Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa...

22
Cuprins Generalităţi ................................................................................................................ 1 TRADUCTOARE ..................................................................................................... 3 Definire şi rol ............................................................................................................ 3 Exemplu .................................................................................................................... 3 Senzori de proximitate ............................................................................................... 5 Senzorii inductivi, magnetici şi capacitivi .................................................................. 6 Senzorii de proximitate capacitivi .............................................................................. 7 Senzorii de proximitate inductivi ............................................................................. 12 Detalii funcţionale ................................................................................................... 17 Senzorii optici ......................................................................................................... 21 Generalităţi Curentul continuu, surse autonome, curentul continuu obţinut prin redresare, legea lui Ohm, divizoarele rezistive Curentul continuu se caracterizează prin tensiunea electrică, diferenţa de potenţial care apare între cele două borne ale sursei: (+) şi (-). Sursele de curent continuu pot unipolare sau bipolare, figura 1. Figura 1. Tensiunea, curentul şi capacitatea

Transcript of Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa...

Page 1: Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa electric ă face parte din circuite speciale ... de oscilator, de redresare (demodulare),

Cuprins

Generalităţi ................................................................................................................ 1

TRADUCTOARE ..................................................................................................... 3

Definire şi rol ............................................................................................................ 3

Exemplu .................................................................................................................... 3

Senzori de proximitate ............................................................................................... 5

Senzorii inductivi, magnetici şi capacitivi .................................................................. 6

Senzorii de proximitate capacitivi .............................................................................. 7

Senzorii de proximitate inductivi ............................................................................. 12

Detalii funcţionale ................................................................................................... 17

Senzorii optici ......................................................................................................... 21

Generalităţi

Curentul continuu, surse autonome, curentul continuu obţinut prin redresare, legea lui

Ohm, divizoarele rezistive

Curentul continuu se caracterizează prin tensiunea electrică, diferenţa de potenţial

care apare între cele două borne ale sursei: (+) şi (-). Sursele de curent continuu pot unipolare

sau bipolare, figura 1.

Figura 1. Tensiunea, curentul şi capacitatea

Page 2: Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa electric ă face parte din circuite speciale ... de oscilator, de redresare (demodulare),

O sursă unipolară cu capacitatea de 2000mAh, la tensiunea de 1,5V, este o sursă care

poate asigura alimentarea unui consumator alimentat la 1,5V şi care absoarbe un curent de

2000mA, timp de o oră după care tensiunea începe să scadă. Capacitatea unei surse este

produsul între curentul maxim şi timpul pe durata căruia sursa poate asigura tensiunea

prevăzută la curentul maxim. Aceasta echivalează cu aria dreptunghiului ABCD. Prin urmare

cu cât o sursă poate menţine alimentat un consumator care consumă curentul la capacitatea

maximă, timp mai îndelungat cu atât are o capacitate mai mare.

O sursă unipolară o regăsim sub forma unui acumulator sau baterie uscată, figura 2.

Figura 2. Sursă unipolară

Chiar dacă pe baterie sau acumulator sunt trecute semnele de polaritate + şi -, de fapt

avem + faţă de zero aşa cum se vede în figura 3 în cazul sursei bipolare.

Figura 3. Sursă bipolară

La sursa bipolară avem cei doi poli + şi -, faţă de zero.

Page 3: Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa electric ă face parte din circuite speciale ... de oscilator, de redresare (demodulare),

TRADUCTOARE

Definire şi rol

Traductorul este un ansamblu format din mai multe elemente care are rolul de a

transforma o mărime fizică: deplasare, viteză, poziţie, temperatură, vibraţii, zgomote, debit,

presiune, forţă, cuplu mecanic etc. în mărime electrică: tensiune, curent. Un traductor este

format dintr-un element sensibil (ES) care oferă principiul conversiei mărimii mecanice în

mărime electrică. Dacă acesta este o rezistenţă electrică atunci mărimea de intrare (IN) de tip

presiune (P) va determina o deformaţie ∆L a rezistenţei şi, implicit o modificare ∆R a

rezistenţei electrice care, făcând parte dintr-un circuit electric va avea efect o modificare a

unei tensiuni ∆U. Pentru ca rezistenţa electrică (ES) să poată intra în legătură directă cu

procesul, cu presiunea P trebuie să fie aşezată pe un element de adaptare mecanică (EAM),

figura 4.

