REVISTA DE CHIMIE - Pennsylvania State University

15
REV. CHIM. (Bucureºti) 58 Nr. 11 2007 MEMBRI Alexandru T. BALABAN Texas A&M University at Galveston, SUA Ion BOLOCAN Universitatea Petrol Gaze Ploieºti Miron Teodor CÃPROIU Institutul de Chimie Organicã “C.D. Neniþescu” Bucureºti Andrei F. DÃNEÞ Universitatea Bucureºti Corneliu Mircea DAVIDESCU Universitatea Politehnica Timiºoara Laurenþiu FILIPESCU Universitatea Politehnica Bucureºti Ionel HAIDUC Academia Românã Valeriu V. JINESCU Universitatea Politehnica Bucureºti Henry V. KEHIAIAN ITODYS, Université Paris 7, Franþa Constantin LUCA Universitatea Politehnica Bucureºti Angela LUPU Universitatea Politehnica Bucureºti Gheorghe D. MATEESCU Case Western Reserve University, Cleveland SUA Lucian MOÞIU AGER Consulting SRL Mircea MRACEC Institutul de Chimie Timiºoara al Academiei Române Margareta NICOLAU ECOIND Bucureºti Ion OPREAN Institutul de Chimie “Raluca Ripan” Cluj-Napoca Indicele de impact pe anul 2006: 0,287 Revista este recenzatã de: CHEMICAL ABSTRACTS, CURRENT CONTENTS ANALYTICAL ABSTRACTS, ºi indexatã de Institute for Scientific Information (ISI) ºi Chemistry Citation Index Adresa redacþiei: SC BIBLIOTECA CHIMIEI SA - REVISTA DE CHIMIE Calea Plevnei, Nr. 139B, Sector 6, OP 12 CP 109 Bucureºti 060011 Tel./Fax: (+40) 021 314 24 47 www.revistadechimie.ro; e-mail: [email protected] Director General SYSCOM 18 Ion ANDRONACHE Director SC BIBLIOTECA CHIMIEI SA Nelia MIHÃILÃ Redactor ªef Carmen IOAN Corector Maria PAXAMAN Tehnoredactare computerizatã Monica BÃLUÞÃ Virgil PERCEC University of Pennsylvania, Philadelphia SUA Constantin ROIBU OLTCHIM Râmnicu Vâlcea Eli RUCKENSTEIN The State University of New York at Buffalo, SUA Sorin Ioan ROªCA Universitatea Politehnica Bucureºti Ion SANDU Universitatea “Al. I. Cuza” Iaºi Ioan SILAGHI DUMITRESCU Universitatea “Babeº-Bolyai” Cluj-Napoca Ilie SIMINICEANU Universitatea Tehnicã “Gh. Asachi” Iaºi Ion TEOREANU Universitatea Politehnica Bucureºti Nicolae TOTIR ICF “I.G. Murgulescu” Bucureºti Radu Z. TUDOSE Universitatea Tehnicã “Gh. Asachi” Iaºi Constantin TURTÃ Academia de ªtiinþe a Moldovei Paul VASILESCU Universitatea Politehnica Bucureºti Rodica VÎLCU Universitatea Bucureºti Pavel VLAD Academia de ªtiinþe a Moldovei Luminiþa VLÃDESCU Universitatea Bucureºti Traian ZAHARESCU ICPE-CA Bucureºti REVISTA DE CHIMIE BUCUREªTI ROMÂNIA COLEGIUL EDITORIAL Editor ªef Petru FILIP Institutul de Chimie Organicã “C.D. Neniþescu” Bucureºti Editor ªef Adjunct Gheorghiþa JINESCU Universitatea Politehnica Bucureºti Revista apare lunar Copyright REVISTA DE CHIMIE

Transcript of REVISTA DE CHIMIE - Pennsylvania State University

Page 1: REVISTA DE CHIMIE - Pennsylvania State University

REV. CHIM. (Bucureºti) ♦ 58 ♦ Nr. 11 ♦ 2007

MEMBRIAlexandru T. BALABANTexas A&M University at Galveston, SUAIon BOLOCANUniversitatea Petrol Gaze PloieºtiMiron Teodor CÃPROIUInstitutul de Chimie Organicã “C.D. Neniþescu” BucureºtiAndrei F. DÃNEÞUniversitatea BucureºtiCorneliu Mircea DAVIDESCUUniversitatea Politehnica TimiºoaraLaurenþiu FILIPESCUUniversitatea Politehnica BucureºtiIonel HAIDUCAcademia RomânãValeriu V. JINESCUUniversitatea Politehnica BucureºtiHenry V. KEHIAIANITODYS, Université Paris 7, FranþaConstantin LUCAUniversitatea Politehnica BucureºtiAngela LUPUUniversitatea Politehnica BucureºtiGheorghe D. MATEESCUCase Western Reserve University, Cleveland SUALucian MOÞIUAGER Consulting SRLMircea MRACECInstitutul de Chimie Timiºoara al Academiei RomâneMargareta NICOLAUECOIND BucureºtiIon OPREANInstitutul de Chimie “Raluca Ripan” Cluj-Napoca

Indicele de impact pe anul 2006: 0,287Revista este recenzatã de:CHEMICAL ABSTRACTS, CURRENT CONTENTSANALYTICAL ABSTRACTS,ºi indexatã deInstitute for Scientific Information (ISI) ºiChemistry Citation Index

Adresa redacþiei: SC BIBLIOTECA CHIMIEI SA - REVISTA DE CHIMIE

Calea Plevnei, Nr. 139B, Sector 6, OP 12 CP 109Bucureºti 060011Tel./Fax: (+40) 021 314 24 47www.revistadechimie.ro; e-mail:[email protected]

Director General SYSCOM 18Ion ANDRONACHEDirector SC BIBLIOTECA CHIMIEI SANelia MIHÃILÃ

Redactor ªefCarmen IOANCorectorMaria PAXAMANTehnoredactare computerizatãMonica BÃLUÞÃ

