul rezistentei totale a drumului: 0.27

-coeficientul de proportionalitate: k 40

N ms

- acceleratia gravitationala:

g 9.807

m

s2

Lucrul mecanic de patinare va fi:

L n0 r

2

30 itr2

Ga

g

n0 3600

Ga

2 2

k

2

3Ga

2

k

Ga

g

n030

L 9.395 1010

Se defineste suprafata de frecare a ambreiajului, A

A4

D2

d2 i

Page 94: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Lucrul mecanic specific de patinare va fi:

lL

A

l 75.435Nm

cm2

unde: l=100...120 Nm/mm^2

Conditia este satisfacuta.

3.9.Calculul termic al ambreiajului

Avand in vedere ca L=max la plecarea din loc a autovehiculului,aprecierea si compararea ambreiajului se va face in acest regim.

In formula de calcul a cresterii temperaturii pieselor ambreiajului(volant si discuri) se considera urmatorii termeni:

Vom defini urmatorii parametrii:- coeficientul care arata parte din lucrul mecanic ce se transforma in caldura este

preluata de piesele considerate:

0.5- caldura specifica a pieselor din fonta si otel:

c 500J

kg C

Cresterea temperaturii pieselor ambreiajului se determina cu relatia:

t Lc mp

mp

Se va adopta:

t 10CFolosind invers relatia vom calcula masa pieselor ce se incalzesc:

mp L

c t mp 4.141kg

Page 95: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

4. SISTEMUL DE ACTIONARE AL AMBREIAJULUI

Rolul sistemului de acţionare şi alegerea cu justificarea soluţiei alese

Mecanismul de actionare al ambreiajului trebuie sa asigure o cuplare perfecta si o

decuplare rapida,context in care forta aplicata la redala necesara decuplarii ambreiajului nu

trebuie sa depaseasca (100...150)N-pentru autovehicule usoare- si(150...200)N-pentru

autovehicule grele si medii.

Cursa pedalei nu depaseste (120...150)mm ,iar cursa libera a pedalei nu depaseste

(25)mm

Pe masura uzarii garniturilor de frictiune,mecanismul de actionare al ambreiajului

trebuie sa permita reglarea cursei libere a pedalei.

Pentru autoturismul luat in calcul se va considera un macanism de actionare

neautomat,prevazut cu parghii de cuplare-decuplare.

Page 96: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Fig. 4.1.1.

Calculul sistemului de actionare al ambreiajului

Deplasarea totala a mansonului de decuplare (Sm):

Se definesc urmatorii termeni care sa regasesc in formula de calcul a deplasarii totale:

-deplasarea libera a mansonului de decuplare:

Sl 3 [mm] -se adopta

-nr. suprafetelor de frecare: i 2

-Se adopta urmatoarele lungimi: c 103 [mm] -se masoara pe desen

Page 97: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

d 64 [mm] -se masoara pe desen

e 57 [mm] -se masoara pe desen

f 22 [mm] -se masoara pe desen

a 220 [mm] -se adopta

b 50 [mm] -se adopta

-raportul de transmitere al parghiei de actionare:

ke

f =>k 2.591 [ - ]

-distanta dintre suprafetele de frecare atunci cand ambreiajul este decuplat:

s 1.45

[mm] -adoptata pentru ambreiaje cu un singur disc

Atunci deplasarea totala a mansonului este:

Sm Sl i s k

rezulta:

Sm 10.514 [mm]

Deplasarea totala a pedalei (Sp) :

Se defineste raportul de transmitere a pedalei de actionare a ambreiajului si a parghiei

de actionare a mansonului:

ktra

b

c

d =>ktr 7.081

Atunci deplasarea totala a pedalei este:

Sp ktr Sm =>Sp 74.45 [mm]

OBSERVATIE: In scopul micsorarii cursei totale a pedalei,este nacesar sa se asigure

o rigiditate corespunzatoare tuturor elementelor de actionare,cunoscand ca deformatiile

elastice ale acestora duc la marirea cursei totale

Forta necesara decuplarii ambreiajului (Fp):

Forta necesara decuplarii ambreiajului se calculeaza in functie de forta de apasare pe

discurile de presiune.

-randamentul mecanic al mecanismului considerat este:

Page 98: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

m 0.7

Fp

F1a

k ktr m => Fp 5.877 10

3 [N]

Calculul de rezistenţă al mecanismului de acţionare

OBSERVATIE: Calculul de rezistenta al mecanismului de actionare al ambreiajului se

va face considerand forta maxima de apasare pe pedala este:

Fpmax 400 [N]

La calculul de rezistenta este absolut necesar sa se faca calculul pedalei de actionare la

incovoiere in sectiunile periculoese A-A si B-B:

Calculul tensiunilor normale de incovoiere in cele doua sectiuni:

-dimensiunile tijei (1) -profil dreptunghiular:

b1 8 [mm];h1 37 [mm]

-dimensiunile tijei (2) -profil dreptunghiular:

b2 8 [mm];h2 37 [mm]

-modulele de rezistenta longitudinale:

Fig. 4.3.

Page 99: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Wia

b1 h12

6 =>Wia 1.825 10

3 [mm^3]

Wib

b2 h22

6 =>Wib 1.825 10

3 [mm^3]

-Tensiunile de incovoiere:

ia

Fpmax a

Wia => ia 48.21 [N/mm^2]

ib

Fpmax b

Wib => ib 10.957 [N/mm^2]

Page 100: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

CAP. V. CALCULUL CUTIEI DE VITEZA

Rolul cutiei de viteze

Cutia de viteze este elementul din transmisia autovehiculului care asigura modificarea turatiei si a momentului la roata in functie de rezistentele la înaintare.Deasemenea cutia de viteze are rolul de a asigura mersul inapoi al autovehiculului.