Figura 4. Elementele componente ale unui traductor

Circuitele specializate, ultimul bloc dintr-un traductor simplu, au rolul de a prelua

mărimea electrică aflată în legătură directă cu mărimea mecanică de intrare şi a o aduce la

nivele de putere corespunzătoare. Circuitele specializate sunt formate din componente

electronice active şi pasive care au rolul de a asigura amplificarea semnalului electric ∆U, de

a realiza adaptări de impedanţe între traductor şi echipamentele cu care se conectează în

vederea controlului procesului.

Exemplu

Realizarea uni traductor pentru urmărirea unei presiuni de aer sau lichid. Pentru

aceasta avem nevoie de un element de tip membrană care va permite legătura cu mediul din

care apare presiunea şi o numi membrană elastică (ME) deoarece aceasta se va deforma în

funcţie de mărimea presiunii. ME constituie EAM pe care l-am descris în figura 1. Pe

membrană cu rol de suport, se aşează elementul sensibil ES care poate să fie un timbru

tensometric, figura 5. Acesta este lipit astfel încât să facă corp comun cu ME astfel încât

Page 4: Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa electric ă face parte din circuite speciale ... de oscilator, de redresare (demodulare),

deformaţiile membranei elastice să se transmită întocmai spre elementul sensibil, spre timbrul

tensometric.

Figura 5. Realizarea unui traductor pentru presiune

Timbrul tensometric este sub forma unui traseu pe bază de cupru, traseu care asigură

o lungime oarecare firului respectiv. Când membrana elastică se va deforma sub acţiunea

presiunii, odată cu ea se va deforma şi elementul sensibil, timbrul tensometric, lungimea

acestuia va creşte. Rezistenţa electrică a firului pe bază de cupru va fi: R=ρ(l/s) unde ρ este

rezistivitatea materialului din care este făcut timbrul şi se oferă pe bază de tabele, l este

lungimea firului iar s este secţiunea firului, figura6.

Figura 6. Forma unui timbru tensometric

Odată cu creşterea lungimii l are loc o reducere a secţiunii s şi conform relaţiei va

avea loc o creştere a rezistenţei electrice. Rezistenţa electrică face parte din circuite speciale

prin care modificarea rezistenţei se va traduce în modificarea unei tensiuni electrice, figura 7.

Aşa cum reiese din figura 7 rezistenţa electrică a timbrului va fi R1. Împreună cu celelalte

rezistenţe din punte, rezistenţa timbrului R1 va influenţa prin valoarea sa tensiunea de ieşire

Ue. Ua va fi tensiunea cu care se alimentează puntea tensometrică.

Page 5: Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa electric ă face parte din circuite speciale ... de oscilator, de redresare (demodulare),

Figura 7. Circuit special pentru marca tensometrică

În felul acesta s-a realizat o legătură între mărimea mecanică presiunea şi o mărime

electrică Ue.

Senzori de proximitate

Proximitatea se referă la apropiere, prezenţă. Un senzor de proximitate va avea rolul

de a oferi semnale electrice în momentul în care, de zona sensibilă a senzorului se apropie un

obiect, SP1 şi SP2 din figura 8.

Figura 8. Proces controlat prin senzori de proximitate

Page 6: Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa electric ă face parte din circuite speciale ... de oscilator, de redresare (demodulare),

Senzorii de proximitate au rolul de a identifica prezenţa elementelor mobile ale

sistemelor aflate în mişcare. Pentru a putea fi fixaţi pe maşini în medii industriale senzorii de

proximitate sunt protejaţi în carcase speciale din materiale plastice şi metalice. Senzorii

inductivi, magnetici sau capacitivi pot avea forme similare, se pot asemăna, ce le diferenţiază

este tocmai elementul sensibil care transformă prezenţa, apropierea, proximitatea de un

obiect, în semnal electric util pentru controlul proceselor.