Virgil PERCECUniversity of Pennsylvania, Philadelphia SUAConstantin ROIBUOLTCHIM Râmnicu VâlceaEli RUCKENSTEINThe State University of New York at Buffalo, SUASorin Ioan ROªCAUniversitatea Politehnica BucureºtiIon SANDUUniversitatea “Al. I. Cuza” IaºiIoan SILAGHI DUMITRESCUUniversitatea “Babeº-Bolyai” Cluj-NapocaIlie SIMINICEANUUniversitatea Tehnicã “Gh. Asachi” IaºiIon TEOREANUUniversitatea Politehnica BucureºtiNicolae TOTIRICF “I.G. Murgulescu” BucureºtiRadu Z. TUDOSEUniversitatea Tehnicã “Gh. Asachi” IaºiConstantin TURTÃAcademia de ªtiinþe a MoldoveiPaul VASILESCUUniversitatea Politehnica BucureºtiRodica VÎLCUUniversitatea BucureºtiPavel VLADAcademia de ªtiinþe a MoldoveiLuminiþa VLÃDESCUUniversitatea BucureºtiTraian ZAHARESCUICPE-CA Bucureºti

REVISTA DE CHIMIEBUCUREªTI ROMÂNIA

COLEGIUL EDITORIALEditor ªefPetru FILIP

Institutul de Chimie Organicã “C.D. Neniþescu” BucureºtiEditor ªef Adjunct

Gheorghiþa JINESCUUniversitatea Politehnica Bucureºti

Revista apare lunarCopyright REVISTA DE CHIMIE

Page 2: REVISTA DE CHIMIE - Pennsylvania State University

REV. CHIM. (Bucureºti) ♦ 58 ♦ Nr. 11 ♦ 2007

Page 3: REVISTA DE CHIMIE - Pennsylvania State University

REV. CHIM. (Bucureºti) ♦ 58 ♦ Nr. 11 ♦ 2007

Page 4: REVISTA DE CHIMIE - Pennsylvania State University

REV. CHIM. (Bucureºti) ♦ 58 ♦ Nr. 11 ♦ 2007 1009

*email: [email protected]

Thermal and Oxidative Stability of theAllium Sativum L. Bioactive Compounds/

ααααα- AND βββββ-Cyclodextrin Nanoparticles

DANIEL I. HADARUGA1*, NICOLETA G. HADARUGA2, ADRIAN RIVIS2, ALEXANDRA GRUIA3, IULIA ANDREEA PINZARU1

1 “Politehnica” University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, Organic Chemistry andTechnology Department, Timisoara, 2 P-þa Victoriei, 300006, Timisoara, Romania2 Banat’s University of Agricultural Sciences and Veterinary Medicine, Faculty of Food Processing Technology, Food QualityDepartment, Timisoara, 119 C. Aradului, 300645, Timisoara, Romania3 Immunology and Transplant Centre, 159 Liviu Rebreanu Str.,300748 , Timiºoara, Romania

This paper presents the thermal and oxidative stability of the Allium sativum L. (garlic) bioactive compoundsand the corresponding α- and β-cyclodextrin nanoparticles. The complexation of the essential oil of A.sativum L. in β-cyclodextrin was achieved by alcohol-water solution method, and nanoparticles wereanalyzed by thermogravimetry (TG), differential scanning calorimetry (DSC) and scanning electronmicroscopy (SEM). In order to obtain the type and the relative concentration of compounds encapsulated incyclodextrins, the GC-MS analysis was used. The essential oil was analyzed by GC-MS before encapsulationand after successive extraction from the complex. The higher relative concentrations in the complex wereobtained for diallyl-disulfide and diallyl-trisulfide. The nanoencapsulation yields were >60%, the higherones being obtained for the case of β-cyclodextrin. The biocompound/cyclodextrin ratio is important for thecomplexation yield, the best results being obtained for equimolar ratios, for all alcohols used. For thedegradation of the raw samples in the presence of air and higher temperatures a decrease of the concentrationof cyclic sulfide compounds was observed, compared with the case of nanoparticle degradation, where thistendency is not observed; although, the acyclic compounds were encapsulated in higher concentrationscompared to the cyclic ones.

Keywords: nanoparticles, cyclodextrins, volatile oils, garlic, stability, thermogravimetry, differential scanning calorimetry, scanning electron microscopy, gas chromatography-mass spectrometry

Garlic (Allium sativum L.) was used by human from theancient time in food seasoning and for some diseasetreatment [1,2]. The main medicinal properties are: ashypotensive, in the treatment of the cardiovasculardiseases, antimicrobial in the treatment of respiratorydiseases like bronchitis or influenza, antihelminthic [2,3].Due to the decrease of the blood lipidic level in the case ofconsumption or administration of Allium sativum L.formulations, various studies were performed in order toestablish the influence of these biocompounds to the ratioof total cholesterol/high density lipoproteins (TC/HDL) aswell as for women and men; a significative decrease ofthis ratio was observed especially for women, this effectbeing probably determined by the reduction of the plateletaggregation [4,5]. The antimicrobial effect of the Alliumsativum L. formulations is determined by the major sulfidecompounds resulted from alliin (S-allyl-L-cystein-sulfoxid),especially allicin; the skeleton of allicin was used as modelfor the development of new compounds with antibacterialactivity [6] and anticancerous [7-9]. Allicin is degraded inthe presence of water and provide the compoundsresponsible for the garlic flavor [2,10-12]. When the garlictissue is destroyed the precursors (alliin and thecorresponding methyl and propyl derivatives) aretransformed in allicin, diallyl-disulfide and other sulfidecompounds with characteristic odor. Due to the specificsulfurous odor or the necessity of transportation to thebiological targets and controlled release of thesecompounds, the micro/nanoencapsulation in variousmatrices in order to obtain pharmaceutical and/or food

products is a permanent goal. Some natural and syntheticmatrices, like oligo- or polysaccharides, are used for theobtaining these supramolecular systems. Cyclodextrins(CDs) belong to the cyclic oligosaccharide class, having 6-8 glucopyranosyl units corresponding to the natural α-, β-and γ-cyclodextrin, respectively (αCD, βCD, γCD); thesecompounds have a conoidal-like structure, with solubilizinghydrophilic groups at the exterior and a hydrophobic centrewhich allow the formation of van der Waals bonds withhydrophobic molecules or moieties (host-guestsupramolecular systems); consequently, these guestmolecules are protected to the degradative action ofdifferent factors (storing, transportation, alimentary, andbiological factors). Due to these properties, cyclodextrinswere used in various fields, especially pharmaceutical andalimentary fields [13-15] (e.g. pharmaceutical formulationscontaining garlic volatile oil/cyclodextrin complexes, withantiarteriosclerotic activity, were marketed in Europe andAmerica [13], and low-sulfurous odor food formulationscontaining Allium sativum L. extracts or cyclodextrin-containing systems capable to retain the compounds withdisagreeable odor were developed [16,17]).