Rezistentele la inaintare ale autovehiculului variaza mult in functie de condiţiile concrete de deplasare si corespunzator acestora trebuie sa se schimbe si forta de tractiune la rotile motoare.

Majoritatea automobilelor actuale sunt echipate cu motoare cu ardere interna, a caror particularitate consta in faptul ca puterea maxima este dezvoltata la turatii foarte ridicate. automobilul necesita puteri mari si la viteze mici,care insa nu pot fi asigurate de motor datorita valorii relativ ridicate a turatie minime stabile de functionare a acestora. In consecinta, automobilul trebuie sa fie inzestrat cu un dispozitiv care sa permita schimbarea turatiei si momentul rotilor motoare in timpul mersului si sa asigure utilizarea integrala a puterii motorului la toate regimurile de functionare. Acestui scop ii serveste cutia de viteze, care indeplineste functia unui variator de cuplu si turatie in transmisia automobilului, asigurind totodata posibilitatea mersului inapoi si functionarea motorului la regim de mers incet in gol, atunci cind automobilul sta pe loc.

1.1 Alegerea tipului constructiv

Rezistenţa la înaintarea automobilului variază mult în funcţie de condiţiile de deplasare,

şi corespunzător acestora, trebuie modificată şi forţa de tracţiune. Din această cauză,

autovehiculele trebuie înzestrate cu o cutie de viteze care să aibă următoarele

caracteristici:

- să permită modificarea forţei de tracţiune în funcţie de variaţia rezistenţelor la înaintare;

- să permită deplasarea automobilului cu viteze reduse ce nu pot fi asigurate de motoarele cu ardere internă, care au turaţii minime stabile relativ mari ( mai ales M.A.S.-urile );

- să permită mersul înapoi al automobilului fără a inversa sensul de rotaţie al motorului;

- să realizeze întreruperea îndelungată a legăturii dintre motor şi restul transmisiei în cazul în care automobilul este oprit, cu motorul în funcţiune;

Cutiile de viteze trebuie să îndeplinească următoarele condiţii:- să asigure automobilului cele mai bune calităţi dinamice şi economice la o

caracteristică exterioară dată a motorului;- acţionare simplă şi comodă;- funcţionare silenţioasă;

Page 101: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

- construcţie simplă;- randament ridicat;- siguranţă în funcţionare;- fiabilitate ridicată;- gabarit redus;- întreţinere uşoară;Părţile componente ale unei cutii de viteze cu variaţie în trepte sunt:- mecanismul reductor (cutia de viteze propriu-zisă);- sistemul de acţionare;- dispozitivul de fixare a treptelor;- dispozitivul de zăvorâre a treptelor;Mecanismul reductor constituie partea principală a cutiei de viteze şi serveşte la

modificarea raportului de transmitere, respectiv a momentului motor, funcţie de variaţia rezistenţelor la înaintare ale automobilului.

Mecanismul reductor se compune din doi sau trei arbori ( funcţie de necesitatea obţinerii fluxului de putere pe aceiaşi parte sau pe partea opusă intrării în cutia de

viteze ), pe care se află montate perechi de roţi dinţate, cu ajutorul cărora se transmite mişcarea între arbori, şi dintr-un carter, cu rol de menţinere în angrenare a roţilor dinţate şi decreare a unui compartiment etanş cu rol de protecţie şi baie de ungere.

Sistemul de acţionare serveşte la cuplarea şi decuplarea treptelor la comanda conducătorului auto.

Dispozitivul de fixare nu permite trecerea dintr-o treaptă în altă treaptă sau în poziţia neutră ( decuplat ) decât la intervenţia conducătorului auto.

Sistemul de zăvorâre ( blocare ) nu permite cuplarea simultană a mai multor trepte, înlăturând pericolul blocării şi/sau avarierii cutiei de viteze.

Cutiile de viteze pentru autoturisme se construiesc cu trei, patru sau cinci trepte de viteză. Dat fiind tendinţele soluţiilor similare, deja apărute pe piaţă, se adoptă o cutie de viteze cu cinci trepte sincronizate. Această alegere s-a făcut încă din capitolul precedent, unde s-a ales motorul şi s-au calculat mărimile rapoartelor de transmisie.

Creşterea numărului de trepte permite motorului de automobil să funcţioneze la regimuri mai apropiate de cele optime, atât din punct de vedere al puterii cât şi al economicităţii. Treptele a III-a şi a V-a au fost astfel alese pentru a obţine regimurile economice în deplasarea urbană, respectiv interurbană.

Page 102: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Treapta Roţile dinţate aflate în angrenareZ1 Z2 Z3 Z4 Z5 Zmi Z1' Z2' Z3' Z4' Z5' Zmi' Zmi''

I x xII x xIII x xIV x xV x x

M. Î. X x x

B Alegerea modululuiÎn faza de predimensionare, alegerea modulului se face în funcţie de modulele

construcţiilor existente. Fie se adoptă o valoarea similară modulului constructiv de referinţă, fie se utilizează date de sinteză din bibliografie.

În funcţie de momentul maxim al motorului se alege modulul. Se adoptă modulul maxim şi modulul minim al roţilor dinţate din construcţia cutiei de viteze.

