Radiatii ultraviolete

47
1.Introducere, generalitati Ce este radiatia ultravioleta? Toti oamenii sunt expusi la radiatia ultravioleta solara si un numar tot mai mare de persoane sunt expusi la surse artificiale folosite în industrie, comert sau recreatie. Emisiile solare includ lumina vizibila, calorica si radiatiile ultraviolete. Zona radiatiilor ultraviolete acopera paleta între 100-400 nm si se împarte în trei benzi: • UVA (315-400 nm) • UVB (280-315 nm) • UVC (100-280 nm) Pe masura ce lumina solara trece prin atmosfera, toate radiatiile UVC si aproximativ 90% din radiatia UVB sunt absorbite de ozon, vaporii de apa,oxigen si bioxid de carbon. Radiatia UVA este mai putin afectata de atmosfera- Factori ambientali care influenteaza nivelul de radiatie ultravioleta Pozitia soarelui: cu cât soarele este mai sus pe cer, cu atât nivelul de radiatie ultravioleta este mai mare. Astfel, radiatia ultravioleta variaza în functie de momentul zilei si de anotimp, cu niveluri maxime în momentul când soarele este la înaltime maxima, la zenit, în jurul orelor amiezii în timpul lunilor de vara. Latitudinea: cu cât suntem mai aproape de ecuator, cu atât nivelul de radiatie ultravioleta este mai mare. Stratul de nori: nivelul de radiatie ultravioleta este cel mai mare când cerul este senin. Chiar daca cerul este înnorat, nivelul radiatiilor ultraviolete poate fi mare datorita efectului de difuziune al radiatiei ultraviolete de catre moleculele de apa si particulele fine din atmosfera. Altitudinea: la altitudini mari, stratul mai redus de aer atmosferic filtreaza mai putin din radiatiile ultraviolete. www.referat.ro

description

Radiatii ultraviolete

Transcript of Radiatii ultraviolete

www.referat.ro

1.Introducere, generalitati

Ce este radiatia ultravioleta?Toti oamenii sunt expusi la radiatia ultravioleta solara si un numar tot mai mare de persoane sunt expusi la surse artificiale folosite n industrie, comert sau recreatie. Emisiile solare includ lumina vizibila, calorica si radiatiile ultraviolete.Zona radiatiilor ultraviolete acopera paleta ntre 100-400 nm si se mparte n trei benzi: UVA (315-400 nm) UVB (280-315 nm) UVC (100-280 nm)Pe masura ce lumina solara trece prin atmosfera, toate radiatiile UVC si aproximativ 90% din radiatia UVB sunt absorbite de ozon, vaporii de apa,oxigen si bioxid de carbon. Radiatia UVA este mai putin afectata de atmosfera-

Factori ambientali care influenteaza nivelul de radiatie ultravioletaPozitia soarelui: cu ct soarele este mai sus pe cer, cu att nivelul de radiatie ultravioleta este mai mare. Astfel, radiatia ultravioleta variaza n functie de momentul zilei si de anotimp, cu niveluri maxime n momentul cnd soarele este la naltime maxima, la zenit, n jurul orelor amiezii n timpul lunilor de vara.Latitudinea: cu ct suntem mai aproape de ecuator, cu att nivelul de radiatie ultravioleta este mai mare.Stratul de nori: nivelul de radiatie ultravioleta este cel mai mare cnd cerul este senin. Chiar daca cerul este nnorat, nivelul radiatiilor ultraviolete poate fi mare datorita efectului de difuziune al radiatiei ultraviolete de catre moleculele de apa si particulele fine din atmosfera.Altitudinea: la altitudini mari, stratul mai redus de aer atmosferic filtreaza mai putin din radiatiile ultraviolete. Cu fiecare 1000 m de crestere a altitudinii, nivelul radiatiilor ultraviolete creste cu 10-12%.Ozonul: ozonul absoarbe o parte din radiatiile ultraviolete care altfel al ajunge la nivelul suprafetei Pamntului. Nivelul de ozon variaza pe parcursul anului si chiar pe parcursul zilei.Reflexia: radiatiile ultraviolete sunt reflectate sau difuzate ntr-o masura variata de diversele suprafete, de exemplu, zapada poate reflecta pna la 80% dintre radiatia ultravioleta, nisipul de pe plaja uscata cca.15% iar suprafata marii, cca. 25%.

Distrugerea ozonului si efectele radiatiilor asupra sanatatiiDistrugerea straturilor de ozon va agrava probabil consecintele negative asupra sanatatii datorate expunerii la radiatia ultravioleta, deoarece ozonul din stratosfera este deosebit de eficient n absorbtia radiatiei ultraviolete. Pe masura ce stratul de ozon devine mai subtire, filtrul protector al atmosferei se reduce progresiv. n consecinta, fiintele umane si mediul va fi mai expus la niveluri de radiatie ultravioleta mai mari si, n special, la niveluri mai mare de radiatie UVB care au cel mai mare impact asupra oamenilor, animalelor, organismelor marine si asupra vegetalelor.Simularea pe calculator a fenomenului prognozeaza ca o reducere cu 10% a ozonului stratosferic ar putea cauza la nivel mondial o crestere a numarului de cancere de piele cu 300.000, a melanoamelor maligne cu 4500 si a cazurilor de cataracta cu aproape 2 milioane.

Ce putem face pentru a ne proteja de radiatia solara?Cele mai bune mijloace de protectie sunt umbra, ochelarii de soare, mbracaminea si palariile. Aplicarea lotiunilor ecran protectoare este necesara n acele parti ale corpului care ramn expuse n continuare, cum ar fi, fata si minile. Lotiunile antisolare nu trebuie niciodata folosite pentru a prelungi durata expunerii la soare. Limitati timpul petrecut n bataia directa a soarelui la orele amiezii. Razele ultraviolete ale soarelui sunt cele mai puternice doua ore nainte si doua ore dupa ora amiezii. Folositi umbra n mod inteligent. Cautati umbra atunci cnd razele ultraviolete sunt cele mai intense, dar retineti ca corpurile care genereaza umbra, cum ar fi de exemplu copacii, umbrelele sau umbrarele nu ofera protectie completa fata de soare. Retineti regula: Cnd umbra e scurta, adaposteste-te la umbra! Purtati mbracaminte protectoare. O palarie cu boruri largi ofera o buna protectie fata de soare att pentru ochi, fata ct si pentru partea posterioara a gtului. Ochelarii de soare care ofera protectie fata de UVA si UVB n proportie de 99-100% vor reduce n mare masura leziunile oculare datorate razelor solare. Vestimentatia din tesatura deasa cu croiala larga va va oferi o protectie suplimentara fata de soare. Folositi lotiuni-ecran antisolare. Aplicati pe piele lotiuni cu spectru larg cu un factor de protectie solara mai mare de 15. Aplicarea se face fara economie si se repeta din doua n doua ore sau dupa ce ati lucrat, notat, jucat sau facut exercitiu fizic n aer liber. Evitati lampile cu ultraviolete si nu frecventati saloanele de frumusete pentru bronzare. Lampile cu ultraviolete lezeaza pielea si ochii neprotejati asa ca e mai bine sa le evitati cu totul. OMS recomanda ca nici o persoana sub 18 ani sa nu foloseasca lampile cu ultraviolete. Protejati copiii. Copiii sunt n general mai susceptibili la riscurile ambientale dect adultii. n timpul activitatilor n aer liber ei trebuie sa fie protejati de expunerea excesiva la razele ultraviolete iar sugarii ar trebui tinuti numai la umbra.Lumina solara este, in general, un prieten al sanatatii tuturor. Vitamina D, atat de necesara dezvoltarii oaselor, se sintetizeaza in piele, numai in prezenta luminii. Totusi, prea mult soare strica: rideaza si imbatraneste pielea, ii modifica structura, dilata vasele de sange, poate favoriza aparitia cancerului si adesea produce eruptii alergice. Acestea din urma apar mai ales in situatia in care suferiti de unele dermatoze, ale caror manifestari sunt exacerbate de radiatia ultravioleta: acnee, foliculita, eczema seboreica. Sunt si cazuri in care eruptia cutanata apare numai la lumina si in special in timpul verii. Cum se manifesta: leziuni papuloase sau papulo-veziculoase, variante de edem poliform sau asemanatoare cu intepatura de insecta.

2. Conservarea produselor alimentare prin iradiere

2.1. Introducere

Folosirea radiatiilor ionizante pentru conservarea produselor alimentare a fost

sugerata pentru prima oara in 1916 si a fost patentata in Statele Unite in 1921 si in Franta in 1930. Totusi, metoda nu a fost folosita imediat la scara comerciala, datorita imposibilitatii de a obtine cantitatile necesare de radiatie ionizanta la costuri rezonabile. Din anii .50, iradierea produselor alimentare a constituit un subiect de interes stiintific, politic si public si a fost aplicata unui domeniu larg de produse alimentare, incluzand peste, moluste, pui, fructe de mare, cereale, fructe si legume, nuci si condimente. In 1981, au fost adoptate principalele documente privind iradierea alimentelor si includerea acestui procedeu in Codex Alimentarius. Comitetul de experiti convocat de Organizatia Mondiala a Sanatatii (WHO) a concluzionat ca orice aliment iradiat cu o doza medie de cel mult 10 kGy este sanatos pentru consum si prin urmare poate fi aprobat fara testari suplimentare.