Studies on the composition of the CDs nano-encapsulated Allium sativum L. volatile oil and on thedegradation and stability of these compounds andnanoparticles in various conditions (storing, transportationetc.) were not realized yet. Our earlier studies [18-21]indicate important modifications on the composition ofbiosystems at the action of different degradative factorslike air/oxygen, temperature, humidity, and thenanoencapsulation of these compounds in cyclodextrin-

Page 5: REVISTA DE CHIMIE - Pennsylvania State University

REV. CHIM. (Bucureºti) ♦ 58 ♦ Nr. 11 ♦ 20071010

like matrices lead to biosystems with higher stability andbioavailability.

In this paper a study concerning the stability of the rawbioactive compounds from Allium sativum L. comparedwith those nanoencapsulated in α- and β-cyclodextrin atthe action of degradative factors like air and temperaturewas done.

Materials and methodsThe essential oil of garlic (Allium sativum L.) was

purchased from SC Natex SA, Cluj Napoca-Romania; α-and β-cyclodextrin were purchased from Merck&Co. Inc.,New Jersey, USA, and were reagent grade products (>99%). The aliphatic alcohols used for the obtaining ofnanoparticles (ethanol 96%, methanol and propanol,reagent grade) were obtained from Chimopar SA –Bucureºti, Romania. The hexane used for recovering of thebioactive compounds from nanoparticles has GC purity andwas achieved from Merck&Co, Inc. Alkane standardsolution C8 – C20, used for the determination of Kovatsindices (KI) for flavoring compounds from GC-MS analysis,was purchased from Fluka Chemie AG, Switzerland.

Obtaining the Allium sativum L. bioactive compounds/cyclodextrin nanoparticles. α- or βCD was dissolved in 2-4 mL distilled water at 30-70oC, and then 4 mL alcoholicsolution (ethanol, methanol or propanol), containing 90-270 mg volatile garlic oil (Allium sativum L.), was added in

0.5 h to the cyclodextrin solution, with continuous stirring;the suspension was stirred for another 15 min at the sametemperature. The suspension was then cooled at theenvironment temperature in 0.5-4 h, in a water bath, andstored at 4oC for 1-18 h in a refrigerator, in order to completethe crystallization. The suspension was then filtered,washed with 1.5 mL alcohol and dried in an exicator (table1).

Degradation of the raw Allium sativum L. bioactivecompounds and cyclodextrin nanoparticles. ~100 µL rawAllium sativum L. bioactive compounds or ~100 mgcyclodextrin nanoparticles were uniformly distributed onthe bottom of the degradation flasks (40 x 40 mm2), whichare then purged with air (oxidative atmosphere) or argon(inert atmosphere), sealed, and put in a thermostable bathor under ultraviolet light (UV), with the possibility of varyingand measuring the temperature and wavelenght,respectively. The samples were maintained underdegradative conditions according to tables 2 and 3. Aftercooling, the samples of raw biocompounds were dissolvedin 5 . 1 mL hexane, and the solution was analyzed by GC-MS; in the case of degraded nanoparticles, these aresuspended in water and the nanoencapsulatedcompounds were recovered by hexane extraction.

Recovering of the bioactive compounds fromnanoparticles. After cooling the degraded samples ofnanoparticles these were dissolved/suspended in 4.1 mL

Table 1CONDITIONS AND RESULTS FORTHE OBTAINING OF THE ALLIUM

SATIVUM L. BIOCOMPOUNDS/α- AND βCD NANOPARTICLES

Table 2DEGRADATION CONDITIONS FOR

THE RAW ALLIUM SATIVUM L.BIOACTIVE COMPOUNDS

Table 3DEGRADATION CONDITIONS FOR

THE ALLIUM SATIVUM L. BIOACTIVECOMPOUNDS/CYCLODEXTRIN

NANOPARTICLES

Page 6: REVISTA DE CHIMIE - Pennsylvania State University

REV. CHIM. (Bucureºti) ♦ 58 ♦ Nr. 11 ♦ 2007 1011

distilled water and the bioactive compounds wereextracted in a liquid-liquid extractor with 2 mL hexane at60°C for 20 min three times (the fourth extract do notcontain any kind of flavor compound, revealed by GC-MSanalysis). The combined extracts were dried overanhydrous CaCl2 and analyzed by GC-MS.

GC-MS analysis. For the analysis of raw Allium sativumL. bioactive compounds, those degraded in variousconditions and those recovered from non-degraded ordegraded nanoparticles a Hewlett Packard HP 6890 Seriesgas chromatograph coupled with a Hewlett Packard 5973mass selective detector (GC-MS) system was used(calibration factor 1.0). A HP-5 MS capillary column (30 mlength, 0.25 mm i.d., 0.25 µm film thickness) was used forthe GC system. The temperature program was set up from50°C to 250°C with 6°C/min, both the injector and detectortemperatures were 280°C and He was used as carrier gas.1 µL sample was injected in all cases. Ionization energy EIof 70eV was used for mass detector, with a sourcetemperature of 150°C, scan range 30-600 amu, scan rate1s-1. The compounds were identified by comparing themass spectra with those from the NIST/EPA/NIH MassSpectral Library 2.0 or by using the Kovats indicescomputed from the GC-MS analysis of the C8-C20 alkanestandard mixture.

TG analysis. A TG 209 NETZSCH thermogravimetricapparatus was used for the thermal analysis of the Alliumsativum L. bioactive compounds/cyclodextrin nano-particles. The temperature program was 20 to 550°C with10°C/min. All determinations were conducted undernitrogen atmosphere. Data acquisition was performed withthe TG Netzsch 209-Acquisition Soft/2000 and the dataanalysis was realized with the Netzsch Proteus-ThermalAnalysis ver. 4.0/2000 soft.

DSC analysis. Differential scanning calorimetry of thenanoparticles was carried out on a DSC 204 Netzschapparatus, with a temperature program of -50÷400°C, theheating rate being 10°C/min. The acquisition and theprocessing of the data were performed with the DSC 204Netzsch-Acquisition Soft/2000 and Netzsch Proteus-Thermal Analysis, ver. 4.0/2000, respectively.

SEM analysis. For morphological and dimensionalevaluation of the Allium sativum L. bioactive compounds/cyclodextrin nanoparticles scanning electron microscopy(SEM) technique was used. A JEOL JSM 5510-LV SEMapparatus was used, at different magnitude levels.