Senzorii inductivi, magnetici şi capacitivi

Figura 9. Forma constructivă a senzorilor de proximitate

Carcasa senzorilor de proximitate este prevăzută cu o parte filetată pe care se

montează piuliţe cu scopul de a permite fixarea mecanică pe suporţi a acestora, figura 9. La

montaj se va avea în vedere sensibilitatea senzorului folosit pentru stabilirea distanţei de

obiectul din proximitate a zonei cu elementul sensibil. Distanţa la care se va monta capătul

activ al senzorului de obiectul controlat este prescrisă de furnizorul senzorului în catalogul de

firmă. Performanţele unui senzor de proximitate se obţin numai atunci când se respectă

întocmai indicaţiile firmei. Senzorii magnetici se folosesc de obicei pentru controlul poziţiei

pistoanelor cilindrilor pneumatici sau hidraulici. Pe piston găsim un magnet circular care va

asigura inducţia magnetică la nivelul inductanţei senzorului de proximitate aflat pe cilindru,

în exteriorul acestuia. Magnetul are rolul de a asigura garanţia că prezenţa pistonului în

dreptul senzorului este transformată în semnal electric.

Page 7: Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa electric ă face parte din circuite speciale ... de oscilator, de redresare (demodulare),

Senzorii de proximitate capacitivi

Elementele componente sunt prezentate în figura 10. În structura senzorilor de

proximitate intră o serie de blocuri funcţionale, blocuri electronice care au roluri diferite: de

oscilator, de redresare (demodulare), de trigger, de amplificare şi adaptări de impedanţe şi

puteri.

Figura 10. Structura internă a unui senzor de proximitate capacitiv

Primul bloc se bazează pe un oscilator care va produce oscilaţii în momentul în care

capacitatea condensatorului se schimbă schimbându-se permitivitatea acestuia. Condensatorul

ca element sensibil dintr-un senzor de proximitate capacitiv are armăturile expuse astfel încât

să sesizeze cu uşurinţă prezenţa unui obiect. Oscilaţiile produse de oscilator vor trece printr-

un demodulator care are rolul de lăsa să tracă o semialternanţă, în cazul figurii 10 vor trece

semialternanţele pozitive datorită poziţiei diodei D1. Blocul trigger are rolul de transforma

semialternanţa pozitivă, pe frontul crescător în „1” logic-nivelul de tensiune egal cu tensiunea

de alimentare a senzorului, între 10 şi 30 V şi în „0” logic, zero volţi la ieşire pe frontul

descrescător al semisinusoidei. Circuitul de ieşire bazat pe un tranzistor are rolul de asigura

nivelul de tensiune şi putere corespunzător cerinţelor. În multe cazuri avem ca element activ

un tranzistor bipolar PNP sau NPN care poate asigura curenţi de până la 300 mA la tensiuni

între 10 şi 30 V CC.

Oscilatorul electronic este realizat sub diferite variante care asigură oscilaţii stabile şi

sigure neafectate de alţi factori din mediul exterior care pot influenţa comportarea acestuia.

Componentele electronice care intră în structura oscilatorului se bazează pe amplificatoare

operaţionale asigurate cu compensări termice, cu protecţii la încălzire, cu ecranări

Page 8: Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa electric ă face parte din circuite speciale ... de oscilator, de redresare (demodulare),

corespunzătoare. Tot aici avem surse de tensiune care asigură stabilitatea nivelului tensiunii

în timp ce senzorul poate fi alimentat în gama 10 V-30 V. Aşa cum reiese din figura 11

elementul sensibil condensatorul C1 se va încărca pe armături în mod succesiv cu plus şi

minus. Drept rezultat vom avea circulaţia în sensuri diferite ale curentului prin încărcarea şi

descărcarea succesivă a condensatorului.