Mm = 250,8 Nm = 25 daNmMs = MM * icv1 * cv = 250,8 * 2,69 * 0,92 = 620,6daNmmmin = 2.5 mm;mmax = 2.5 mm;În acest interval avem următoarele module standardizate:m = 2.5 mm;

C Unghiul de înclinareCa valori medii ale unghiului de înclinare, se consideră = 20..35o , limita inferioară

fiind adoptată pentru treapta I şi cea superioară pentru treapta a V-a de viteză.

Determinarea distanţei dintre axe

Determinarea num ă rului de dinţi pentru roţile dinţate Pentru roţile dinţate ale cutiilor de viteze cu doi arbori similar cazului anterior se

obţine pentru roţile dinţate ale arborelui primar relaţia:

iar pentru cele ale arborelui secundar:

Cunoscand modulul şi numărul de dinţi se pot determina elementele geometrice ale roţilor dinţate şi ale angrenajelor.

Distanţa dintre axele arborilor, se pot determina din mai multe condiţii. Se predimensionează cu ajutorul relaţiei:

Pentru roţile cilindrice, numărul minim de dinţi este:

Am adoptat = 23 o

Zmin = 14 = Z1'

Page 103: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

icv1 = Z1/Z1' = 2,69 ; Z1 = Z1' * icv1 = 14 * 2,69= 37 Rezultă icv1 = 3.076 ; este raportul real din cutia de viteze.Din şirul de valori standard ale modulelor se adoptă mn = 2.5 mm

mm

Se adoptă distanţa dintre axe d = 110 mm.Pentru roţile Z2 şi Z2' numărul de dinţi se calculează cu relaţia:

icv2 = Z2/Z2' = 2,01 ; Z2 = Z2' * icv2 = 18 * 2,01 = 36

Z2 = 17dinţi;Z2' = 58 dinţi;icv2 = Z2/Z2' = 3.22 ;este raportul real din cutia de viteze.Pentru roţile Z3 şi Z3' numărul de dinţi se calculează cu relaţia:

icv3 = Z3/Z3' = 2.18 ; Z3 = Z3' * icv3 = 23 * 2.18 = 50.79 51

Z3 = 23 dinţi;Z3' = 51 dinţi;icv3 = Z3'/Z3 = 2.18 ;este raportul real din cutia de viteze.Pentru roţile Z4 şi Z4' numărul de dinţi se calculează cu relaţia:

icv4 = Z4/Z4' = 1.47 ; Z4 = Z4' * icv4 = 30 * 1.47 = 44.1

Z4 = 30dinţi;Z4' = 44 dinţi;icv4 = Z4'/Z4 = 1.47 ;este raportul real din cutia de viteze.Pentru roţile Z5 şi Z5' numărul de dinţi se calculează cu relaţia:

icv5 = Z5/Z5' = 1 ; Z5 = Z5' * icv5 = 30* 1 = 30

Z5 = 30 dinţi;Z5' = 30 dinţi;icv5 = Z5'/Z5 = 1 ;este raportul real din cutia de viteze.

Calculul geometric al angrenajelor

Page 104: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Treapta IDate iniţiale:- modulul normal mn = 2.5 mm;- numărul de dinţi al roţilor angrenajelor Z1 = 14; Z1'= 67;- profilul de referinţă normal: n = 20 o ; ha

* = 1 mm ; ca* = 0,25 mm ;

- unghiul de înclinare al dintelui: = 23 o ;- raportul numărului de dinţi : n = 38/13 3,076;- raportul de transmitere: i = n = 3,076;- distanţa dintre axe: aw = 110 mm ;Parametrii de bază ai angenajului:

- modulul frontal: mm;

- unghiul de divizare frontal al dintelui: 0.4015

rezultă că t = 21.88o

- distanţa (de referinţă) dintre axele angrenajului:

mm

- diametrul de divizare: dd = mt* Zi ;- diametrul de rostogolire: df = dd - 2 * mn * ( ha

' + c' - x ) unde ha' = 1 şi c' = 0.25

- diametrul de bază: db = dd * cos t ;- diametrul exterior: da = df + 2 * h ;- înălţimea dintelui : h = aw - mn * c' - ( df1- df1') ;Utilizând aceste relaţii au rezultat valorile următoare

- pentru pinioanele treptei IZ1 Z1'68 14

Modulul roţilor dinţate mn [mm] 2.5 2.5Modulul frontal al roţilor

mt [mm] 3,31 3,31Unghiul de divizare

frontal [grd] 23,01 23,01Distanţa dintre axe a [mm] 84 84

Diametrul de divizare dd [mm] 130 37Diametrul de bază db [mm] 124 31Diametrul exterior da [mm] 136 42,56

Diametrul de rostogolire df [mm] 126 34.02

Înălţimea dintelui h [mm] 6,51 6,51

Page 105: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

- pentru pinioanele treptei a II-aZ2 Z2'58 18

Modulul roţilor dinţate mn [mm] 2.5 2.5Modulul frontal al roţilor mt [mm] 2.71 2.71Unghiul de divizare frontal [grd] 22,94 22,94

Distanţa dintre axe a [mm] 84 84Diametrul de divizare dd [mm] 118 49,46

Diametrul de bază db [mm] 112 44Diametrul exterior da [mm] 124 56

Diametrul de rostogolire df [mm] 120 51.46Înălţimea dintelui h [mm] 6,74 6,74

- pentru pinioanele treptei a III-a    Z3 Z3'    51 23Modulul roţilor dinţate mn [mm] 2.5 2.5Modulul frontal al roţilor mt [mm] 2.71 2.71Unghiul de divizare frontal [grd] 22,94 22,94Distanţa dintre axe a [mm] 84 84Diametrul de divizare dd [mm] 102 65Diametrul de bază db [mm] 96 60Diametrul exterior da [mm] 108 70.12Diametrul de rostogolire df [mm] 99 61.09Înălţimea dintelui h [mm] 6,7 6,7