Cercetarile din ultimii 40 de ani au aratat ca iradierea poate fi folosita pentru:

distrugerea insectelor si parazitilor din cereale, pastai uscate, fructe si legume uscate, carne

si fructe de mare, inhibarea incoltirii la recolte cum ar fi cartofii si ceapa, intarzierea

maturarii fructelor si legumelor proaspete, scaderea numarului de microorganisme din

alimente. Scopurile acestei procesari sunt prelungirea duratei de pastrare si comercializare a alimentelor si asigurarea unei calitati microbiologice corespunzatoare (asigurarea securitatii alimentare).

Exista insa rezerve in legatura cu acest procedeu, care nu distruge numai

organismele nedorite, dar afecteaza si alimentul in sine, concomitent cu distrugerea

mecanismelor interne de reparare. Alte dezavantale ale metodei includ modificarile chimice ale alimentului, pierderile de vitamine si imposibilitatea eliminarii toxinelor bacterine, chiar daca organismul care le-a produs a fost inactivat.

2.2. Surse de radiatii

Iradierea alimentelor consta in expunerea acestora la actiunea radiatiilor ionizante.

Acestea pot fi electromagnetice, cum sunt cele si X sau corpusculare, cum sunt fasciculele de electroni accelerati. Principalele surse de radiatii sunt cele izotopice, Co-60 si Cs-137 (surse de radiatii ), precum si acceleratorii de electroni, caz in care iradierea se face cu fascicule de electroni de inalta enegie sau cu raze X obtinute prin franarea pe tinte grele.

Iradierea cu fascicule de electroni. Fasciculele de electroni accelerati nu au

adancimea de penetrare a radiatiei (0,5 cm/1MeV energie), dar pe de alta parte, necesita

timpi de expunere mult mai mici pentru a fi eficienti (secunde, spre deosebire de ore in

cazul iradierii ).

Radiatiile X generate prin bombardarea cu electroni a unei tinte de metal greu, cum

ar fi tungstenul, au o penetrabilitate mai mare, dar sunt mai putin utilizate, din cauza

randamentului mic de conversie a energiei de la electroni la razele X.

Razele folosite pentru iradierea produselor alimentare sunt produse de sursele de

Co-60 si Cs-137 si au o putere foarte mare de penetrare, putand actiona chiar pe distante de

ordinul metrilor. La ora actuala, aproape toate instalatiile de iradiere din lume folosesc Co-

60 datorita avantajelor pe care le prezinta: se obtine relativ usor si ieftin si are o energie

convenabila, emitand doua cuante de energie totala de 2,5 MeV.

Razele , razele X si fasciculele de electroni sunt la fel de eficiente in sterilizare,

pentru cantitati egale de energie absorbita La ora actuala, cel mai mare dezavantaj al

folosirii razelor X pentru conservarea alimentelor il reprezinta eficienta scazuta si prin

urmare costul mare al producerii lor. De aceea, majoritatea cercetarilor s-au concentrat pe

utilizarea fotonilor si a electronilor accelerati.

Folosirea electronilor proveniti din generatori in locul razelor are mai multe

avantaje: fasciculele de electroni sunt directionate si au o putere de penetrare mai mica, pot

fi oprite pentru reparare si lucrari de intretinere si nu prezinta risc la un eventual incendiu,

explozie sau alta catastrofa; razele sunt emise in mod continuu in toate directiile, au putere de penetrare mare si provin din surse radioactive, ceea ce presupune necesitatea protectiei lucratorilor.

Principala conditie pentru ca o sursa de energie sa fie folosita in iradierea

alimentelor este ca nivelele de energie sa fie mai mici decat acelea care pot induce

radioactivitate in produsele alimentare. Daca aceasta conditie este indeplinita, alegerea

sursei se face numai pe baza fezabilitatii practice si economice: sursele trebuie sa produca

radiatie printr-o tehnologie relativ simpla, iar izotopii sa aiba timpi de viata relativ mari si

sa emita radiatie penetranta (Jones, 1992).

2.3. Factori care influenteaza inactivarea microbiana

Tipul si specia de microorganism.

Sporii bacterieni sunt mai rezistenti la radiatia ionizanta decat celulele vegetative, bacteriile Gram-negative sunt mai sensibile decat cele Gram-pozitive. Rezistenta drojdiilor si a fungilor variaza considerabil, dar in general ele sunt mult mai rezistente decat majoritatea bacteriilor. Tabelul 1 prezinta dozele aproximative letale de radiatie ionizanta pentru diferite tipuri si specii de microorganisme (Frazier si Westhoff, 1988).

Tabelul 1. Dozele aproximative letale de iradiere in Kiloray (kGy).

Numarul de microorganisme prezente initial. Eficacitatea unei doze date scade cu

cresterea numarului de microorganisme prezente.

Compozitia alimentului. Unii compusi prezenti in aliment pot juca rol de

protectori, altii de sensibilizatori. Din prima categorie fac parte proteinele, catalazele si

substantele reducatoare . nitriti, sulfiti si compusi sulfhidril, iar din a doua - compusii care

se combina cu gruparile SH.

Prezenta sau absenta oxigenului. Efectul oxigenului liber variaza in functie de

organism, de la nici un efect pana la sensibilizarea organismului respectiv. Prezenta

oxigenului poate intensifica anumite reactii secundare nedorite.

Parametrii fizici ai alimentului in timpul iradierii. Atat umiditatea, cat si

temperatura, afecteaza diferitele microorganisme in moduri diferite.

Parametrii microorganismului. Varsta, temperatura de crestere si sporulare si

starea vegetativa sau sporulata pot afecta sensibilitatea microorganismului.

2.4. Mecanisme de inactivare

Se presupune ca inactivarea microbina apare ca urmare a doua mecanisme

principale: interactia directa a radiatiei cu componentele celulare si actiunea indirecta ca

urmare a formarii produsilor de radioliza, in special radicalii liberi radioindusi care prezinta in general reactivitati deosebite (Farkas, 1997). Tinta principala a radiatiei ionizante pare a fi ADN-ul cromozomic, dar nici efectele asupra membranei citoplasmatice nu sunt de neglijat (Grecz and others 1983). Modificarile la nivelul ADN-ul cromozomic si/sau membranei citoplasmatice pot duce la inactivarea microbiana sau la inhibarea cresterii.

Toate studiile de nutritie si toxicologice intreprinse au aratat lipsa oricaror efecte nocive ale ionilor, atomilor excitati si moleculelor generate in timpul iradierii.

Deteriorarea prin iradiere a ADN-ul microorganismelor nedorite din alimente duce

la inactivarea acestora. Efectele radiatiei constau in: deteriorarea bazelor azotate sau a

pentozelor, rupturi simple sau duble in catenele de AND, incrucisari intre baze sau intre

ADN si proteine, incetinirea sintezei ADN, blocarea fazei G2, mutatii genetice, anomalii

cromozomiale.

Absorbtia radiatiei ionizante de catre un material conduce la ionizarea atomilor

substantei, cu expulzarea de electroni. Electronii liberi emisi sunt entitati reactive care pot:

1. sa se recombine cu cationii formati, ducand la revenirea moleculei in starea originara; 2.

sa reactioneze cu alti compusi din material, generand astfel radicali liberi; 3. sa fie

stabilizati in matrici cristaline sau polimerice cum ar fi osul sau chitina.

Apa este specia moleculara predominanta in toate sistemele vii si principala reactie

primara indusa de iradiere este aceea cu apa, care poate fi libera sau legata. Formarea de

radicali primari are loc conform urmatoarelor reactii (Goodman et al, 1989):

Hidrogenul molecular dizolvat in apa poate reactiona cu electronii:

Radicalii primari formati sunt extrem de reactivi si reactioneaza rapid cu alti

componenti ai materialului, formand radicali secundari.

Principalele efecte produse de catre radiatiile ionizante la interactia cu structurile cu

rol biologic esential sunt prezentate sintetic in schema de mai jos (Ferdes, 1997):

2.5. Doze si efecte ale iradierii. Modificari induse in alimente

Dozele de iradiere permise variaza in functie de tipul de aliment si de actiunea dorita.

Astfel, dozele de tratament aprobate de FDA sunt urmatoarele:

1. Doze mici (sub 1 kGy) pentru:

dezinfestarea cerealelor

inhibarea incoltirii la cartofi, ceapa si usturoi

intarzierea senescentei fructelor si legumelor

reducerea incarcaturii microbiene si a contaminarii cu insecte la fructe si

legume proaspete

2. Doze medii (1-10 kGy) pentru:

inactivarea populatiilor de Salmonella, Shigella, Campylobacter siYersinia

din carne si peste

prelungirea duratei de pastrare-comercializare a capsunilor si a altor fructe

prin intarzierea dezvoltarii fungilor

3. Doze mari (peste 10 kGy) pentru:

inactivarea microorganismelor si insectelor din condimente

sterilizarea comerciala a alimentelor, prin distrugerea tuturor

microorganismelor care afecteaza securitatea alimentara (sterilizarea la

acelasi nivel cu sterilizarea termica)

Cand radiatia este absorbita de aliment, apar o serie de reactii fizice si chimice la

nivelul acestuia. Cantitatea de energie poate fi controlata pentru a obtine efectele dorite din

punct de vedere al conservarii, pastrand in acelasi timp calitatea, securitatea si proprietatile

nutritive ale alimentului. Trebuie subliniat faptul ca prin iradiere alimentul in sine nu devine radioactiv.