Results and discussionHigh yields were obtained in the case of

nanoencapsulation of Allium sativum L. bioactivecompounds in cyclodextrins, which vary with the Alliumbiocompounds/α- and βCD molar ratio, alcohol and watervolume ratio (the solvent system used fornanoencapsulation), temperature nanoencapsulation,cooling time of the suspension, time of crystallization, andthe hydrophobicity of the alcohol used in the process.

The nanoencapsulation yields increase with the molarratio between the Allium bioactive compounds and βCD(from 91.4% for a ratio of 1:1 to 79.8% for a ratio of 3:1).This fact is probable due to an additional solubilization ofthe complex in the biocompounds excess and clears outat alcohol washing step. Not important variation of the yieldwere observed in the case of nanoencapsulation of thebiocompounds in βCD at different ratios of alcohol/watervolumes, but the nanoencapsulation temperature play animportant role for the yield. Thus, the yield increases withthe nanoencapsulation temperature, the dependencebeing close to the ideality (88.7% at 30oC, 91% at 50oC, and

93.3% at 70oC). The cooling time has influence on thenanoencapsulation yield, a lower time being detrimentalto the performance of the process (86.2% for a cooling timeof 0.5 h), compared with 2-4 h cooling time, which lead tohigher yields (~91%). The time necessary for the completecrystallization has no influence (~90% for one hour ofperfection compared with ~91% for 6-18 h). The yield ofnanoencapsulation in the case of modifying thehydrophobicity of the alcohol decrease with the increaseof the hydrophobicity of the alcohol (expressed aslogarithm of the octanol/water partition coefficient, logP;for methanol, logP =- 0.5 and the yield was 92.3%; forethanol logP = -0.31, with the yield of 91.4%, and forpropanol logP = 0.25 and the yield of nanoencapsulationwas 87%).

In the case of nanoencapsulation of Allium sativum L.bioactive compounds in αCD the yields were generallylower, probably due to a higher solubility of the complexin the alcohol-water system. Thus, the nanoencapsulationyield in ethanol-water system was in the range of 63-85%at biocompounds/αCD molar ratios between 1:1 – 3:1, withstatistically significative dependence. In this case the yieldof nanoencapsulation decreases with the increasing of thealcohol hidrophobicity (from 86% for methanol, to 84.6%for ethanol and 83.4% for propanol).

The thermogravimetric data for Allium sativum L.bioactive compounds/cyclodextrin nanoparticles indicatea mass loss of ~13% up to 110oC and 14% at 150oC for thepure βCD, while for the nanoparticles obtained with amolar ratio of 1:1 this mass loss was only 9.8% up to 150oC(fig.1); for samples corresponding to a molar ratios of 2:1and 3:1 the mass changes were 11.5% and 13.5%,respectively. In the case of use of methanol in the process,the TG analysis indicates a mass loss of 11.5%, and forpropanol 11.8%. The mass loss – molar ratio dependencein the case of methanol is similar to that of ethanol, but forpropanol, this dependence is reversed, probably due tothe competitivity of this more hydrophobic alcohol tonanoencapsulation.

From the DSC data obtained for the Allium sativum L.biocompounds/βCD nanoparticles endothermic peaks areobserved (probable due to the decomplexation processes)at ~178oC (decomplexation of alkyl/allyl-sulfides), at ~80oC(water molecules elimination), and ~260oC (βCDdecomposition) (fig. 2).

From the SEM analysis, Allium sativum L. biocompounds/βCD nanoparticles seem to have a rhombohedral-parallelepipedic crystallization form, with dimensionsbetween hundred of nanometers and 1-2 micrometers forthe particle sides (figs. 3 and 4).

For the Allium sativum L. biocompounds/αCD thedimensions of the particles were slightly higher. From theTG analysis of these αCD nanoparticles the mass loss was12% for a molar ratio of 1:1, with a decrease to 11% for 3:1molar ratio; the pure αCD has a lower mass change of9.4% (fig. 5).

The GC-MS analysis of the raw Allium sativum L.bioactive compounds indicates the presence of the sulfidecompounds from the gradually transformation of alliin andits derivatives. Thus, the GC-MS analysis of the non-degraded samples and for those degraded at 30oC (A-O-t1; fig. 6), indicates the presence of the same sulfidecompounds: dialkyl- and diallyl-sulfides, alkyl-allyl-sulfides,cycloalkyl-sulfides (figs. 7-9). The main compoundsidentified by MS and KI for the Allium sativum L. volatileoil are presented in table 4. Relative concentrations ofalmost 20% for diallyl-disufide, 16% for diallyl-trisulfide, and4.6% for 1,3-dithiane are observed.

Page 7: REVISTA DE CHIMIE - Pennsylvania State University

REV. CHIM. (Bucureºti) ♦ 58 ♦ Nr. 11 ♦ 20071012

For the evaluation of the stability of the bioactivecompounds from Allium sativum L. volatile oil, only thebolded structures from the table 4 were evaluated fromthe modification of the relative concentration under actionof different degradative factors (air-oxygen, temperature,UV light) point of view. The codes used for thesecompounds were: diallyl-monosulfide (DAMS, retentiontime 4.63 min), 1,3-dithiane (DT, retention time 5.75 min),diallyl-disulfide (DADS, retention time 9.58 min), allyl-

methyl-trisulfide (AM3S, retention time 11.00 min), 1,3,5-trithiane (TT, retention time 11.51 min), diallyl-trisulfide(DA3S, retention time 14.85 min), and diallyl-tetrasulfide(DA4S, retention time 16.67 min). For the degradation ofraw Allium sativum L. biocompounds at temperaturesbetween 30-90oC, in the presence of air-oxygen, for 2 h,the relative concentration of the compounds DAMS, DADS,and AM3S (determined from the chromatograms obtainedby GC-MS analysis) remains approximately the same, but

Fig. 1. Thermograms superposition for pure βCD and Allium sativum L. biocompounds/βCD nanoparticles

Fig. 2. DSC analysis for the Allium sativum L. biocompounds/βCD nanoparticles

Fig. 3. SEM micrograph for the Allium sativum L. biocompounds/βCD nanoparticles (x 5 000 magnitude)

Fig. 4. SEM micrograph for the Allium sativum L. biocompounds/βCD nanoparticles (x 20 000 magnitude)

Page 8: REVISTA DE CHIMIE - Pennsylvania State University

REV. CHIM. (Bucureºti) ♦ 58 ♦ Nr. 11 ♦ 2007 1013

the concentration of the cyclic compounds decreases(especially for DT, which probably is oxidized to a sulfoxidicor carbonilic compound) with the increase of thedegradation temperature; the concentration of oligo-sulfides DA3S and DA4S increase slightly (table 5). For thenon-encapsulated biocompounds, degraded in the sameway, but for 6 h, similar behavior can be observed.