- pentru pinioanele treptei a IV-a    Z4 Z4'    30 44Modulul roţilor dinţate mn [mm] 2.5 2.5Modulul frontal al roţilor mt [mm] 2.71 2.71Unghiul de divizare frontal [grd] 22,94 22,94Distanţa dintre axe a [mm] 84 84Diametrul de divizare dd [mm] 85 82Diametrul de bază db [mm] 80.88 76.71Diametrul exterior da [mm] 90.37 88.43Diametrul de rostogolire df [mm] 85.89 81.18

Page 106: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Înălţimea dintelui h [mm] 6,74 6,74

- pentru pinioanele treptei a V-a    Z5 Z5'    30 30Modulul roţilor dinţate mn [mm] 2.5 2.5Modulul frontal al roţilor mt [mm] 2.75 2.75Unghiul de divizare frontal [grd] 22,94 22,94Distanţa dintre axe a [mm] 84 84Diametrul de divizare dd [mm] 76.41 91.41Diametrul de bază db [mm] 70.84 92.84Diametrul exterior da [mm] 82.41 96.41Diametrul de rostogolire df [mm] 76.16 85.16Înălţimea dintelui h [mm] 6,74 6,74

2.1 Calculul de rezistenţă şi de verificare a angrenajelor

Angrenajele cutiilor de viteze se verifică prin calculul la încovoierea dinţilor şi presiunea de contact, în condiţiile solicitării sub acţiunea sarcinilor de regim şi a sarcinilor dinamice ( sarcini de vârf ).

Forţa normală se distribuie pe fâşia de contact dintre dinţii aflaţi în angrenare, producând ca solicitare principală presiuni specifice de contact.

Componenta tangenţială Ft = Fn * cos * cos , solicită dintele la încovoiere, secţiunea periculoasă fiin la baza dintelui, de arie S * B / cos .

unde Mc - momentul de calcul la sarcini de regim, determinat de momentul maxim al motorului Mmax şi raportul de transmitere de la motor la angrenajul calculat.

Mc = Mmax * it'

Deoarece angrenajul considerat primeşte fluxul de putere direct de la arborele cotit al motorului ( prin intermediul ambreiajului ) rezultă că momentul de calcul este egal cu momentul maxim debitat de motor ( Mc = Mmax ).

A. Calculul de rezistenţă la încovoiere

Page 107: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Efortul unitar efectiv de încovoiere este dat de relaţia :

în care este un coeficient de formă al dintelui.

Înlocuid forţa tangenţială, se obţine:

Valorile efective ale efortului unitar, se compară cu eforturilor admisibile la încovoiere pentru materialul utilizat şi anume:

ef ai Pentru roţile dinţate am ales ca material 30MoCN20 cu ai = 800 N/mm2

Deformarea permanentă de încovoiere a dinţilor, apare atunci când efortul de încovoiere la baza dintelui, la suprasarcini, depăşeşte limita de curgere a materialului.

Evitarea deformării permanente a dinţilor, se se asigură prin verificarea de rezistenţă la solicitări de suprasarcină, prin care:

efi ai lim unde:efi - valoarea efortului unitar de încovoiere la baza dintelui corespunzător sarcinii

de vârf;ai lim - efortul unitar admisibil de încovoiere;La calculul de verificare al roţilor dinţate la sarcinile de vârf se utilizează relaţia:Mc = Mmax * it

' în care momentul de calculse înlocuieşte cu momentul dinamic Md;Md = kd * Mmax * it

' unde:kd - coeficientul dinamic ; kd = 1,9.it' - raportul de transmitere de la motor la angrenajul calculat;Mmax - momentul maxim al motorului;

B. Calculul de rezistenţă la presiunea de contact

Determinarea presiunii de contact la sarcini nominale, se face utilizând relaţia lui Hertz:

unde:

Fn - forţa normală din angrenaj;

B' - lăţimea de contact a dinţilor;

E - modulul de elasticitate mediu;

Page 108: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

, ' - razele de curbură ale profilelor celor doi dinţi din angrenare;Pentru fiecare angrenare, razele se calculează cu formulele:

Din bibliografia de specialitate, pentru materialul ales, ac lim =2500 N/mmDeci efc ai lim

C Verificarea la durabilitate a angrenajelor

În afară unei rezistenţe insuficiente la sarcini normale sau de vârf, scoaterea din funcţionare a angrenajelor în exploatare apare frecvent datorită depăşirii limitei de rezistenţă a materialului, provocat de sarcini periodice variabile.

Pentru efectuarea calculului de durabilitate, se consideră că motorul dezvoltă un moment mediu echivalent Mech la o turaţie echivalentă ech.

Momentul mediu echivalent se calculează cu relaţia:

unde :

icv med - raportul mediu de transmitere al cutiei de viteze;t - randamentul mecanic al transmisiei ; t = 0,9

unde

- forţa specifică medie la roţile motoare;

Ga - greutatea automobilului; Ga = 19100N;rr - raza de rulare; rr = 0,295 m;i0 - raportul transmisiei principale; i0 = 3.210;

Nm

Raportul de transmisie mediu al cutiei de viteze, icv med, se determină cu relaţia:

de aici rezultă

Page 109: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Turaţia medie echivalentă:

Va med - viteza medie de deplasare a automobilului:Va med = (0,4..0,5)*Vmax = 0,5 * 190 = 95 km/h = 26,38 m/s

rad/s

Numărul de solicitări la care este supus un dinte, pe durata exploatării între două reparaţii capitale, se determină cu relaţia:

cicluri

D Calculul la oboseală la solicitarea de contact

Eforturile admisibile de contact pentru calculul la oboseală a flancurilor dinţilor, trebuie corectate cu coeficienţii durabilităţii la solicitarea de contact kNC.