Alimentele perisabile iradiate cu doze pana in 10 kGy trebuie totusi refrigerate,

iradierea neinlocuind depozitarea la temperaturi joase. Microorganismele sunt distruse mai

usor de radiatie decat enzimele care produc deteriorarea alimentelor (de exemplu

modificarile de culoare, gust si textura). Multe enzime supravietuiesc dozelor curente de

procesare prin iradiere, desi refrigerarea poate incetini multe modificari induse de enzime.

In plus, nu toate microorganismele sunt distruse. Procesarea prin iradiere nu protejeaza

alimentul impotriva reinfestarii sau contaminarii. Prin urmare, alimentele perisabile irradiate sunt in continuare considerate perisabile.

Modificari induse in alimente. Iradierea alimentelor este un proces nontermic, de

vreme ce temperatura alimentului creste foarte putin in timpul procesarii. Exista foarte

putine modificari in aspectul exterior al alimentelor iradiate, spre deosebire de alimentele

conservate prin metode conventionale (pasteurizare termica, conservarea in ambalaje

metalice, congelare). Apar totusi modificari ale calitatii alimentului in cazul produselor din

carne (anumiti produsi de radioliza pot produce modificari de miros si gust, lucru care poate fi partial controlat prin mentinerea unei temperaturi scazute in timpul iradierii) si al unor fructe proaspete, cum ar fi: piersici, nectarine, unele citrice, pere, prune, avocado si pepene (inmuierea tesutului).

Cand alimentele sunt expuse unei radiatii ionizante cu doza admisa nu se observa o

modificare semnificativa a calitatii nutritive a proteinelor, lipidelor si carbohidratilor. De

asemenea, iradierea nu afecteaza vitaminele intr-o masura mai mare decat alte metode de

conservare a produselor alimentare. S-a constatat o reducere a cantitatii de vitamina C, dar

acest lucru este atribuit transformarii acidului ascorbic in acid dehidroascorbic, modificare

ce nu afecteaza valoarea nutritiva a alimentului. Tocopherolul pare a fi foarte sensibil la

iradiere in prezenta oxigenului. Vitamina K este relativ stabila. Aceste efecte adverse ale

iradierii pot fi reduse prin excluderea oxigenului si a luminii din mediul de iradiere si prin

mentinerea alimentului la o temperatura joasa in timpul iradierii. Aceste conditii sunt

indeplinite la iradierea alimentelor ambalate in vid, la temperaturi de sub 0C.

Tabelul2 exemplifica modificarea nesemnificativa a valorii nutritive la carnea de pui

iradiata (Brennand, 1995).

Tabelul 2. Continutul in vitamine la 1 kg carne de pui preparata

Integritatea alimentelor iradiate. Evaluarea integritatii alimentelor iradiate implica

in principal patru aspecte (Elias, 1989):

1. securitatea radiologica

2. securitatea microbiologica

3. valoarea nutritiva

4. securitatea toxicologica.

Dupa analizarea unei cantitati impresionante de date experimentale, comitetul reunit

de experti FAO/ IAEA/WHO a concluzionat in 1981 ca iradierea oricarui aliment cu o doza

de pana la 10 kGy nu prezinta nici un pericol toxicologic si nu are efecte negative din punct

de vedere nutritional si microbiologic.

De asemenea, in 1992, WHO a elaborat un document cu privire la alimentele

iradiate, in care stabileste ca acestea pot fi considerate sigure si corespunzatoare din punct

de vedere nutritiv deoarece:

1. procesul de iradiere nu induce in compozitia alimentului modificari care sa

aiba un efect advers din punct de vedere toxicologic asupra sanatatii

umane;

2. procesul de iradiere nu determina modificari ale microflorei produsului

alimentar, care sa creasca riscul microbiologic pentru consumator

3. procesul de iradiere nu cauzeaza pierderi nutritive in compozitia

alimentului.

3. Alte metode neconventionale de conservare

3.1.Microunde si unde radio

3.1.1. Introducere

Microundele si undele radio pot fi folosite pe scara industriala pentru pasteurizarea si

sterilizarea alimentelor. Spre deosebire de iradiere, care este un procedeu .rece., actiunea

acestora este in esenta una de natura termica. Prin urmare, incalzirea cu microunde si unde

radio se refera la folosirea undelor electromagnetice de anumite frecvente pentru a genera

caldura intr-un material.

Pasteurizarea si sterilizarea cu microunde si unde radio este preferabila incalzirii

conventionale, pentru ca procesarea este rapida si este necesar un timp mai scurt pentru a se atinge temperatura dorita. Acest avantaj este mai evident in cazul alimentelor solide si

semisolide, care in incalzirea conventionala depind de procesul lent de difuzie termica.

Procesarea rapida, pe langa efectul de distrugere a microorganismelor, are si avantajul de a reduce degradarea alimentelor indusa de procedeele termice conventionale de conservare (fig 1).

Datele din figura sunt obtinute din modele matematice ale unui proces de incalzire

conventionala si a unuia de incalzire cu microunde, intr-un solid (Datta si Hu, 1992). Figura 1a arata ca domeniul de temperaturi atinse in cele doua procese este aproximativ acelasi la timpii de incalzire indicati. Figura 1b arata ca domeniul de valori ale lui F0 (letalitatea acumulata) difera destul de mult pentru acelasi aliment incalzit in mod conventional sau cumicrounde.

Figura 1. Diferenta intre valorile F0 pentru procesarea conventonala, respectiv cu

microunde (b) chiar atunci cand domeniul de temperaturi este aelasi (a).

Un alt avantaj al sistemelor de incalzire cu microunde si unde radio consta in faptul

ca ele pot fi pornite sau oprite instantaneu, iar produsul poate fi pasteurizat dupa

impachetare. Sistemele de procesare cu microunde si unde radio sunt de asemenea mai

eficiente din punct de vedere energetic.

Fractia de volum

Fractia de volum

Temperatura C

Incalzire conventionala

40 min la 121C

Incalzire conventionala

40 min la 121C

3.1.2.Factori care influenteaza procesul

Factori care depind de proces. Dependenta timp-temperatura la punctul cel mai rece determina securitatea microbiologica a procesului, la fel ca si in procesarea termica

conventionala. Daca se cunoaste temperatura punctului cel mai rece ca functie de timp,

letalitatea poate fi calculata conform relatiei:

unde: T - temperatura punctului cel mai rece la orice moment de timp t

tf . durata totala a incalzirii

z . valoarea lui z in OF

Exista totusi diferente importante intre incalzirea conventionala si cea cu microunde,

datorita localizarii punctului cel mai rece si factorilor de proces care influenteaza

dependenta timp-temperatura.

Atat amplitudinea curbei de dependenta timp-temperatura, cat si localizarea

punctului cel mai rece depind de compozitia (continutul ionic, densitate, caldura specifica),

forma si marimea alimentului, de frecventa microundelor si de designul aparatului. Un alt

factor important este timpul, deoarece, odata cu incalzirea alimentului, se pot modifica

semnificativ proprietatile sale de absorbtie si de asemenea punctul cel mai rece isi poate

modifica pozitia.

Dependenta timp-temperatura pentru punctul cel mai rece este usor de estimat la

procesarea termica conventionala pentru alimente solide sau lichide. In incalzirea cu

microunde, chiar si pentru un aliment solid este greu de prezis localizarea punctului rece,

aceasta putandu-se modifica in timpul procesului. Modificarea proprietatilor alimentului in

timpul incalzirii este mult mai pronuntata la microunde decat la tratamentul conventional.

Astfel, pe masura ce produsul se incalzeste, capacitatea lui de absorbtie creste, ceea ce

conduce la modificarea ratei de crestere a temperaturii si ca urmare la cresterea ratei de

absorbtie a microundelor. Figura 7 arata ca puterea de absorbtie a microundelor intr-un

proces de sterilizare se poate modifica semnificativ in timpul incalzirii, asa cum indica

migrarea punctelor celor mai calde (rosu).

Figura 2. Migrarea punctului celui mai cald de la interior la exterior intr-un proces de incalzire cu microunde.

Initial, la temperatura cea mai mica, absorbtia microundelor este scazuta, astfel incat

undele sunt capabile sa penetreze mai adanc in material. Odata cu incalzirea materialului,

absorbtia microundelor se face mult mai usor si deci penetrabilitatea lor scade. In alimentele cu concentratii ionice mari suprafata de temperaturi inalte poate juca rol de scut.

Deoarece caldura este generata in mod constant in toate partile alimentului, dar cu

rate diferite, diferenta dintre temperaturile celui mai rece, respectiv celui mai cald punc din

produs creste cu timpul. Aceasta nu se intampla la incalzirea conventionala, unde punctul

cel mai rece se apropie de punctul cel mai cald in timp. La incalzirea conventionala,

temperatura cea mai ridicata o are suprafata, corespunzator temperaturii de incalzire a

mediului. La incalzirea cu microunde, produsul se incalzeste, in timp ce aerul inconjurator

ramane rece (Datta, 2000). Aerul rece mentine suprafata la o temperatura mai scazuta decat

straturile din imediata vecinatate a acesteia. De asemenea, procesele de evaporare pot

scadea si mai mult temperatura stratului superficial. De aceea, de exemplu, la incalzirea

alimentelor sferice inghetate, punctul cel mai rece poate fi chiar suprafata.