For the Allium sativum L. biocompounds/CDsnanoparticles, degraded in the same way, some differencescan be observed compared with the results from the non-encapsulated compounds; the concentrations of the main

Fig. 5. Thermograms superposition for pure αCD and Allium sativum L. biocompounds/αCD nanoparticles

Fig. 7. Experimental and MS spectral database from NIST fordiallyl-disulphide

Fig. 6. The GC chromatogram from the GC-MS analysis of theessential oil of Allium sativum L

Fig. 9. Experimental and MS spectral database from NIST for 1,3-dithiane

Fig. 8. Experimental and MS spectral database from NIST fordiallyl-disulphide

Page 9: REVISTA DE CHIMIE - Pennsylvania State University

REV. CHIM. (Bucureºti) ♦ 58 ♦ Nr. 11 ♦ 2007

compounds (DADS, DATS) are increased, in detriment ofthe relative minor compounds like DAMS and DT. Thetendency is also to decrease the relative concentrations ofthese minor compounds with the increase of thedegradation temperature (table 6).

Table 4GC-MS RESULTS FOR THE MAIN BIOACTIVE COMPOUNDS FROM THE ALLIUM SATIVUM L. VOLATILE OIL

Table 5RELATIVE CONCENTRATION (%) VARIATION FOR THE NON-ENCAPSULATED ALLIUM SATIVUM L.

BIOCOMPOUNDS WITH THE VARIATION OF THE DEGRADATION TEMPERATURE (FOR 2 h OF ACTION)

Table 6RELATIVE CONCENTRATION (%) VARIATION FOR THE RECOVERED ALLIUM SATIVUM L. BIOCOMPOUNDS

FROM THE COMPLEXES WITH THE VARIATION OF THE DEGRADATIONTEMPERATURE (FOR 2 h OF ACTION)

Table 7RELATIVE CONCENTRATION (%) VARIATION FOR THE NON-ENCAPSULATED ALLIUM SATIVUM L.

BIOCOMPOUNDS IN THE PRESENCE OF AIR (OXYGEN) AND ARGON ATHIGHER DEGRADATION TEMPERATURES (90OC)

Similar studies were done among the behaviour of thebiocompounds under the action of temperature in thepresence of air-oxygen, compared with the case of theabsence of this oxidant (under argon), and smalldifferences were observed. Thus, an increase of theconcentration of acyclic di- and trisulfides can be observed

1014

Page 10: REVISTA DE CHIMIE - Pennsylvania State University

REV. CHIM. (Bucureºti) ♦ 58 ♦ Nr. 11 ♦ 2007

(DADS from 18.6% in the presence of air to 20.8% in argon,AM3S from 8.4% to 9.5%, and DA3S from 17.1% to 17.8%).Therefore, the oxygen has an influence on the degradationof these compounds (table 7).

For the degradation of the nanoparticles in the presenceof air or argon at higher temperatures (90oC), a smalldecrease of the relative concentration for all sulfidecompounds in non-oxidative conditions was observed (itis possible due to the oxidation-polymerization effects inthe presence of oxygen).

In the case of degradation of non-encapsulated andnanoencapsulated Allium sativum L. bioactive compoundsunder UV light for 30 min, a relatively small decrease ofthe DAMS and DA3S concentrations for the non-encapsulated samples degraded in the presence andabsence of oxygen, and for TT in the case of nano-encapsulated samples can be observed.

ConclusionThe complexation of the essential oil of garlic (Allium

sativum L.) in α- and β-cyclodextrin provides a productwith no “garlic” odor, characteristic for the sulfurcompounds from the raw volatile oil.

The relative concentration of the unsaturated acycliccompounds is higher than for the saturated acyclic andcyclic sulfide compounds, relative to the raw essential oils.This can be explained by the hydrophobic properties ofthese compounds, indicated by the logarithm of thepartition coefficient between octanol and water (logP) [22].For compounds with the ratio between the relativeconcentration in raw and reextracted essential oil < 1(more competitive than others for the cyclodextrin cavity),the calculated logP were: 2.55 for diallyl-disulfide and 3.17for diallyl-trisulfide, while for the compounds with the ratios> 1 (lower competition to the hydrophobic cavity of thecyclodextrin) the logP values were 1.68 for dimethyltrisulfide, 1.74 for dimethyl tetrasulfide, 0.98 for 1,3-dithiane,and 1.94 for 1,3,5-trithiane. The differences between thehydrophobicity of the compounds are very clear: all thecompounds encapsulated in higher concentration havelogP values above 2.5.

Generally, the yields of nanoencapsulation of Alliumsativum L. bioactive compounds in cyclodextrins are higherthan 60%, but they decrease with the molar ratio betweenbiocompounds and α- or βCD; the yields also increase withthe complexation temperature or with the cooling time,probably due to the possibility to adjust the association-dissociation equilibrium and to the formation of morenuclei centers in the incipient phase of crystallization; thedecrease of the yields with the increase of thebiocompounds/CDs molar ratio also remain in the case ofother alcohol used for nanoencapsulation.

Non-significative variation can be observed in the caseof degradation of Allium sativum L. biocompounds withthe variation of the degradation temperature in thepresence of oxygen, excepting 1,3-dithiane, whichprobable is transformed in sulfoxide or carbonyl compound(a slightly increase of the concentration of thesecompounds at higher temperatures and in the presenceof oxygen can be observed); the degradation of thecorresponding α- and βCD nanoparticles leads to anincrease of the relative concentration of the diallyl-di- and

diallyl-trisulfide, compared with those for the non-encapsulated ones. Small differences exist between thecomposition of the degraded biosystems in the presenceor absence of oxygen, and in the presence of the UV light.

Acknowledgements: Authors are grateful to Professor Mircea Mracec,Ph.D. (“Coriolan Drãgulescu” Institute of Chemistry, Timiºoara,Romania) for permission to use the HyperChem molecular modelingpackage. This research was supported by Ministry of Education andResearch from Romania (CEEX P-CD 18/10.10.2005).