Coeficientul durabilităţii la contact pentru roţi de oţel, este:

unde

NB - numărul ciclurilor durabilităţii de bază;NB = 25 * 107;Rezultă că : N/mm2.

Page 110: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

3.1 Calculul arborilor

A. Determinarea schemelor de încărcare ale arborilor şi calculul reacţiunilor

Pentru determinarea schemelor de încărcare ale arborilor şi calculul reacţiunilor, trebuie mai întâi efectuate calculele forţelor din angrenaje.

În calculul de rezistenţă al roţilor dinţate, se consideră că întregul moment se transmite prin intermediul unui dinte, iar forţa normală Fn este aplicată pe capul dintelui.

; ;

unde: - unghiul de înclinare a danturii;Ddi - diametrul de divizare;0 = 21.88o;Mc = k * Mmax = 1,9 * 166.2 = 308.17 Nm = 308170 Nmm;

Page 111: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Utilizând aceste relaţii de calcul împreună cu datele determinate anterior rezultă forţele care acţionează la nivelul dintelui.

Rezultatele sunt prezentate în tabelul următor.  Mc [Nmm] Dd [mm] Ft [N] Fa [N] Fr [N]Z1 388170 167,71 4628,93 2158,50 2051,11Z1' 388170 75,03 10347,01 4824,89 4584,84Z2 388170 149,61 5188,92 2349,43 2287,48Z2' 388170 55,00 14115,27 6391,09 6222,56Z3 388170 92,41 8401,11 3803,84 3703,54Z3' 388170 132,01 5880,78 2662,69 2592,48Z4 388170 110,01 7056,93 3195,23 3110,97Z4' 388170 110,01 7056,93 3195,23 3110,97Z5 388170 92,41 8401,11 3803,84 3703,54Z5' 388170 114,41 6785,51 3072,33 2991,32

Arborele secundar

Reacţiunile în plan vertical se determină astfel:

Verificare

Reacţiunile din plan orizontal se determină astfel:

Page 112: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Verificare Folosind aceste relaţii de calcul şi cunoscând distanţele dintre lagărele de sprijin şi

punctele de aplicaţie ale forţelor au rezultat reaţiunile din reazeme, prezentate în tabelul următor.

  l1 l2 rd(I) Rc(v) Rd(v) Rc(h) Rd(h)Z1 20 190 83,8574 993,833 -666,592 440,850 4188,07Z2 85 125 74,8075 524,665 88,9553 2100,27 3088,64Z3 110 100 46,2046 926,660 1103,01 4400,58 4000,52Z4 175 35 55,0055 -318,434 1755,54 5880,77 1176,15Z5 245 35 46,2046 -1454,19 3483,86 9801,29 -1400,18

Arborele primar

Reacţiunile din plan vertical se determină astfel:

Verificare: Reacţiunile din plan orizontal de determină astfel:

Verificare: Folosind aceste relaţii de calcul şi cunoscând distanţele dintre lagărele de sprijin şi

punctele de aplicaţie ale forţelor au rezultat reaţiunile din reazeme, prezentate în tabelul următor.

Page 113: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

  l1 l2 rd(I) Rb(v) Ra(v) Rb(h) Ra(h)Z1' 20 190 37,52 1298,58 3286,25 9361,58 985,429Z2' 85 125 27,5000 3355,58 2866,97 8401,94 5713,32Z3' 110 100 66,01 2194,89 397,583 2800,36 3080,40Z4' 175 35 55,01 3429,40 -318,434 1176,15 5880,77Z5' 245 35 57,21 4326,8 -1335,48 -1130,92 7916,42

B.Predimensionarea arborilor din condiţiile de rezistenţă la solicitările de încovoiere şi torsiune

Cunoscând forţele ce solicită angrenajul, se calculează momentul maxim de încovoiere şi răsucire.

Page 114: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Arborele secundar

Relaţiile de calcul pentru momentele ce acţionează asupra arborelui secundar sunt:

Momentul de torsiune este maxim pentru icv max , corespunzător treptei I , şi are valoarea:

Mti = 204300 *3.100 = 633330 Nmm

  Icv Mi(v) Mi(h) Mt Mi Mech dZ1 2,2352941 -126652,527 8817,00 456,670 126959, 126959, 16,8087Z2 1,6190476 11119,4131 178523, 330,771 178869, 178869, 18,8218Z3 0,7 110301,895 484063 143,01 496471 496471 26,3614Z4 1 61444,1403 1029136 204,3 1030968 1030968 33,5501Z5 0,8076923 -121935,241 2401317 165,011 2404411 2404411 44,3666

Arborele primar

Relaţiile de calcul pentru momentele ce acţionează asupra arborelui primar sunt:

Momentul de torsiune este maxim pentru icv max , corespunzător treptei I , şi are valoarea:

Mti = 204300 *3.100 = 633330 Nmm

  icv Mi(v) Mi(h) Mt Mi Mech dZ1' 2,23529412 25971,760 187231 456,670 189024, 189025 19,1679Z2' 1,61904762 285224,79 714165 330,771 769016 769016 30,4566Z3' 0,7 241438,16 308040 143,01 391384 391384 24,3715Z4' 1 600145,81 205827 204,3 634460 634460 28,5836Z5' 0,80769231 1060066 -277075 165,011 1095678 1095678 34,2309