Factori care depind de produs. Forma, volumul, aria suprafetei exterioare si

compozitia alimentului constituie factori critici in procesul de incalzire cu microunde. Acesti factori pot afecta cantitatea si distributia spatiala a energiei absorbite, conducand la efecte ca supraincalzire la margine, focalizare si rezonanta. De exemplu, o forma curba poate focaliza microundele, producant o rata de incalzire interna mai mare decat cea de langa suprafata (Ohlsson si Risman, 1978).

Volumul alimentului influenteaza si el cantitatea totala de energie absorbita (fig. 3)

Figura 3. Puterea absorbita in functie de volumul alimentului (Zhang et al, 1999).

Compozitia alimentului, in special umiditatea si concentratia de sare au o influenta

mai mare la procesarea cu microunde decat la incalzirea conventionala, datorita influentei

asupra proprietatilor dielectrice. Un continut cu umiditate si concentratie de saruri mare

creste eficienta absorbtiei microundelor, reducand astfel adancimea de penetrare. de aceea,

suprafetele interioare se incalzesc in general mai putin la aceste alimente, reducand

inactivarea microbiana. Compozitia poate de asemenea modifica proprietatile termice, cum

ar fi densitate, caldura specifica, conductivitate termica, conducand de aceea la modificarea

amplitudinii si uniformitatii cresterii de temperatura.

3.1.3. Mecanisme de inactivare

Au fost propuse doua mecanisme de inactivare microbiana prin tratamentul cu

microunde. Primul presupune ca microundele inactiveaza microorganismele numai datorita

caldurii, prin mecanisme comparabile cu alte procese biofizice induse de caldura, cum ar fi

denaturarea enzimelor, proteinelor, acizilor nucleici sau altor componente vitale sau prin

ruperea membranelor celulare (Heddleson and Doores, 1994).

Al doilea mecanism propus pentru inactivarea cu ajutorul microundelor implica

efectele non-termice ale acestora. Au fost enutate patru teorii pentru a explica inactivarea

non-termica indusa de microunde (numita si pasteurizare rece): incalzirea selectiva,

electroporarea, ruptura membranei celulare si cuplarea campului magnetic (Kozempel,

1991). Teoria incalzirii selective presupune ca microorganismele solide sunt incalzite mai

eficient de catre microunde si prin urmare inactivate mai rapid. Electroporarea si eventual

ruptura membranei celulare apar cand in membrana microorganismului se formeaza pori,

datorita potentialului tarnsmembranar. In a patra teorie, liza celulara apare datorita actiunii

campului electromagnetic asupra unor molecule critice din celula, ceea ce conduce la

distrugerea componentelor intracelulare. Totusi, majoritatea cercetatorilor (Rosenberg and

Borgl, 1987, Knutson et al, 1987, Heddleson and Doors, 1994) considera ca diferentele fata de incalzirea conventionala, care au fost puse pe seama unor efecte non-termice ale

microundelor, se datoreaza de fapt unor erori de masurare.

3.1.4. Perspective de cercetare

Sunt necesare cercetari ulterioare in urmatoarele directii:

imbunatatirea instalatiilor cu microunde de frecventa variabila pentru imbunatatirea

uniformitatii incalzirii si reducerea costurilor acestora;

studierea mai aprofundata a factorilor care afecteaza procesul de incalzire, incluzand

schimbarile calitative care apar odata cu modificarea frecventei.

3.2. Lumina ultravioleta

3.2.1. Introducere

Lumina ultravioleta poate fi folosita pentru conservarea alimentelor, in special a

sucurilor de fructe (suc de mere, cidru). Procesarea cu ultraviolete implica folosirea

radiatiei din regiunea UV a spectrului electromagnetic, in scopul dezinfectiei. Lungimile de unda din UV sunt cuprinse in intervalul (100 . 400) nm. Aceasta plaja de valori fi

subdivizata la randul ei in: UVA (315 . 400 nm), care este responsabila pentru modificarile

epidermei umane, conducand la efectul de bronzare, UVB (280-315nm), care poate cauza

cancerul de piele, UVC (200-280nm), numit si intervalul germicidal, deoarece are efect de

inactivare asupra bacteriilor si virusilor si intervalul UV de vid, care include lungimi de

unda ce pot fi absorbite de aproape toate substantele si prin urmare pot fi transmise doar in

vid. Proprietatile germicidale ale radiatiei UV se datoreaza in principal mutatiilor genetice

induse prin absorbtia radiatiei UV de catre moleculele de ADN. Acest mecanism de

inactivare determina o curba sigmoidala a reducerii populatiei microbiene.

Pentru a obtine inactivarea microbiana, expunerea la radiatia UV trebuie sa fie de cel

putin 400 J/m2 in tot volumul produsului. Factorii critici includ: transmisivitatea produsului, configuratia geometrica a reactorului, puterea, lungimea de unda si aranjamentul spatial al sursei UV. Radiatia UV poate fi folosita in combinatie cu alte tehnologii alternative de procesare, incluzand diferiti agenti puternici de oxidare, cum ar fi ozonul. Aplicatiile metodei includ dezinfectarea resurselor de apa si a suprafetelor de contact ale alimentelor.

In ultimii ani a crescut interesul pentru folosirea UV la reducerea populatiilor microbiene in sucuri.

3.2.2. Factori ce influenteaza inactivarea microbiana

Presiunea, temperatura si pH-ul mediului nu par a avea un efect seminficativ asupra

proprietatilor de absorbtie. Pe de alta parte, compozitia produsului, continutul in substanta

uscata, culoarea si in general compozitia chimica a alimentului influenteaza inactivarea

microbiana.

Un alt factor critic este transmisivitatea materialului care este dezinfectat. Daca

materialul este foarte transparent la radiatia UV, dezinfectarea poate fi mai eficienta. Pe de

alta parte, materialele cu densitate optica mare atenueaza si imprastie radiatia UV, ceea ce

conduce la scaderea ratei de inactivare. Configuratia geometrica a sistemului este de

asemenea importanta, deoarece atenuarea creste cu drumul parcurs. Un alt factor critic este

lungimea de unda a radiatiei UV, deoarece aceasta afecteaza inactivarea microbiana.

3.2.3. Mecanisme de inactivare microbiana

Forma curbei de inactivare. Forma curbei de inactivare microbiana prin tratamente

cu UV este sigmoidala. Platoul initial se datoreaza unei faze de lezare a microorganismului

de catre radiatia UV. Dupa acest platou initial, o expunere aditionala minima este letala

pentru microorganism si rata de supravietuire scade rapid. Partea finala a curbei are o faza

stationara, datorita rezistentei la UV a microorganismelor, precum si componentelor

experimentale, cum ar fi solidele suspendate, care pot bloca radiatia UV.

Majoritatea cercetarilor experimentale s-au axat pe dezinfectarea cu radiatie UV a

apei. Datele experimentale sugereaza ca reducerea logaritmica depinde de exunerea la

radiatia UV (J/m2). Pentru toate microorganismele supuse la o radiatie UV de 254 nm, s-a

constatat o reducere 4-log, la expuneri mai mici de 400J/m2 (Hoyer, 1998). Unele celule

bacteriene prezinta o rezistenta mai mare la radiatia UV, datorata unui mecanism de

reparare . fotoreactivarea . care este intensificat de lumina vizibila din domeniul albastru

(tabelul 3).

Tabelul 3. Expunerea necesara pentru o reducere de 4-log.

Mecanisme de inactivare. Proprietatile germicidale ale radiatiei UV se datoreaza

absorbtiei luminii UV de catre moleculele de ADN, ducand la incrucisari intre bazele

pirimidinice alaturate (timina si citozina) din acelasi lant de ADN (Miller et al, 1999). Din

aceasta cauza, este impiedicata formarea de legaturi de hidrogen cu bazele purinice din

lantul opus. Prin urmare este blocata transcrierea si replicarea ADN-ului, ceea ce conduce

la compromiterea functiilor celulare si in ultima instanta la moartea celulei. Numarul de

incrucisari este proportional cu expunerea la radiatia UV. Daca numarul de incrucisari

depaseste o anumita valoare limita, acestea nu mai pot fi reparate si survine moartea

celulara. Acest fenomen este reflectat in forma curbei de inactivare; valoarea limita

corespunde punctului de scadere rapida a ratei de supravietuire.

3.2.4. Perspective de cercetare

In viitor este necesara clarificarea urmatoarelor aspecte:

efectul parametrilor individuali cum ar fi concentratia solidelor suspendate si

dizolvate

identificarea patogenilor rezistenti la radiatia UV

dezvoltarea de metode de validare care sa asigure eficacitatea metodei

dezvoltarea de modele cinetice

studii de optimizare a factorilor critici.

3.3. Lumina pulsatorie

3.3.1. Introducere

Tratamentul cu lumina pulsatorie este o metoda de conservare a produselor

alimentare care implica folosirea de pusuri intense si de scurta durata de lumina dintr-un

domeniu larg de lungimi de unda, de la UV pana la IR apropiat. Materialul tratat este expus

la cel putin un puls de lumina, avand o densitate de energie la suprafata din domeniul 0,01-

50 J/cm2. Distributia de lungimi de unda este aleasa astfel incat cel putin 70% din energia

elctromagnetica este in intervalul 170-2600nm. Materialul care urmeaza sa fie sterilizat este expus la cel putin un puls de lumina (in mod obisnuit 1-20 flash-uri/secunda) cu o durata de la 1s la 0.1 s (Dunn et al, 1991). In majoritatea cazurilor, aplicarea catorva flash-uri intr-o fractiune de secunda determina o rata mare de inactivare microbiana.