Figura 11. Oscilatorul şi elementul sensibil

Rezultatul proximităţii este semnalul sinusoidal pe care oscilatorul îl realizează la

amplitudinea plus-minus valoarea tensiunii corespunzătoare celei de alimentare a senzorului

între 10V şi 30V, figura 12.

Page 9: Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa electric ă face parte din circuite speciale ... de oscilator, de redresare (demodulare),

Figura 12. Oscilaţiile obţinute din oscilator

Semnalul sinusoidal este transmis unui demodulator format dintr-o diodă D1 şi un

grup rezistenţă Rs, condensator C3. Demodulatorul va îndepărta semialternanţa negativă

lăsând să treacă numai ce pozitivă, figura 13.

Figura 13. Demodularea semnalului sinusoidal

Page 10: Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa electric ă face parte din circuite speciale ... de oscilator, de redresare (demodulare),

Figura 14. Transformarea semnalului din analogic în numeric

După demodulator unde vom avea semialternanţe pozitive avem un circuit special, un

amplificator electronic modificat care va avea rolul de a transforma semnalul din analogic în

semnal treaptă, va face trecerea de la nivelul de 10V sau altă valoare până la 30 V în zero

logic, în nivel zero al tensiunii electrice, figura 14. În felul acesta prezenţa sau non prezenţa

obiectului urmărit de senzor se va materializa prin apariţia semnalului electric sub forma

tensiunii electrice cu valoare în gama de alimentare a senzorului.

Etajul următor este un circuit electronic în jurul unui tranzistor bipolar PNP sau NPN,

circuit care are rolul de a asigura parametrii de interfaţare a senzorului cu echipamentul de

automatizare, de control, de monitorizare, figura 15.

Page 11: Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa electric ă face parte din circuite speciale ... de oscilator, de redresare (demodulare),

Figura 15. Circuitul de ieşire din senzor, starea „blocat”

În momentul prezenţei obiectului monitorizat tranzistorul va intra în conducţie, figura

16 şi semnalizat prin aprinderea ledului.

Figura 16. Circuitul de ieşire din senzor, starea „conduce”

Page 12: Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa electric ă face parte din circuite speciale ... de oscilator, de redresare (demodulare),

Figura 17. Circuitul de ieşire activ

În circuitul de ieşire există elemente pasive ca rezistenţele R6 şi R7 care au rolul de a

realiza un divizor rezistiv ce asigură căderea de tensiune pe LED şi limitarea curentului prin

acesta, un RTD - rezistenţă cu rol de detector termic, în momentul creşterii curentului prin

tranzistor peste o anumită valoare aceasta se va încălzi iar ca urmare îşi va mări valoarea

limitând curentul prin tranzistor şi protejându-l. Nivelul tensiunii va fi asigura de dioda Zener

Z1, figura 17.

Senzorii de proximitate inductivi

Aşa cum sunt definiţi senzorii de proximitate inductivi au la bază o inductanţă, o

bobină a cărei inductivitate depinde de prezenţa sau nu a materialelor cu efect inductiv ca

metalele. Bobina face parte dintr-un oscilator la fel cum se întâmplă şi în cazul senzorilor

capacitivi. În acest caz circuitul oscilant este unul LC – bobină – condensator, figura 18.

Bobina este o componentă electronică reactivă de circuit şi are ca parametru electric esenţial

inductivitatea proprie sau inductanţa, L.

În funcţie de sensibilitatea senzorului şi aceasta depinde de firma constructoare,

bobina va sesiza prezenţa unui obiect la o anumită distanţă de aceasta. Distanţe de

sensibilitate sunt precizate în cataloage de firmă.

Page 13: Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa electric ă face parte din circuite speciale ... de oscilator, de redresare (demodulare),

Figura 18. Oscilator cu element sensibil bobină

În momentul trecerii semnalului dat de oscilator pe frontul descrescător triggerul

realizează semnalul treaptă, figura 19.