Bibliography1.*** The Chemistry and Technology of Food and Food Products, M.B.Jacobs (ed.), Interscience Publ., Inc., New York, N.Y., 19442.I. CIULEI, E. GRIGORESCU, U. STÃNESCU, Plante Medicinale.Fitochimie ºi Fitoterapie. Tratat de Farmacognozie, Vol. II, Ed. Medicalã,Bucureºti, 19933.ARNAULT, I., HAFFNER, T., SIESS, M.H., VOLLMAR, A., KAHANE, R.,AUGERA, J., Journal of Pharmaceutical and Biomedical Analysis, 37,2005, p. 9634.ZHANG, X.-H., LOWE, D., GILES, P., FELL, S., CONNOCK, M.J., MASLIN,D.J., Journal of Nutrition, 131, 2001, p. 14715.RAHMAN, K., LOWE, G.M., Journal of Nutrition,136, 2006, p. 7366.HUNTER, R., CAIRA, M., STELLENBOOM, N., Annals of the New YorkAcademy of Sciences, 1056, 2005, p. 2347.HASAN, N., YUSUF, N., TOOSSI, Z., ISLAM, N., FEBS Letters, 580, 2006,p. 25178.PARK, S.-Y., CHO, S.-J., KWON, H.-C., LEE, K.-R., RHEE, D.-K., PYO,S., Cancer Letters, 224, 2005, p. 1239.BELLOIR, C., SINGH, V., DAURAT, C., SIESS, M.H., BON, A.M.L., Foodand Chemical Toxicology, 44, 2006, p. 82710. CEAUªESCU, V.E., RÃDOIAª,G., CÃDARIU, T.,Odorante ºiAromatizante. Chimie, Tehnologie, Aplicaþii, Ed. Tehnicã, Bucureºti,198811.*** Bioformation of Flavours, R.L.S. Patterson (ed.), Royal Societyof Chemistry, Cambridge, 199212.H.-D. BELITZ, W. GROSCH, Food Chemistry, Springer-Verlag, NewYork-Berlin-Heildelberg-London-Paris-Tokyo-Hong Kong-Barcelona-Budapest, 198713.SZEJTLI, J., Pure and Applied Chemistry, 76, 2004, p. 182514.SZEJTLI, J., Cyclodextrin Technology, Kluwer Academic Publishers,Dordrecht-Boston-London, 198815.SZENTE, L., SZEJTLI, J., Trends in Food Science & Technology, 15,2004, p. 13716.PILOSOF, D., CAPPEL, J.P., GEIS, P.A., MCCARTY, M.L., TRINH, T.,ZWERDLING, S.S., US Patent 5534165, 07.09.199617.BERQ, K.A., US Patent 6403642, 11.06.200218.HÃDÃRUGÃ, N.G., HÃDÃRUGÃ, D.I., LUPEA, A.X., PÃUNESCU, V.,TATU, C., ORDODI, L., BANDUR, G., Rev. Chim. (Bucureºti), 56, nr. 8,2005, p. 87619.HÃDÃRUGÃ, N.G., HÃDÃRUGÃ, D.I., PÃUNESCU, V., TATU, C.,ORDODI, V.L., BANDUR, G., LUPEA, A.X., Food Chemistry, 99, 2006,p. 50020.HÃDÃRUGÃ, D.I., HÃDÃRUGÃ, N.G., RESIGA, D., PODE, V.,DUMBRAVÃ, D., LUPEA, A.X., Rev. Chim. (Bucureºti), 58, nr. 6, 2007,p. 56621.HÃDÃRUGÃ, D.I., HÃDÃRUGÃ, N.G., BANDUR, G.N., LUPEA, A.X.,PÂRVU, D., PÃUNESCU, V., TATU, C., ORDODI, V.L., COSTESCU, C.,Scientifical & Technical Bulletin of University “A. Vlaicu” of Arad, 11,2006, p. 4622.*** HyperChem Release 7.5 for Windows, HyperCube, Autodesk,Inc., 2005

Manuscript received: 27.08.2007

1015

Page 11: REVISTA DE CHIMIE - Pennsylvania State University

REV. CHIM. (Bucureºti) ♦ 58 ♦ Nr. 11 ♦ 2007

Page 12: REVISTA DE CHIMIE - Pennsylvania State University

REV. CHIM. (Bucureºti) ♦ 58 ♦ Nr. 11 ♦ 2007

! ! ! ! ! Societatea de Chimie din România! ! ! ! ! SYSCOM 18 Bucureºti! ! ! ! ! SC Biblioteca Chimiei SA

11REVISTA DE CHIMIE

Bucureºti-RomâniaChem. Abs.: RCBUAU 58 (11) (1009-1160)