Aceasta tehnologie este aplicabila in principal in sterilizarea sau reducerea

populatiilor microbiene de la suprafata materialelor de ambalare, a produselor farmaceutice

transparente sau a altor suprafete. Lumina pulsatorie poate fi folosita pentru a reduce sau

elimina necesitatea folosirii dezinfectantilor si conservantilor chimici. Tehnologia poate fi de asemenea folosita pentru a extinde durata de viata comerciala sau pentru a imbunatati

calitatea produselor.

3.3.2. Factori critici

Din cauza ca lumina nu poate penetra suprafetele opace si neregulate, lumina

pusatorie inactiveaza microorganismele intr-o masura mai mica decat alte tehnologii.

Caracteristicile luminii (lungime de unda, intensitate, durata si numar de pulsuri),

proprietatile ambalajului si ale produsului alimentar (tip, transparenta si culoare) constituie

factori critici care influenteaza procesul de inactivare. In cazul unui aliment fluid, factorii

critici sunt transparenta si inaltimea coloanei de fluid. Desi lumina pulsatorie are o

eficacitate minima in cazul alimentelor opace, cercetarile au aratat ca aceasta are totusi

capacitatea de a reduce populatiile microbiene din oua cu aproximativ 1-4 cicluri logaritmice (Dunn et al, 1995).

Actiunea letala a luminii pulsatorii creste cu cresterea intensitatii, desi la ora acuala

nu exista un model al dependentei doza . raspuns.

3.3.3. Mecanisme de inactivare

Capacitatea de inactivare a luminii pulsatorii depinde de lungimea de unda. Prin

urmare, pentru tratarea produselor alimentare poate fi folosit intregul spectru sau numai

anumite lungimi de unda. Lungimile de unda care duc la formarea unor produsi indezirabili

in alimente sunt eliminate prin filtre de sticla sau lichide. Pulsurile de lumina induc in

alimente reactii fotochimice sau fototermice. Lumina bogata in radiatie UV cauzeaza

modificari fotochimice, in timp ce lumina din domeniile VIS si IR determina schimbari

fototermice. Efectele antimicrobiene sunt in principal mediate de absorbtia de catre

sistemele de legaturi duble carbon . carbon inalt conjugate din proteine si acizi nucleici

(Jay, 1992).

Modul de actiune al luminii pulsatorii este atribuit efectelor unice ale flash-urilor

(energie mare intr-un timp scurt si spectru larg de lungimi de unda). Tinta celulara primara

o constituie acizii nucleici. Inactivarea se produce prin cateva mecanisme, incluzand

modificari chimice si ruptura ADN-ului. Actiunea asupra proteinelor, membranelor si a

altor componente celulare are loc probabil concomitent cu distrugerea acizilor nucleici.

Totusi, ca in cazul oricarui agent fizic cu actiune letala este dificil de determinat secventa

reala a evenimentelor, datorita posibilitatii existentei unui efect .domino..

Experienta sugereaza ca lungimile de unda mai mici din domeniul UV de 200-320

nm sunt mai eficiente in ceea ce priveste inactivarea decat lungimile de unda mai mari,

datorita energiei mai mari. Deoarece ADN-ul este o molecula tinta pentru aceste lungimi de unda din UV, se presupune ca principala cauza a inactivarii microorganismelor este

modificarea structurala a acestuia (Farkas, 1997). Tratamentul cu UV afecteaza ADN-ul in

principal prin mecanisme reversibile in anumite conditii experimentale. Experimentele

efectuate pentru a testa mecanismele de reparare enzimatica ale ADN-ului au aratat ca

aceasta reparare nu apare dupa tratamentul cu lumina pulsatorie. Este posibil ca deteriorarea cauzata de lumina pulsatorie sa fie prea mare pentru ca mecanismele de reparare sa fie eficiente sau ca insusi sistemul de reparare sa fie inactivat odata cu alte functii enzimatice.

In concluzie, se presupune ca energia si intensitatea mari ale luminii pulsatorii amplifica mecanismele cunoscute de distrugere a componentelor celulare de catre fiecare lungime de unda; in plus, spectrul larg de lungimi de unda al luminii pulsatorii cauzeaza deteriorari ireversibile ale ADN-ului, proteinelor si altor macromolecule.

3.3.4. Perspective de cercetare

Pentru ca lumina pulatorie sa poata fi folosita la scara industriala, sunt necesare

cercetari in urmatoarele domenii, in care informatia relavanta lipseste:

identificarea factorilor critici si studierea efectului acestora asupra inactivarii

microbiene

studierea eficacitatii metodei in cazul alimentelor solide si a lichidelor opace,

unde adancimea de penetrare e critica.

studierea rezistentei patogenilor comuni la tratamentul cu lumina pulsatorie

studierea diferentelor dintre aceasta tehnologie si cea obisnuita (cu lumina

UV de 254 nm)

investigarea mecanismelor de inactivare microbiana pentru a determina daca

acestea difera semnificativ de cele propuse pentru lumina UV

intelegerea mecanismelor si evaluarea avantajelor atribuite luminii pulsatorii.

3.4. Ultrasunete

3.4.1. Introducere

Ultrasunetele reprezinta unde sonore cu frecvente de cel putin 20000 de

vibratii/secunda. Aceasta tehnologie are o varietate de aplicatii in industria alimentara,

incluzand testarea nedistructiva a calitatii alimentelor, uscarea si filtrarea, inactivarea

microorganismelor si a enzimelor, dezagragarea celulelor, accelerarea transferului de

caldura si intensificarea oricarui proces ce depinde de difuzie.

3.4.2. Factori critici

Factorii care par sa afecteze in mod semnificativ distrugerea microorganismelor de

catre ultrasunete sunt: amplitudinea undelor ultrasonore, expunerea/timpul de contact, tipul

de microorganism, volumul alimentului procesat, compozitia alimentului si temperatura

tratamentului. Cand ultrasunetele sunt folosite in combinatie cu alte procese, trebuie luati in considerare si factorii critici de proces ai acestor metode. De exemplu, prezenta

dezinfectantilor sau a unor conservanti si presiunea statica, iradierea sau energia electrica

sunt factori critici de proces in abordarea hurdles.

3.4.3. Mecanisme de inactivare

Efectul bactericid al ultrasunetelor este in general atribuit aparitiei cavitatiilor

intracelulare (Hughes si Nyborg, 1962). Se presupune ca socurile micromecanice sunt

create prin formarea si spargerea cavitatilor microscopice induse de presiunile fluctuante

aparute datorita actiunii ultrasunetelor. Aceste socuri deterioreaza componentele functionale si structurale ale celulei, ducand in ultima instanta la liza acesteia.

Pentru spori, mecanismul nu este complet elucidat. Cavitatile joaca cu siguranta un

rol, dar acesta este secundar, deoarece ultrasunetele singure nu au nici un efect asupra

sporilor, ci numai in combinatie cu alte tratamente, avand un rol de potentare a acestora.

Mecanismele de inactivare prin tehnica ultrasonarii combinata cu alte tratamente nu sunt intelese. De asemenea, nu este certa existenta unor mecanisme de reparare si nu exista

metode de a prevedea evolutia post-tratament a alimentelor depozitate.

In stadiul actual al cercetarilor privind folosirea ultrasunetelor la conservarea

produselor alimentare se considera ca aceasta tehnica poate avea un rol de potentare a

eficacitatii altor metode de procesare. Nu a fost inca formulat nici un model matematic de

inactivare a microorganismelor.

3.4.4. Perspective de cercetare

Este evident ca sunt necesare cercetari ulterioare pentru a determina fezabilitatea si

utilitatea ultrasunetelor ca metoda de conservare a produselor alimentare sau ca metoda

auxiliara de tratament. Principalele domenii de cercetare includ:

determinarea efectului pe care il au ultrasunetele asupra inactivarii microbiene,

atunci cand sunt folosite in combinatie cu alte tehnologii de procesare (presiune

inalta, caldura, etc)

identificarea mecanismelor de inactivare microbiana atunci cand ultrasunetele

sunt folosite in combinatie cu alte tehnologii

identificarea factorilor critici atunci cand ultrasunetele sunt folosite in

abordarea hurdles

evaluarea influentei proprietatilor produsului alimentar asupra inactivarii

microbiene.

3.5. Procesarea la presiune inalta

3.5.1. Introducere

Procesarea la presiune inalta consta in supunerea alimentelor solide si lichide, cu sau

fara ambalaj, unor presiuni cuprinse intre 100-800 MPa. Temperatura procesului in timpul

tratamentului poate fi cuprinsa intr-un domeniu larg (sub zero pana la peste 100 C).

Echipamentul este proiectat astfel incat sa suporte aceste presiuni de-a lungul mai multor cicluri. Timpii de expunere la presiune pot varia de la un puls cu durata de 1ms, pana la peste 1200 s. Presiunile folosite in tratamentul cu presiune inalta (HPP) par a avea un effect nesemnificativ asupra legaturilor covalente (Tauscher, 1998-1999). Prin urmare, alimentele supuse HPP la temperatura camerei nu vor suferi transformari chimice semnificative. HPP poate fi combinat cu caldura pentru a obtine o rata de inactivare mai mare a microbilor si enzimelor. Modificarile chimice din alimente vor fi in general o functie de temperature procesului selectata in conjunctie cu tratamentul cu presiune.