Figura 19. Transformarea semnalului din „1” logic în „0” logic

Astfel că între două semisinusoide când valoarea tensiunii scade apoi creşte trecând

prin trigger vom obţine un semnal care va trece din nivel logic ridicat în semnal cu nivel logic

scăzut, figura 20. Acesta ar fi cazul în care de senzor se apropie obiectul, se îndepărtează apoi

iar se apropie.

Page 14: Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa electric ă face parte din circuite speciale ... de oscilator, de redresare (demodulare),

Figura 20. Front descrescător-front crescător

În cazul circuitelor de ieşire pe bază de tranzistor PNP rezistenţa de protecţie termică

(RTD) apare în circuitul emitorului. Dioda D2 are rolul de protecţie la conectare inversă a

tensiunii de alimentare. Dioda Zener Z1 va asigura un nivel bine stabilit al tensiunii pe

tranzistor, figura 21. Dioda LED va semnaliza stare senzorului: ACTIV sau NU.

Figura 21. Circuit de ieşire cu tranzistor PNP

Valoarea sarcinii ca şi curent absorbit depinde de limita de curent pe care o poate

asigura tranzistorul Ts. În momentul în care semnalul care ajunge pe baza tranzistorului trece

de la nivel scăzut la nivel ridicat va determina trecerea acestuia în conducţie şi apariţia

Page 15: Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa electric ă face parte din circuite speciale ... de oscilator, de redresare (demodulare),

curentului prin sarcina conectată la ieşirea din senzor, figura 22. Cel mai mic consum şi cea

mai mică valoare a curentului prin tranzistor îl avem atunci când conectăm senzorul la un

controler logic programabil.

Figura 22. Trecerea în conducţie

O categorie a senzorilor de proximitate este cea a senzorilor cu trei fire de conexiune,

figura 23. Majoritatea firmelor constructoare respectă culorile respective şi acestea au

următoarea semnificaţie: MARO se leagă la borna „PLUS” a sursei de alimentare,

ALBASTRU la borna „MINUS”. Firul negru va servi la preluarea semnalului util, a

semnalului electric care va fi în concordanţă cu proximitatea.

Figura 23. Senzori de proximitate cu trei fire de conexiune

Page 16: Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa electric ă face parte din circuite speciale ... de oscilator, de redresare (demodulare),

În funcţie de tranzistorul din circuitul de ieşire vom avea sarcina conectată spre „0” V

sau spre „PLUS”, figura 24.

Figura 24. Conectarea sarcinii la „PLUS”

Figura 25. Senzori de proximitate cu 4 fire de conexiune

Există o gamă diversă de senzori de proximitate care au 4 fire de conexiune, figura

25. În acest caz se respectă semnificaţia culorilor prezentate pentru senzorul cu trei fire de

conexiune pe lângă care mai apare un fir de culoare „ALB” (WHITE). În figura 22 găsim

culorile în limba engleză aşa cum le găsim în cataloagele firmelor producătoare. Cele două

culori ALB şi NEGRU vor corespunde firelor de conexiune prin care obţinem semnalul direct

şi negat.

În cazul senzorilor cu 4 fire de conexiune cele două ieşiri NEGRU şi ALB corespund

stării unor contacte normal deschise (N.O) respectiv normal închise (N.C), figura 26. În

aplicaţii cele două ieşiri pot fi folosite pentru a bascula conexiunea de pe o sarcină pe alta.

Când va fi conectată o sarcină nu va fi conectată cealaltă şi invers.

Page 17: Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa electric ă face parte din circuite speciale ... de oscilator, de redresare (demodulare),

Figura 26. Rolul firelor de conexiune

Senzorii de proximitate au capacitatea de a sesiza prezenţa unui obiect în dreptul lor şi

la o anumită distanţă. Prezenţa este transformată în semnal logic ce este transmis către PLC.

Detalii funcţionale

Senzorul inductiv se bazează ca funcţionare pe realizarea unui câmp electromagnetic

de către o bobină prin intermediul unui oscilator, figura 27.