ISSN 0034-7752Vol. 58, nr. 11, noiembrie 2007

CUPRINS

D.I. Hãdãrugã, Nicoleta G. Hãdãrugã, A. Riviº, Alexandra Gruia, Iulia Andreea PînzaruStabilitatea termicã ºi la oxidare a nanoparticulelor compuºi bioactivi dinAllium Sativum L./ α- ºi β-ciclodextrinã..................................................................................................................................1009ªt.Dima, R. Creþu, Maria-Magdalena DimaStudiul spectrelor electronice de absorbþie ale 1-metilftalaziniu ilidelor............................................................................1016Cristina Dumitrescu, I. TeoreanuCorelarea compoziþie-prelucrare-proprietaþi ale cimenturilor zincofosfatice....................................................................1019Laura Bucur, Gabriela Stanciu, Viorica IstudorCaracterizarea analiticã a uleiului volatil de Elaeagnus Angustifolia prin GC-MS..............................................................1027Rodica Mariana Ion, Patricia del V. Repossi, G. ArguelloConjugat porfirinã-tirozinã ca fotosensibilizator synergic in terapia fotodinamicã............................................................1030T. Bartiº, R. I. Lazãu, D. Becherescu, I. Lazãu, Cornelia Pãcurariu, O. MateaSinteza unor pigmenþi mov cu structurã de casiterit ºi studiul comportãrii lor in glazuri ceramice................................1035I. Lingvay, C. Homan, Carmen LingvayStudiul coroziunii oþelului zincat de la prizele de pãmântare aferente sistemuluielectroenergetic trifazat.............................................................................................................................................................1041Claudia Maria Simonescu, Carmen Deleanu, Camelia CãpãþînãInfluenþa agentului competitor asupra îndepartãrii ionilor de metale greleutilizând o rãºinã chelaticã de tipul Amberlitului IRC-748.....................................................................................................1046Maria Maganu, F. Chiraleu, Mãdãlina Hrubaru, Gh. MihaiComplecºi asimetrici dimeri-alil-paladiu . 1.Date din spectrul 1H-NMR..............................................................................1050Cristina Zãlaru, F. Dumitraºcu, C. DrãghiciNoi derivaþi pirazolici, analogi ai lidocainei............................................................................................................................1054Emilia Olteanu, Angela Popescu, C. Drãghici, Simona Brãtãnescu, M.D. BanciuPiroliza in vid a compuºilor policiclici. Piroliza ftalidei de 3- benziliden.............................................................................1057Dana Ortansa Dorohoi, Mihaela DimitriuInteracþiuni intermoleculare în lichide nepolare, evidenþiate prin mijloace spectrale......................................................1060Mariana Carmen Balotescu, Carmen Limban, Al.V. Missir, Ileana Cornelia Chiriþã, G.M.NiþulescuSinteza ºi testarea acþiunii biologice a unor noi tioureide ale acidului2-(4-metoxi-fenoximetil)benzoic..............................................................................................................................................1064Florina S. Precup, A.P.H.J. Schenning, E.W. Meijer, Gh. HubcaSisteme dendritice supramoleculare π - conjugate. Intensificarea fluorescenþei în peliculede film dendridic amorfe albastru emiþãtoare........................................................................................................................1069Lavinia Lupa, P. Negrea, A. Iovi, Mihaela Ciopec, Marilena MotocObþinerea oxidului de zinc din cenuºa de zinc......................................................................................................................1075Alexandra-Cristina Blaga, Anca-Irina Galaction, D. CaºcavalExtracþia ºi transportul aminoacizilor cu caracter basic prin membrane lichide...............................................................1080Silvia Curteanu, C. Oniscu, Adina DumitraºcuModelarea procesului de clorosulfonare a etil-2-cloro-fenoxi acetatului pe bazã dereþele neuronale.........................................................................................................................................................................1085I. Trandafir, R.Z. TudoseStudiul coloanelor de extracþie cu rotor cilindric- înecarea..................................................................................................1091T. Todincã, C. Tãnasie, T. Pröll, Adina Cãta, Delia PerjuIntensificarea absorbþiei dioxidului de carbon in soluþii de carbonat de potasiu prinutilizarea promotorilor reacþiei chimice in faza lichidã. I. Evaluarea parametrilor absorbþiei fizice...................................1096Eugenia Teodora Iacob TudoseStudiul influenþei excentricitaþii bulei Taylor asupra vitezei de deplasare în curgereabifazicã de tip slug......................................................................................................................................................................1100

Page 13: REVISTA DE CHIMIE - Pennsylvania State University

REV. CHIM. (Bucureºti) ♦ 58 ♦ Nr. 11 ♦ 2007

E. Angelescu, Rodica Zãvoianu, O.D. Pavel, Ruxandra Bîrjega, Anca AngelescuDemercaptanizarea cataliticã oxidativã a hidrotalcitelor de Mg-Al cu conþinut deanioni complecºi de cobalt.......................................................................................................................................................1104Mihaela Mãdãlina Cãlþaru, M. BãdicioiuCercetãri privind extracþia cuprului cu membrane lichide pe suport solidde tip fibrã tubularã....................................................................................................................................................................1112Raluca Dragomir, P. RoºcaInfluenþa îmbãtrânirii catalizatorului asupra cocsului depus în reacþia de cracare............................................................1117Manuela Zorca, I. Gãinar, Daniela BalaEfectul presiunii asupra compoziþiei uleiului esenþial de cimbru obþinut prinextracþie cu dioxid de carbon supercritic.................................................................................................................................1122Florentina Mandea, Maria Ghimiº, Ioana JitaruProtecþia anticorozivã pe bazã de tetraizopropiltitanat..........................................................................................................1126S. Peretz, Otilia Cintezã, Angela PeretzSorbþia pe bile de alginat a unor derivaþi nitrofenolici din soluþii apoase............................................................................1129I. Suman, C. Cojocaru, I. Creþescu, Gh. Duca, J.F. Malina Jr., V. CovaliovModelarea statisticã ºi optimizarea procesului de epurare anaerobã a apeloruzate de la vinificaþie..................................................................................................................................................................1134ªt.V. Brãnescu, Claudia ªandru, Elena David, A. Popescu, Cristina BarbuDeterminarea concentraþiei unor metale grele din apele uzate evacuate de peplatforma chimicã Rm. Vâlcea în scopul determinãrii gradului de poluare.......................................................................1142B. Bucur, Mãdãlina Petruþa Bucur, G.L . RaduImbunãtãþirea stabilitãþii la depozitare a biosenzorilor pe bazã de oxidazã de alcoolimobilizaþi prin încastrare intr-o matrice fotopolimerizabilã.................................................................................................1145Florica Manea, Nadia Pop, I. Vlaicu, V. Pode, Rodica PodeImbunãtãþirea capacitãþii de deshidratare mecanicã a nãmoluluiorãºenesc prin condiþionare chimicã........................................................................................................................................1149Scurtã comunicareGh. Vlaicu, N. Pavel, F. Pîrºan, Claudia Stihi, G. DimaStudiul comparativ privind analiza zgurilor pe probe presate ºi topiteprin fluorescenþã de raze X........................................................................................................................................................1154In MemoriamS. Ifrim, Livia IfrimProfesor Constantin Calistru......................................................................................................................................................1158