HPP actioneaza instantaneu si uniform intr-o masa de aliment, independent de

marimea, forma si compozitia alimentului. Prin urmare, marimea ambalajului, forma si

compozitia nu sunt factori care influenteaza procesul. Lucrul mecanic de compresie in

timpul tratamentului cu HPP duce la cresterea temperaturii alimentului prin incalzirea

adiabatica cu aproximativ 3C/100Mpa, in functie de compozitia alimentului.

Figura 4 arata cresterea de temperatura pentru apa si grasimi in functie de presiunea

de comprimare. Pentru a obtine o crestere uniforma de temperatura intr-un sistem omogen

in timpul comprimarii este necesara o temperatura initiala uniforma.

Figura 4. Cresterea temperaturii la comprimarea adiabatica (Ting, 1999).

In timp ce temperatura unui aliment omogen creste unifom in timpul comprimarii,

distributia de temperatura in masa alimentului in timpul perioadei in care presiunea este

mentinuta constanta se poate modifica datorita schimbului de caldura cu peretii vasului.

Acesta trebuie mentinut la temperatura finala a alimentului, obtinuta in urma comprimarii.

Volumul alimentelor scade cu presiunea, asa cum arata figura 5, o crestere egala a

volumului avand loc la destindere. De aceea, ambalajele folosite pentru alimentele tratate cuHPP trebuie sa permita o reducere de pana la 15% a volumului si o revenire la volumul

initial, fara a-si pierde capacitatea de izolare.

Figura 5. Modificarea volumului apei in functie de presiunea impusa (Ting, 1999).

Cu cat creste nivelul presiunii si timpul de tratament, cu atat este mai mare

capacitatea de modificare a aspectului alimentelor tratate. Acest lucru este in special valabil pentru alimentele proaspete bogate in proteine, la care denaturarea proteinelor indusa de presiune este vizibila. De obicei aceste modificari nu sunt de dorit, deoarece alimentele isi pierd aspectul proaspat. Produsele alimentare care au fost tratate cu HPP si comercializate includ: gemuri si jeleuri de fructe, sucuri de fructe, sosuri de salata, prajituri de orez, foie gras, sunca si altele.

3.5.2. Factori care influenteaza inactivarea microbiana

Tipul de microorganism. Bacteriile Gram-pozitive sunt in general mai rezistente la

presiune decat bacteriile Gram-negative, desi exista si exceptii notabile. Cu cat forma de

viata este mai evoluata, cu atat aceasta este mai sensibila la presiune.

Conditiile de crestere si varsta microorganismului. In general, celulele aflate in

faza logaritmica de crestere sunt mai sensibile la presiune decat celulele din faza stationara.

In cazul in care inactivarea microorganismelor prin presiune este incompleta, acestea se pot reface daca conditiile de crestere sunt optime.

Compozitia, pH-ul, activitatea apei. Ratele de inactivare cresc prin expunerea la

pH-uri acide. Activitati mici ale apei par a impiedica inactivarea. Comprimarea alimentelor

poate duce la modificarea pH-ului acestora, in functie de presiunea aplicata. Sensul si

marimea deplasarii pH-ului trebuie determinate pentru fiecare aliment. La scaderea pH-ului, majoritatea devin mai susceptibile la HPP, iar refacerea celulelor inactivate incomplet se face mai greu. In absenta unor cresteri semnificative ale temperaturii, tratamentul cu HPP nu conduce la ruperea legaturilor chimice covalente. Pe de alta parte, legaturile ionice, cum sunt cele responsabile de structura tridimensionala a proteinelor, sunt influentate de pH si pot fi rupte prin tratamentul cu presiune.

Nu s-a confirmat inca ipoteza dependentei activitatii apei de presiune. Oxen si Knorr

(1993) au aratat ca o scadere a activitatii apei de la 0,98-1,0 la 0,94-0,96 duce la o reducere

semnificativa a ratei de inactivare pentru microbii suspendati intr-un aliment. Reducerea

activitatii apei pare sa protejeze microbii impotriva inactivarii prin HPP. Pe de alta parte,

este foarte probabil ca celulele microbiene sa fie inactivate incomplet prin tratamentul cu

presiune, iar refacerea acestor celule este inhibata de activitati mici ale apei. Prin urmare,

efectul net al activitatii apei este dificil de estimat. Alimentele constituie medii mai

protective la HPP pentru microorganisme decat solutiile tampon sau mediile microbiologice.

Temperatura, valoarea presiunii, rata de comprimare si timpul de mentinere la

presiune constanta. Cresterea presiunii, a timpului sau a temperaturii procesului determina in general cresterea ratei de inactivare. O crestere a temperaturii alimentului peste temperatura camerei si intr-o masura mai mica o scadere sub aceasta temperatura conduc la cresterea ratei de inactivare a microorganismelor in urma tratamentului cu HPP.

Exista o presiune critica minima sub care inactivarea microbiana prin presiune nu

are loc, indiferent de durata procesului. In tratamentul cu HPP trebuie luati in considerare si alti factori, cum ar fi: periada necesara pentru a se atinge valoarea dorita a presiunii, timpul de destindere si modificarile de temperatura datorate comprimarii. In mod evident timpii lungi de comprimare se vor adauga la durata totala a procesului si vor afecta atat produsul, cat si cinetica de inactivare a microorganismelor.

3.5.3. Mecanisme de inactivare

Cand alimentele sunt supuse la presiuni inalte, comprimarea se transmite instantaneu

prin mediile hidrostatice microbilor. Comprimarea pare sa determine inactivarea microbiana prin modificarea proteinelor responsabile de replicare, integritate si metabolism. Presiunea inalta nu rupe legaturile covalente, dar deterioreaza legaturile ionice si de hydrogen responsabile pentru mentinerea proteinelor in forma lor activa biologic. Prin urmare, se poate postula ca inactivarea microbiana este o consecinta a denaturarii ireversibile a uneia sau mai mutor proteine critice din microoganisme. De vreme ce usurinta cu care o proteina este denaturata depinde de structura ei, domeniul de valori pentru rezistenta diversilor microbi la presiune este foarte larg.

Dupa tratamentul cu presiune sau cu incalzire moderata poate avea loc repararea

celulara. Aceasta arata ca o proteina critica a fost denaturata, dar probabil proteinele

responsabile de reparare nu au fost afectate, astfel incat proteina critica a putut fi reparata.

Mecanismul de reparare poate fi afectat de compozitia alimentului. Acizii din alimente pot inhiba activitatea de reparare a proteinelor celulare deteriorate si in consecinta pot creste sensibilitatea microbilor la presiune sau caldura.

Cecetarile asupra efectelor presiunii asupra proteinelor arata un paralelism intre

mecanismele de activare si inactivare reversibila si ireversibila a proteinelor prin caldura si

presiune. Johnson si Eyring (1974) au propus modele cinetice pentru activarea si inactivarea ireversibila a proteinelor prin caldura si presiune. Teoria ratelor absolute de reactie se bazeaza pe formarea unui complex intermediar instabil, care se descompune la o rata care este fixata de temperatura sistemului. Prin urmare, rata reactiei, fie ca este vorba de o reactie catalizata de enzime, sau reactie de denaturare ireversibila a unei proteine va fi

controlata de rata de formare a complexului activat. Aceasta rata (la 0,15 MPa) depinde de

variatia energiei libere Gibbs la trecerea din starea normala in cea activata.

Efectul temperaturii asupra vitezei de reactie este data de ecuatia Arrhenius:

k = Ae-E/RT (1)

unde A, o constanta, si k, viteza de reactie, sunt determinate experimental. Aceasta ecuatie

poate fi scrisa pentru a determina E, energia de activare, daca se cunosc vitezele de reactie

kT1 si kT0 la doua temperaturi T1 si T0 (presiunea este constanta):

E = Rx 2,3 ( lg kT1 . lg kT0 )/ [(1/T0) . (1/T1)] (2)

O ecuatie similara poate fi scrisa pentru efectul presiunii asupra unei reactii, atunci

cand temperatura se mentine constanta (0C). In acest caz, V* de activare reprezinta

diferenta de volum dintre complexul activat si reactanti. Pentru proteine aceasta ar putea

reprezenta diferenta de volum dintre proteina aflata in forma activata si cea denaturata

ireversibil.

V* = 2.3RT [ log kp1 - log kp0] / [p1 - p0 ] (3)

Procesarea alimentelor cu ajutorul presiunii duce intotdeauna la o crestere de

temperatura, datorata lucrului mecanic de compresie. In schimb, incalzirea unui aliment

prin transfer de caldura (la 0,15 MPa) nu duce la o crestere a presiunii in aliment. De

aceea, temperatura trebuie mentinuta constanta in timpul procesului sau monitorizata atent

in timpul comprimarii si destinderii.

Proteinele prezinta o temperatura critica Tc la care incepe denaturarea termica (la

presiune constanta). Rata de denaturare ireversibila a proteinei creste, conform ecuatiei 2,

odata cu cresterea temperaturii peste Tc. Proteinele prezinta de asemenea o presiune critica

la care incepe denaturarea lor ireversibila (la temperatura de 0C). Dependenta ratei de

denaturare a proteinelor de presiune este descrisa in cazul ideal de ecuatia 3. Dar variatia

volumului de activare V* al unei proteine microbiene critice sau al unei enzime care sufera o denaturare ireversibila sub actiunea presiunii este foarte sensibila la modificari mici ale temperaturii peste 0C. Aceasta poate explica de ce datele experimentale de inactivare microbiana obtinute la temperatura camerei, fara o monitorizare a temperaturii in timpul comprimarii, sunt atat de greu de interpretat cu modelul matematic descris mai sus.