Page 115: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Pentru creşterea rezistenţei în funcţionare, diametrele celor doi arbori se majorează cu coeficienţii de siguranţă k1 şi respectiv k2.

k1 = 1,37 şi rezultă că ds = k1*ds max = 1,37 * 46.68 64 mmk2 = 1,1 şi rezultă că dp = k1*dp max = 1,1 * 34,59 38 mm

C.Calculul de verificare al arborilor

Solicitările la încovoiere şi răsucire ale arborilor, dau naştere la deformaţii elastice. Aceste deformaţii şi în special cele datorită încovoierii, dacă depăşesc anumite valori admisibile, conduc la o angrenare necorespunzătoare (reduc gradul de acoperire), iar solicitările danturii cresc. De asemenea, datorită deformaţiei arborilor, polul de angrenare, oscilând în jurul poziţiei teoretice, determină o mişcare neuniformă a arborelui condus, fapt ce contribuie la funcţionarea zgomotoasă a acestuia.

Durata de funcţionare şi silenţiozitatea angrenajelor cu roţi dinţate, depind de mărimea răsucirii secţiunii respective.

Săgeata totală se calculează cu relaţia: unde:

fV - săgeata în plan vertical (datorată forţelor Fr şi Fa);fH - sîgeata în plan orizontal (datorată forţei Ft);Săgeata se va calcula prin metoda Veresceaghin:

unde:E = 2 * 102 daN/cm2; IZ = * d4 / 64;

Pentru arborele secundar rezultă următoarele valori prezentate în tabel:  fi(H) fi(V) fsiZ1 0,06 0,055 0,08139Z2 0,08 0,065 0,10307Z3 0,09 0,075 0,11715Z4 0,08 0,075 0,10965Z5 0,07 0,065 0,09552

Pentru arborele primar rezultă următoarele valori prezentate în tabel:  fi(H) fi(V) fsiZ1' 0,06 0,045 0,075Z2' 0,09 0,055 0,10547Z3' 0,11 0,075 0,13313

Page 116: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Z4' 0,09 0,065 0,11101Z5' 0,08 0,055 0,09708

Săgeata maximă a arborilor consideraţi încărcaţi corespunzător momentului motor maxim se încadrează în limitele normale ( 0,13..0,15 pentru treptele superioare şi 0,15..0,25 pentru treptele inferioare).

4.1 Calculul de alegere a lagărelor

În general, arborii transmisiei automobilului se sprijină pe rulmenţi, dintre care cei mai

răspândiţi sunt rulmenţii radiali cu bile, ce pot prelua şi o anumită sarcină radială.

Rulmenţii cu role conice pot prelua sarcini radiale şi axiale mari, dar sunt scumpi şi necesită reglaje în timpul exploatării.

Rulmenţii se aleg din cataloage în funcţie de capacitatea de încărcare dinamică. Dependenţa dintre capacitatea de încărcare dinamică şi durata de funcţionare este dată de relaţia:

unde:D - durata de funcţionare în milioane de rotaţii;Q - sarcina echivalentă;C - capacitatea de încărcare dinamică;p - exponent ce depinde de tipul rulmentului; p = 3 (rulmenţi cu bile)

p = 3,33 (rulmenţi cu role);

unde:

h - durata de funcţionare;n - turaţia inelului rulmentului [rot/min];

unde:R - sarcina radială [daN];A - sarcina axială exterioară ce acţionează asupra rulmentului;x - coeficient radial;y - coeficient de transformarea a sarcinii axiale în sarcină radială;S' - rezultanta forţelor axiale care iau naştere în rulmenţii radiali;fd - coeficient ce ia în considerare caracterul dinamic, fd = 1..1,5 petru autoturisme ;

În cazul automobilelor, rulmenţii funcţionează într-un regim nestaţionar cu sarcini şi turaţii variabile şi anume: cu sarcina echivalentă Q1 [daN] la turaţia n1 [rot/min] şi durata h1 [ore]; cu sarcina echivalentă Q2 [daN] la turaţia n2 [rot/min] şi durata h2 [ore]; cu sarcina echivalentă Qn [daN] la turaţia nn [rot/min] şi durata hn [ore];

Capacitatea de încărcare în acest caz se determină cu relaţia: unde:

Qm - sarcina echivalentă medie;

Page 117: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

unde:

ni - turaţia corespunzătoare unei trepte din cutia de viteze;

;

Vmed = 50km/h;rr = 0,295 m - raza de rulare;io - raportul de transmitere al transmisiei principale;

unde:Ri = Fri ; Ai = Fai ;S = 0,5*Ri/y ; x = 1 ; y = 2,9 ; V = 1 ; fd = 1,4 ;Durabilitatea în ore h = 4000 h 200000 km;

  arb sec arb prin

Q1 13070,87 20869,45

Q2 29217,23 10244,57

Q3 14342,4 27868,02

Q4 39015,22 16586,45

Q5 23221,03 11610,51

Alegerea lagărelor cu rulmenţi

Cunoscând valorile sarcinilor axiale şi radiale ce apar în lagărele de sprijin, durata de funcţionare şi regimurile de lucru se pot alege, din literatura de specialitate (STAS-uri, normative), rulmenţii care au capacitatea de încărcare dinamică superioară valorilor calculate.