documentare: 1156; prezentarea manuscrisului

Page 14: REVISTA DE CHIMIE - Pennsylvania State University

REV. CHIM. (Bucureºti) ♦ 58 ♦ Nr. 11 ♦ 2007

CONTENTS

D.I.Hadaruga, Nicoleta G. Hadaruga, A. Rivis, Alexandra Gruia, Iulia Andreea PinzaruThermal and Oxidative Stability of the Allium Sativum L. Bioactive Compounds/α-and β-Cyclodextrin Nanoparticles...............................................................................................................................................1009St. Dima, R. Cretu, Maria-Magdalena DimaStudy of Electronic Absorption Spectra of 1-Metilphtalazinium Ylides.........................................................................................1016Cristina Dumitrescu, I. TeoreanuCorrelations Composition-Processing-Properties for Zincophosphate Cements.................................................................1019Laura Bucur, Gabriela Stanciu, Viorica IstudorThe GC-MS Analysis of Elaeagnus Angustfolia L. Flowers Essential Oil...............................................................................1027Rodica-Mariana Ion, Patricia del V. Repossi, G. ArguelloPorphyrin-Tyrosine Conjugate as Synergic Photosensitizer in Photodynamic Therapy..............................................................1030T. Bartiº, R. I. Lazau, D.Becherescu, I. Lazau, Cornelia Pacurariu, O.MateaSynthesis of Some Mauve Pigments with Cassiterite Structure and Study of TheirBehaviour in Ceramic Glazes....................................................................................................................................................1035Lingvay, C. Homan, Carmen LingvayCorrosion Study of Zinc Covered Steel of Ground Plates from the Three-PhasePower System..............................................................................................................................................................................1041Claudia Maria Simonescu, Carmen Deleanu, Camelia CapatinaInfluence of Competing Agent on Heavy Matal Ions RemovalCapacities of Amberlite IRC 748 – a Chelating Resin .............................................................................................................1046Maria Maganu, F. Chiraleu, Madalina Hrubaru, Gh. MihaiAsymmetrical Dimeric – Allyl – Palladium Complexes. 1.Data from 1H – NMR Spectra........................................................1050Cristina Zalaru, F. Dumitrascu, C. DraghiciNew Pyrazole Derivatives as Lydocaine Analogues................................................................................................................1054Emilia Olteanu, Angela Popescu, C.Draghici, Simona Bratanescu, M. D. BanciuFlow – Vacuum Pyrolysis of Polycyclic Compounds. Pyrolysis of 3-Benzylidene-Phtalide........................................................1057Dana-Ortansa Dorohoi, Mihaela DimitriuIntermolecular Interactions in Non-Polar Liquids Evidenced by Spectral Means...............................................................1060Mariana Carmen Balotescu, Carmen Limban, Al. V. Missir, Ileana Cornelia Chirita, G.M. NitulescuThe Synthesis and Biological Activities of Some New 2-(4-Methoxy-phenoxymethyl) benzoic Acid Thioureides................1064Florina S. Precup, A.P.H. J. Schenning, E. W. Meijer, Gh. HubeaSupramolecular Dendritic π -Conjugated Systems: Enhancement of Fluorescence inAmorphous Dendritic Blue Emitting Thin Film........................................................................................................................1069Lavinia Lupa, P. Negrea, A. Iovi, Mihaela Ciopec, Marilena MotocObtaining the Zinc Oxide from Zinc Ash.................................................................................................................................1075Alexandra-Cristina Blaga, Anca-Irina Galaction, D. CascavalExtraction and Transport of Basic Amino Acids Through Liquid Membranes......................................................................1080Silvia Curteanu, C. Oniscu, Adina DumitrascuNeural Network Based Modelling of Ethyl-2-Chloro-Phenoxy AcetateChlorosulphonation Process.......................................................................................................................................................1085I. Trandafir, R. Z. TudoseStudy of Extraction Columns with Cylindrical Rotor-Flooding...............................................................................................1091T. Todinca, C. Tanasie, T. Pröll, Adina Cata, Delia PerjuEnhancing of Carbon Dioxide Absorption in Potasium Carbonate Solutions usingChemical Reaction Promoters in Liquid Phase .1. Evaluation of Physical Absorption Parameters....................................................................................................................1096Eugenia Teodora Iacob TudoseStudy of Taylor Bubble Eccentricity on the Movement Speed in Slug Biphasic Flow.............................................................1100

! ! ! ! ! Societatea de Chimie din România! ! ! ! ! SYSCOM 18 Bucureºti! ! ! ! ! SC Biblioteca Chimiei SA

11REVISTA DE CHIMIE

Bucureºti-RomâniaChem. Abs.: RCBUAU 58 (11) (1009-1160)

ISSN 0034-7752Vol. 58, nr. 11, noiembrie 2007

Page 15: REVISTA DE CHIMIE - Pennsylvania State University

REV. CHIM. (Bucureºti) ♦ 58 ♦ Nr. 11 ♦ 2007

E. Angelescu, Rodica Zavoianu, O.D. Pavel, Ruxandra Birjega, Anca AngelescuCatalytic Oxidative Demercaptanization on Mg-Al Hydrotalcites ContainingCobalt Complex Anions.............................................................................................................................................................1104Mihaela Madalina Caltaru, M. BadicioiuResearches Concerning the Copper Extraction with Liquid Membraneson Solid Casing Support................................................................................................................................................................1112Raluca Dragomir, P. RoscaInfluence of Catalyst Aging on the Coke Deposits during the Cracking Process..................................................................1117Manuela Zorca, I. Gainar, Daniela BalaPressure Effect on the Savory Essential Oil Obtained by Extractionwith Supercritical Carbon Dioxide..................................................................................................................................................1122Florentina Mandea, Maria Ghimis, Ioana JitaruAnticorrosive Protection based on Tetraisopropyltitanate......................................................................................................1126S. Peretz, Otilia Cinteza, Angela PeretzSorption of Nitrophenols Derivatives from Aqueous Solutions by Alginate Beads.......................................................................1129I. Suman, C. Cojocaru, I. Cretescu, Gh. Duca, J.F. Malina, V. CovaliovMathematical Modelling and Optimization of the Anaerobic Treatment of theWinery Waste Waters.....................................................................................................................................................................1134St. V. Branescu, Claudia Sandru, Elena David, A. Popescu, Cristina BarbuDetermination of Heavy Metals Concentrations from Waste Waters fromRm.Vâlcea Chemical Platform to Establish the Pollution Level................................................................................................1142B. Bucur, Madalina Petruta Bucur, G. L. RaduImprovement of the Storage Stability for Biosensors Based on Alcohol OxidaseImmobilised by Entrapment in a Photopolymerisable Matrix..................................................................................................1145Florica Manea, Nadia Pop, I. Vlaicu, V. Pode, Rodica PodeEnhancement of the Mechanical Dewatering Capacity of the Municipal Sludgeby Chemical Conditioning ...........................................................................................................................................................1149Short CommunicationsGh. Vlaicu, N. Pavel, F. Pirsan, Claudia Stihi, G. DimaComparative Study concerning the X-ray Fluorescence Analysis of the Pressed andMolten Slug Samples......................................................................................................................................................................1154In MemoriamS. Ifrim, Livia IfrimProfessor Constantin Calistru ...................................................................................................................................................1158

documentation: 1156; Note to the authors