Denaturarea proteinelor prin presiune pare a fi un proces mult mai subtil decat denaturarea termica.

3.5.4. HPP in combinatie cu alte tehnologii de procesare

O metoda de conservare care include HPP, desi la presiuni semnificativ mai mici, de

sub 15MPa, este procesarea alimentelor prin actiunea combinata a presiunii si dioxidului de carbon (Haas et al, 1989). Desi presiunile sunt mici, metoda este foarte eficienta datorita

efectului antimicrobian al dioxidului de carbon. Mecanismul de inactivare sugerat consta in

scaderea pH-ului intracelular datorita patrunderii in celula a unei cantitati mari de CO2 si nu datorita ruperii peretilor celulari sau membranei din cauza presiunii CO2.

Alte metode combinate includ: HPP si iradiere, HPP, caldura si ultrasunete (de

asemenea cu presiuni mult mai mici decat cele folosite traditional in HPP, de ordinul kPa),

HPP si diversi compusi antimicrobieni.

4.RISCURI DE CONTAMINARE

N PRACTICA MEDICAL

Exercitarea profesiunilor din domeniul medical implic expunerea personalului la factori de risc specifici. Dintre acetia, riscul de contaminare reprezint unul din riscurile profesionale medicale majore. Acesta apare datorit expunerii personalului la agenii de contaminare specifici n cursul exercitrii profesiei. Exist reglementri legale pentru diminuarea i/sau evitarea riscului de contaminare a personalului medical.

Contaminarea se poate produce prin expunere la ageni fizici, ageni chimici i farmaceutici, i ageni biologici. n practica medical exist potenial de contaminare radioactiv, contaminare chimic i contaminare infecioas.

Contaminarea radioactiv apare ca rezultat al expunerii profesionale la radiaii ionizante i/sau la materiale radioactive solide, lichide sau gazoase folosite n activitile nucleare medicale de diagnostic i tratament. Grupa de risc major o constituie personalul din seciile de radiologie i radiodiagnostic, expunerea profesional fiind practic neglijabil la celelalte categorii de personal medical.

Contaminarea chimic ca rezultat al expunerii profesionale la agenii chimici i farmaceutici folosii n activitatea medical: substane chimice solide, lichide sau gazoase, care pot fi toxice, corosive ori inflamabile; medicamente i substane chimioterapice, care pot fi citotoxice, genotoxice, mutagene, teratogene sau carcinogene. Contaminarea chimic se poate realiza, de asemenea, prin expunere la deeurile chimice rezultate din activitatea medical. Poate afecta toate categoriile de personal medical.

Contaminarea infecioas apare ca rezultat al expunerii profesionale la ageni biologici, reprezentai de snge sau alte fluide biologice, virusuri, bacterii, parazii i/sau toxine ale microorganismelor etc. Poate afecta toate categoriile de personal medical prin contact cu organismul bolnav sau purttor de boli infecioase i cu produsele biologice ale acestuia, n cursul activitilor de diagnostic i tratament, sau prin contact cu deeurile infecioase rezultate din activitatea medical. n scopul evitrii acesteia trebuie respectate precauiunile universale, standarde fundamentale, reglementate n Romnia prin Ordinul MS nr. 894/1994, care se refer la msurile ce trebuie aplicate de personalul medico sanitar n practica medical, n scopul evitrii contaminrii infecioase att a personalului medical, ct i a pacienilor.

Deeurile periculoase rezultate din activitatea medical pot fi deeuri anatomo-patologice, deeurile infecioase, deeurile neptoare-tietoare, deeurile chimice i farmaceutice.

Deeurile anatomo-patologice cuprind pri anatomice, material biopsic rezultat din blocurile operatorii de chirurgie i obstetric (fetui, placente), pri anatomice rezultate din laboratoarele de autopsie, cadavre de animale rezultate n urma activitilor de cercetare i experimentare medical. Toate aceste deeuri se consider infecioase conform Precauiunilor universale.

Deeurile infecioase sunt deeurile care conin sau au venit n contact cu sngele ori cu alte fluide biologice, precum i cu virusuri, bacterii, parazii i/sau toxinele microorganismelor, de exemplu: seringi, ace, ace cu fir, catetere, perfuzoare cu tubulatur, recipiente care au coninut snge sau alte lichide biologice, cmpuri operatorii, mnui, sonde i alte materiale de unic folosin, comprese, pansamente i alte materiale contaminate, membrane de dializ, pungi de material plastic pentru colectarea urinei, materiale de laborator folosite etc.

Deeurile neptoare-tietoare sunt reprezentate de ace, ace cu fir, catetere, seringi cu ac, branule, lame de bisturiu de unic folosin, pipete, sticlrie de laborator ori alt sticlrie spart sau nu, care au venit n contact cu material infecios. Aceste deeuri se consider infecioase conform Precauiunilor universale.

Deeurile chimice i farmaceutice sunt deeurile care includ serurile i vaccinurile cu termen de valabilitate depit, medicamentele expirate, reziduurile de substane chimioterapice, reactivii i substanele folosite n laboratoare. Sunt considerate deeuri chimice i substanele de curenie i dezinfecie deteriorate ca urmare a depozitrii lor necorespunztoare sau cu termenul de valabilitate depit, de exemplu: substane dezinfectante, substane tensioactive etc.

Printr-o conduit adecvat la locul de munc, cu respectarea prevederilor legale, personalul medical are nu numai obligaia, dar i interesul de a evita att contaminarea proprie, ct i a pacienilor aflai n contact cu serviciile medicale de sntate.6.Serele inteligente

Schimbarile climaterice din ultima vreme, in special spargerea stratului de ozon care protejeaza planeta de radiatiile ultraviolete, au pus in evidenta faptul ca aceste radiatii modifica genetic organismele vii care intra in contact cu ele. in planul alimentatiei s-a constatat ca plantele expuse acestor radiatii isi modifica structura genetica si devin astfel ceva asemanator acelor plante modificate genetic cu buna stiinta pentru obtinerea unor culturi mai bogate.

Constructia filtreaza si radiatiile ultraviolete Despre plantele "mutant" si pericolul pe care il reprezinta exista un adevarat scandal la nivel international. in vreme ce americanii sustin ca acest tip de aliment reprezinta salvarea de la foamete a unor tari sarace, europenii spun ca mancarea mutant ar putea avea efecte negative asupra organismului uman si ca prin aceasta "joaca de-a Dumnezeu" se pune in pericol securitatea rasei umane. Respectiv cine mananca mutant, in mutant se transforma. Daca in cazul plantelor mutant controlate de geneticieni se poate reglementa consumul, mutatiile genetice de pe camp, determinate de ultraviolete, nu pot fi controlate sub nici o forma. De aceea au fost inventate sere realizate din materiale speciale in interiorul carora se obtin plante "curate", cunoscute sub numele generic de "alimente ecologice". Aceste sere nu numai ca opresc ultravioletele, respectiv modificarea genelor, ci chiar fac plantele sa creasca mai repede. Din manualul de biologie din cursul gimnazial se stie ca plantele se hranesc cu apa si lumina, prin procesul de fotosinteza. Nu e vorba insa despre orice fel de lumina. Planta foloseste doar radiatia din spectrul rosu, care o face sa creasca si respinge radiatia din spectrul verde. Tocmai de aceea plantele sunt verzi. Ca atare, au fost realizate sere dintr-un material care filtreaza lumina si lasa sa treaca spectrul rosu, oprind spectrul verde. Cu patru luni in urma Electromecanica din Ploiesti, singura fabrica de rachete antigrindina din Romania, a inceput sa fabrice si ea asemenea sere inteligente. Peretii sunt din policarbonat si, pe langa filtrarea luminii, au un indice de termoizolare mai mare decat sticla folosita pana acum la noi. "E o abordare noua la noi, dar in Occident acest material e deja in voga. Practic sunt niste ansambluri cu pereti din policarbonat pe structura de aluminiu, in cazul utilizarii casnice - piscine sau alte incinte care protejeaza pielea de cancerul produs de ultraviolete, adica un fel de solar - sau structura din otel zincat, in cazul utilizarii industriale, adica pe post de sere. Indiferent de utilizare, noi punem la dispozitia clientului module cu orice forma arhitecturala ne cere", a explicat Dinu Constantinescu, directorul general al societatii Electromecanica.

Un metru patrat de sera costa intre 50 - 110 euro Avantajul economic in cazul utilizarii industriale consta in rapiditatea la care ajung la maturitate plantele din aceste incinte, faptul ca sunt ecologice, adica au o calitate superioara si proprietarul unor asemenea sere cheltuieste mai putin cu incalzirea incintelor datorita izolatiei termice superioare. in plus, o asemenea sera este foarte rezistenta la socuri mecanice, practic poate rezista sute de ani. Pretul este de 90 - 110 euro pe metru patrat, in cazul peretilor policarbonati pe structura de aluminiu si de 50 - 60 de euro pe metru patrat in cazul otelului zincat utilizat la sere.