Astfel, pentru cele patru lagăre ale cutiei de viteze am selectat un rulment radial cu role conice pe un rând, conform STAS 3920/68, seria 625 pentru arborele primar ( două bucăţi seria 627 pentru arborele secundar (două bucăţi

Page 118: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

4.2 Mecanismele de cuplare a treptelor

În general, cuplarea treptelor la mecanismele reductoare de turaţie se poate obţine prin:

- roţi dinţate cu angrenare permanentă şi mufe de cuplare;- roţi dinţate cu deplasare axială;Cuplarea treptelor cu roţi dinţate cu angrenare permanentă şi mufe de cuplare poate fi:- cu mufe de cuplare cu dispozitiv de sincronizare;- cu mufe de cuplare cu dispozitiv tip roată liberă;Se adoptă ca soluţie constructivă cuplarea treptelor cu mufe de cuplare cu

dispozitive de sincronizare.Sincronizatoarele sunt mecanisme speciale care realizează egalizarea vitezelor

unghiulare ale arborelui şi roţile dinţate, înainte de solidarizarea lor la rotaţie.Utilizarea sincronizatoarelor este cea mai importantă perfecţionare a cutiilor de

viteze cu variaţie în trepte, cu arbori cu axe fixe. Sincronizatoarele permit să se realizeze o schimbare rapidă, fără şoc, a treptelor, independent de îndemânarea conducătorului auto.

Clasificarea sincronizatoarelor se face după forma suprafeţelor de frecare şi după principiul de funcţionare.

După forma suprafeţelor de frecare, sincronizatoarele pot fi:- sincronizatoare cu conuri;- sincronizatoare cu discuri;După principiul de funcţionare, sincronizatoarele pot fi:- sincronizatoare cu presiune constantă (simple);- sincronizatoare cu inerţie (cu blocare);Ca soluţie constructivă, se adoptă un sincronizator cu conuri, cu danturi de blocare,

de tip Borg-Warner, prezentat în figura următoare:

Page 119: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

CAP. VI. PROCESUL TEHNOLOGIC DE FABRICATIE A ARBORELUI CUTIEI DE VITEZA

Arborii în construcţia de autovehicule sunt într-o gamă foarte diversificată după

nomenclatură şi volum fapt ce conduce la aplicarea unor tehnologii de prelucrare complexe,

pe o diversitate mare de maşini unelte clasice sau cu comandă după program. Piesele de tip

arbore cele mai caracteristice sunt: arborele cotit, arborele cu came ,arborii din cutia de

viteze, arborii cardanici , arborii planetari , etc.

Dat fiind marea diversitate a pieselor de tip arbore apare necesară o grupare a lor care

să permită elaborarea unor procese tehnologice , documentaţie tehnologică simplă, eficienţă

tehnico-economică ridicată.

În tehnologia construcţiilor de maşini , pentru analiza principalelor operaţii de prelucrare

este uzual să se ia în considerare arborii rectilinii grupaţi în arbori netezi şi arbori în trepte ,

ultimii putând fii simetrici şi asimetrici.

Conditii tehnice . La execuţia pieselor de tip arbore se impune un grad ridicat de

precizie dimensională de formă şi de poziţie reciprocă a diferitelor părţi componente

precum şi condiţii limitate privind rugozitatea suprafeţelor.

În principiu prelucrarea arborilor se face după treptele 10...13 şi în cazuri speciale în treapta

a 9-a de precizie. Ovalitatea şi conicitatea arborilor netezi si a fusurilor arborilor în trepte

trebuie sa fie cuprinse în limitele toleranţelor dimensiunilor diametrale (STAS 8104-68).

Bătaia fusurilor pe care urmează să se monteze diferite piese în raport cu fusurile de sprijin

se limitează la 50...70 μm ,iar în cazurile mai pretenţioase la 30...50 μm. Abaterile de

concentricitate faţa de fusurile principale se limitează la 50 μm. Bătaia frontală a

monturilor de capăt coroane este de 30...50 μm pentru diametre de 1000mm .Înconvoierea

arborilor este cuprinsă între 5...10 μm. Abaterea la paralelism a canalelor de pană sau a

canelurilor, în raport cu axa arborelui nu trebuie să depăşească 0,1 μm/mm. Toleranţa la

lungimea treptelor este cuprinsă între 60...150 μm. Rugozitaea suprafeţei fusurilor de

montaj se adoptă în mod obişnuit Ra =1.6...0.2 μm [44,84].

Materiale. Pentru arborii şi axele din construcţia autovehiculelor, cel mai mult se

folosesc oţelurile de îmbunătăţire cu şi fără elemente de aliere, cum ar fi OLC45,OLC50,

OLC60X, STAS 880-79, oţelurile Cr-Mo, Ni-Cr, Cr-Mo-V, din mărcile indicate în

STAS 791-79. În unele cazuri datorită condiţiilor de funcţionare se folosesc şi oţeluri de

cementare, din calităţile indicate în aceleaşi standarde.

Page 120: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

În afară de oţeluri pentru anumite repere tot mai mult se utilizează fonta de înaltă

rezistenţă (STAS 6071-75 şi STAS 8541-75) sau fonta specială .

Alegerea materialului este determinată de rolul funcţional al piesei, dimensiunile acesteia

precum şi de caracterul producţiei.

Semifabricate . Pentru piesele de tip arbore semifabricatele se obţin prin laminare,

forjare, forjare liberă şi în matriţă, extruziune şi turnare.

Semifabricatele laminate sub formă de bară se debitează la lungimea corespunzătoare.

La arborii forjaţi sau matriţaţi se debitează capetele rămase din deformări. Debitarea

se execută la maşini de tăiat cu discuri abrazive, cu freză disc cu fierăstraie, la maşini de

tăiat cu bandă etc.