Page 18: Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa electric ă face parte din circuite speciale ... de oscilator, de redresare (demodulare),

Figura 27. Principiul unui senzor inductiv

Semnalul oferit de senzor la ieşirea sa este de fapt, intrarea în controler. În cazul

senzorilor inductivi, obiectul identificat va fi metalic astfel încât acesta, obiectul va produce

întreruperea liniilor de câmp electromagnetic care va dezechilibra un oscilator. Rezultatul

final va fi un semnal util logic „1”. Forma semnalului oferit de senzor este prezentată în

figura 28.

Figura 28. Semnalul unui senzor de proximitate

Prezenţa obiectului urmărit de senzor se traduce prin scăderea amplitudinii semnalului

util.

Circuitele de ieşire din senzorul de proximitate au la bază elemente active de tip

tranzistor PNP sau NPN, figurile 29 şi 30.

Page 19: Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa electric ă face parte din circuite speciale ... de oscilator, de redresare (demodulare),

Figura 29. Ieşire pe transistor PNP

La ieşirea din senzor semnalul util depinde de partea electronică activă din circuitul

de ieşire a senzorului, dacă ieşirea este pe bază de tranzistor PNP atunci semnalul util este

cules de pe colectorul tranzistorului faţă de minus.

Figura 30. Ieşire pe transistor NPN

Dacă ieşirea este pe tranzistor NPN atunci semnalul util de ieşire apare între plus şi

colectorul tranzistorului, figura 30.

Aşezarea senzorilor faţă de obiectele ce urmează a fi detectate, figura 31 şi 32.

Figura 31. Detectarea obiectelor din materiale diferite

Page 20: Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa electric ă face parte din circuite speciale ... de oscilator, de redresare (demodulare),

Figura 32. Senzorul de proximitate capacitiv

Apropierea obiectelor de zona sensibilă a senzorului vor efectua influenţe asupra

câmpului electric al zonei active, figura 33. În cazul senzorului capacitiv obiectul ţintă va

schimba caracteristicile unui dielectric, figura 33.

Figura 33. Componentele unui senzor capacitiv

Figura 34. Semnalul util al unui senzor capacitiv

Page 21: Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa electric ă face parte din circuite speciale ... de oscilator, de redresare (demodulare),

Prezenţa obiectului în zona sensibilă a senzorului capacitiv va avea ca efect creşterea

amplitudinii semnalului. Semnalul util oferit de senzor va avea forma din figura 34.

Efectul utilizării senzorilor inductivi sau capacitivi, pentru controlerul logic

programabil este acelaşi, la intrarea controlerului, prezenţa obiectului se percepe prin semnal

de tensiune „1” logic.

Senzorii optici

Pornind de la principiul de funcţionare al senzorilor optici, sesizarea prezenţei

obiectului presupune întreruperea circuitului unei raze luminoase care parcurge traseul de la

emiţător spre receptor. Semnalele şi forma acestora sunt prezentate în figura 35.

Figura 35. Semnalele într-un senzor capacitiv

Filtrul optic are rolul de a selecta radiaţiile utile, a le separa de eventuale perturbaţii

sau reflexii care ar putea denatura funcţionarea senzorului optic. La nivelul receptorului,

partea finală care asigură semnalul util dat de senzor se poate colecta din colectorul sau din

emitorul unui tranzistor, figura 36.

Figura 36. Modalităţi de alimentare ale unui fototranzistor

Modul de colectare a semnalului din emitor sau din colector depinde de tipul de

controler logic programabil. În cazul standului de faţă semnalul util dat de senzor va fi de

24V curent continuu deoarece alimentarea senzorului se realizează la 24 V, aceeaşi tensiune

la care se alimentează şi controlerul logic programabil, figura 37.

Page 22: Cuprins - web.ulbsibiu.roweb.ulbsibiu.ro/laurean.bogdan/html/Timisoara2017.pdf · Rezisten ţa electric ă face parte din circuite speciale ... de oscilator, de redresare (demodulare),

Figura 37. Senzorul optic-principiu de funcţionare