In Occident, tehnologia se numeste Green House "Aceasta tehnologie este foarte avansata in Israel si SUA. intr-adevar, spectrul de lumina ultravioleta are trei componente, notate cu A, B si C. Cea care distruge ADN-ul din lantul genetic este radiatia ultravioleta C. in lume se fac asemenea materiale pentru sere care filtreaza anumite lungimi de unda ale luminii. in general tehnologia se numeste "Green House" si e un lucru bun ca a aparut si la noi", ne-a spus Gheorghe Mencinicopschi, directorul Institutului de Chimie Alimentara Bucuresti.5.Bibliografie

1. Castro, A. J., Barbosa-Cnovas, G. V. and Swanson, B. G. 1993. Microbial inactivation

of foods by pulsed electric fields. J Food Process Pres. 17:47-73.

2. Barbosa-Cnovas, G. V., Gongora-Nieto, M. M., Pothakamury, U. R., Swanson, B. G.

1999. Preservation of foods with pulsed electric fields. 1-9, 76-107, 108-155. Academic

Press Ltd. London.

3. Barbosa-Canovas, G. V., Palou, E., Pothakamury, U. R. and Swanson, B. G. 1997.

Application of light pulses in the sterilization of foods and packaging materials. Nonthermal

Preservation of Foods. Chapter 6-139-161. Marcel Dekker. New York.

4. Datta, A. K. and Liu, J. 1992. Thermal time distributions for microwave and

conventional heating of food. Trans I Chem E. 70(C):83-90.

5. Datta, A. K. .2000. Fundamentals of heat and moisture transport for microwaveable food

product and process development. A. K. Datta and R. C. Anatheswaran. (eds.). Handbook

of Microwave Technology for Food Applications. Marcel Dekker, Inc. New York.

6. Dunn, J., Clark, R. W., Asmus, J. F., Pearlman, J. S., Boyer, K., Pairchaud, F. and

Hofmann, G. A. 1991. Methods for preservation of foodstuffs. Maxwell Laboratories, Inc.

US Patent 5,034,235.

7. Dunn, J., Clark, W. and Ott, T. 1995. Pulsed-light treatment of food and packaging.

Food Technol. 49(9):95-98.

8. Elias, P.S. 1989. New concepts for assessing the wholesomeness of irradiated foods.

Food Technol. 43(7): 81-83.

9. Farkas, J. 1997. Physical methods of food preservation. Food Microbiology.

Fundamentals and Frontiers. M.P. Doyle, L.R. Beauchat, T.J. Montville(eds.).

Washington, D.C. ASM Press. 497-519.

10. Ferdes, O. S., 1996. Iradierea alimentelor in Romania . realizari si perspective. Stiinte

si tehnologii alimentare, 62-66.

11. Frazier, W.C., and Westhoff, D.C. 1988. Chapter 10. Preservation by radiation. In

Food Microbiology. Fourth edition. McGraw-Hill. New York, NY. Jones, J.M. 1992.

Chapter 12. Food Irradiation in Food Safety. Eagan Press. St. Paul, MN. 1990. Electrical

modulation of membrane proteins: Enforced conformational oscillations and biological

energy signals. Annu Rev Biophys Chem. 19:83-106.

12. Heddleson, R. A. and Doores, S. 1994. Factors affecting microwave heating of foods

and microwave induced destruction of foodborne pathogens - a review. J Food Protect.

57(11):1025-1037.

13. Heddleson, R. A., Doores, S. and Anantheswaran, R. C. 1994. Parameters affecting

destruction of Salmonella spp. by microwave heating. J Food Sci. 59(2):447-451.

14. Ho, S. Y., G.S., M., Cross, J. D. and Griffiths, M. W. 1995. Inactivation of

Pseudomonas fluorescens by high voltage electric pulses. J Food Sci. 60(6):1337-1343.

15. Ho, S. Y., Mittal, G. S. and Cross, J. D. 1997. Effects of high field electric pulses on

the activity of selected enzymes. J Food Eng. 31(1):69-84.

16. Hoyer, O. 1998. Testing performance and monitoring of UV systems for drinking water

disinfection. Water Supply. 16(1/2):419-442.

17. Hughes, D. E. and Nyborg, W. L. 1962. Cell disruption by ultrasound. Science.

38:108-114.

18. Hlsheger, H. and Nieman, E. G. 1980. Lethal effect of high-voltage pulses on E. coli

K12. Radiat Environ Biophys 18(4):281-8.

19. Hlsheger, H., Pottel, J. and Niemann, E. G. 1981. Killing of bacteria with electric

pulses of high field strength. Radiat Environ Biophys. 20:53-65.

20. Hlsheger, H., Pottel, J. and Niemann, E. G. 1983. Electric field effects on bacteria

and yeast cells. Radiat Environ Biophys. 22:149-162.

21. Jay, J. J. 1996. Modern food microbiology. Chapman Hall. New York.

22. Jayaram, S., Castle, G. S. P. and Margaritis, A. 1992. Kinetics of sterilization of

Lactobacillus brevis cells by the application of high voltage pulses. Biotechnol Bioeng.

40(11): 1412-1420

23. Johnson, F. H., Eyring, H., and Jones-Stover, B. 1974. The theory of rate processes in

biology and medicine. p. 82. Wiley, New York

24. Kinosita, K. J. and Tsong, T. Y. 1977. Voltage induced pore formation and haemolysis

erythrocytes. Biochim Biophys Acta. 471:227-242

25. Knorr, D., Geulen, M., Grahl, T. and Sitzmann, W. 1994. Food application of high

electric field pulses. Trends Food Sci Technol. 5:71-75 Peleg, M. 1995. A model of

microbial survival after exposure to pulse electric fields. J Sci Food Agric. 67(1):93-99.

26. Knutson, K. M., Marth, E. H. and Wagner, M. K. 1987. Microwave Heating of Food.

Lebensm Wiss Technol. 20:101-110.

27. Kozempel, M. F., Annous, B. A., Cook, R. D., Scullen, O. J. and Whiting, R. C.

1998. Inactivation of microorganisms with microwaves at reduced temperatures. J Food

Protect. 61(5):582-585.

28. Ohlsson, T. and Risman, P. O. 1978. Temperature distribution of microwave heatingspheres

and cylinders. J Microwave Power. 13(4):303 Rosenberg, U. and Bgl, W. 1987.

Microwave pasteurization, sterilization, blanching, and pest control in the food industry.

Food Technol. 41(6):92-99.

29. Oxen, P. and Knorr, D. 1993. Baroprotective effects of high solute concentrations

against inactivation of Rhodotorula rubra. Lebensmittel-Wissenschaft und Technologie.

26:220-223.

30. Pothakamury, U. R., Vega, H., Zhang, Q. H., Barbosa-Cnovas, G. V. and Swanson,

B. G. 1996. Effect of growth stage and processing temperature on the inactivation of E. coli

by pulsed electric fields. J Food Protect. 59(11):1167-1171

31. Sale, A. J. H. and Hamilton, W. A. 1967. Effects of high electric fields on

microorganisms I. Killing of bacteria and yeast. Biochimt Biophys Acta. 148:781-788

32. Simpson, R. K. et al, 1999. Pulsed high electric field causes .all or nothing. membrane

damage in L. monocytogenes and Salmonela typhimurium, but membrane H+ - ATP ase is

not a primary target. International J. of Food Microbiology 48, 1-10.

33. Tauscher, B. K. 1998. Effect of high pressure treatment to nutritive substances and

natural pigments. Fresh Novel Foods by High Pressure. VTT Symposium 186. Technical

Research Centre of Finland. Helsinki, Finland.

34. Tauscher, B. 1999. High pressure and chemical reactions: effects on nutrients and

pigments. Emerging Food Science and Technology. Tempere, Finland. November 22-24,

1999. 58.

35. Ting, E. 1999. Personal Communication. Flow International, Kent, WA.

36. Tsong, T. YVega-Mercado, H., Pothakamury, U. R., Chang, F.-J., Barbosa-Cnovas,

G. V. and Swanson, B. G. 1996b. Inactivation of Escherichia coli by combining pH, ionic

strength and pulsed electric fields hurdles. Food Res Int. 29(2):117-121

37. Zimmermann, U. 1986. Electrical breakdown, electropermeabilization and

electrofusion. Rev Physiol Biochem Pharmacol. 105:175-256

http://www.who.int/uv/uv_and_health/en/index.html si http://www.who.int/features/qa/40/en/ accesat e la data de 23.07.2006 Traducere: dr. Valentin Nadasan

Hotrrea nr. 1093 din 16/08/2006 privind stabilirea cerinelor minime de securitate i sntate pentru protecia lucrtorilor mpotriva riscurilor legate de expunerea la ageni cancerigeni sau mutageni la locul de munca (Monitorul Oficial, Partea I nr. 757 din 06/09/2006).

Hotrrea nr. 1092 din 16/08/2006 privind protecia lucrtorilor mpotriva riscurilor legate de expunerea la ageni biologici n munc (Monitorul Oficial, Partea I nr. 762 din 07/09/2006)

Ordonana de urgen nr. 78 din 16 iunie 2000 privind regimul deeurilor (Monitorul Oficial, Partea I nr. 283 din 22 iunie 2000)Revista Actualiti stomatologice, Nr. 5 Anul II octombrie 2000

Institutul de boli infecioase Prof. Dr. Matei Bals: Implementarea unui program de diminuare a riscurilor ntr-un spitalPowered by http://www.referat.ro/cel mai tare site cu referate

www.referat.ro