În cazul semifabricatelor laminate sau matriţate, se poate obţine când este necesar fibrajul

optim continuu şi cu dispunerea spaţială adecvată cea ce permite obţinerea unor piese suple

cu rezistenţe la oboseală ridicată şi preţ de cost redus.

Semifabricatele forjate sau matriţate se îndreaptă pe prese mecanice sau hidraulice la cald

sau la rece, în scopul eliminării deformaţiilor spaţiale care influenţează negativ precizia de

prelucrare.

Semifabricatele turnate se pot obţine cu precizie dimensională corespunzătoare.

Arborii obţinuţi prin turnare au o rezistenţă mai mică decât cei obţinuţi prin forjare din oţel

dar sunt mai puţin sensibili la concentrarea eforturilor şi au o capacitate mai mare de

amortizare a sarcinilor dinamice.

Semifabricatul arborelui intermediar al cutiei de viteze prezentată în proiect este o

bară din oţel rotund laminat la cald din material OLC45 STAS 880-80.

Prelucrarea piesei se face pe maşini unelte universale cu reglarea sculelor la

dimensiune prin metoda trecerilor de probă sau prin obţinerea individuală a preciziei

dimensiunilor.

Page 121: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

CAP.VII. JUSTIFICAREA ECONOMICA A SOLUTIILOR ADOPTATE

Justificarea economica se face cu ajutorul metodei de comparatie ELECTRE, in care s-au ales trei variante: v1; v2; v2, unde v1 este varianta proiectata in aceasta lucrare. Pentru a fi posibila aceasta comparatie se folosesc 5 criterii de comparatie

Nr. Crt.

Criteriul UM Varianta Varianta Varianta

V1 V2 V2

1 Puterea motorului Kw 65 60 662 Consumul de combustibil l/100km 6.1 6.2 6.63 Viteza maxima Km/h 177 163 1804 Tipul cutie de viteze * I II III5 Tipul suspensiei ** I II III

*

I – cutie de viteze 5 trepte cu suprapriza (manuala) I=fb

II - cutie de viteze 4 trepte cu priza directa i treapta a IV-aIII – cutie automata

**

I – punte independenta de tipul McPhersonII - punte independenta de tipul patrulaterIII – punte rigida

Ierarhizarea criteriilorTabel 4.2

CixCi C1 C2 C3 C4 C5

C1 * 1 0.5 1 1C2 0 * 0 1 1C3 0.5 1 * 1 1C4 0 0 0 * 0C5 0 0 0 1 *K 0.5 2 0.5 4 3

- surclaseaza

Constituirea modelului matematic

Tabel 4.3C1 C2 C3 C4 C5

C1 65 6.1 175 fb fb

C2 60 6.2 163 s BC3 66 6.6 180 b sk 0.5 2 0.5 4 3

Page 122: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Constituirea matricii califictivelor

Tabel 4.4C1 C2 C3 C4 C5

V1 b fb b fb fb

V2 m b m s bV3 fb s fb b s

Constituirea matricii notelor acordate calificativelor

Tabel 4.5s m b fb

C4 13 14 15 16C5 9 10 11 12C2 5 6 7 8C3 1 2 3 4C1 1 2 3 4

Tabel 4.6C1 C2 C3 C4 C5

V1 3 8 3 16 12V2 2 7 2 13 11V3 4 5 4 15 9

Calculul coeficientilor de concordanta si disconcordanta atasati variantelor

- coeficient de concordanta a variatiei i fata de variatia k;

- suma coeficientilor importanti atasati criteriilor

cazul cand rata variatiei i notata cu - suma coeficientilor de importanta =0

Page 123: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Coeficient de disconcordanta

- diferenta maxima intre note pentru cazul in care rata variatiei i, - diferenta maxima intre rateel existente=16-1=15

Tabel 4.7

V1 V2 V3

V1 * 10

0.06 0.9

V2 0 0.2

* 0.5 0.13

V3 0.1 0.2

0.50.13

*

Construirea matricei diferentelor

Page 124: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

Tabel 4.8V1 V2 V3

V1 * 1 0.84V2 -0.2 * 0.37V3 -0.1 0.37 *

Construirea matricei surclasarilor

Tabel 4.8V1 V2 V3

210

V1 * 1 1V2 0 * 1V3 0 0 *

- cea mai buna

Page 125: i Autoturism Cu Cinci Locuri Avand Un Motor Cu Aprindere Prin Scanteie

UNIVERSITATEA TRANSILVANIA BRASOV

LUCRARE DE LICENTA

REFERINŢE BIBLIOGRAFICE

1. Untaru M., Campian V., Peres Gh., s.a. Constructia si calculul autovehiculului.

Universitatea din Brasov 1989.

2. Untaru M., Campian V., Peres Gh., s.a. Dinamica autovehiculului. Universitatea din

Brasov 1988.

3. Campian V., s.a. Automobile. Universitatea din Brasov 1989.

4. Untaru M., Seitz N., Peres Gh., s.a. Calculul si constructia automobilelor. Editura

didactica si pedagogica Bucuresti 1982.

5. Marincas D., Abaitanci D., Fabricarea si repararea autovehiculelor rutiere. Editura

didactica si pedagogica Bucuresti 1982.

6. Abaitanci D., Fabricarea si repararea autovehiculelor – indrumar de laborator.

Universitatea din Brasov 1987.

7. Tecusan N., Ionescu E., s.a. Tractoare si automobile. Editura didactica si pedagogica

Bucuresti 1993.

8. Catalog general de rulmenti. Editura Pubim Pres. Brasov 1993.

9. Culegere de STAS-uri. Universitatea din Brasov 1987.