Cercetări asupra unor aliaje cu entropie ridicată …...Finalizarea tezei de doctorat intitulată...

67
UNIVERSITATEA TEHNICĂ “GHEORGHE ASACHI” DIN IAŞI ȘCOALA DOCTORALĂ A FACULTĂŢII DE ȘTIINȚA ȘI INGINERIA MATERIALELOR TEZĂ DE DOCTORAT CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE Conducător de doctorat : Prof. univ.dr.ing. Ioan Carcea Doctorand: Gheorghe Buluc IAŞI, 2017

Transcript of Cercetări asupra unor aliaje cu entropie ridicată …...Finalizarea tezei de doctorat intitulată...

UNIVERSITATEA TEHNICĂ “GHEORGHE ASACHI” DIN IAŞI ȘCOALA DOCTORALĂ A FACULTĂŢII DE ȘTIINȚA ȘI

INGINERIA MATERIALELOR

TEZĂ DE DOCTORAT

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

Conducător de doctorat : Prof. univ.dr.ing. Ioan Carcea

Doctorand: Gheorghe Buluc

IAŞI, 2017

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

Teza de doctorat a fost realizată cu sprijinul financiar al proiectului „ Sistem integrat

de îmbunătățire a calității cercetării doctorale și postdoctorale din România și de

promovare a rolului științei în societate”, POSDRU/159/1.5/S/133652.

Obiectivul general al proiectului a fost reprezentat de creșterea calității programelor de

cercetare doctorală și postdoctorală din România, printr-o abordare integrată și inovativă

(care include sprijin financiar sub forme de burse, pachete de finanțare pentru participarea

la conferințe internationale, subvenții pentru derularea de mobilități transnaționale,

furnizarea de workshop-uri, conferințe și module de formare care să dezvolte competențe de

cercetare și diseminare compatibile cu un mediu academic european și international tot mai

competitiv și mai concentrat pe transferul de cunoștințe în economie).

Finalizarea tezei de doctorat intitulată “Cercetări asupra unor aliaje cu entropie ridicată

rezistente la uzare” a fost posibilă și cu ajutorul proiectului cu titlu “ Noi aliaje/compozite

cu entropie înaltă, cu proprietăți mecanice și anticorosive superioare pentru aplicații la

temperaturi ridicate” CNCS-UEFISCDI prin programul PN-II-PT-PCCA-2013-4-1048.

Obiectivul principal al acestui proiect l-a reprezentat obținerea unor component/probe

pentru deformarea plastică a metalelor (role și lagare laminor) fabricate dintr-un nou

material metalic, respectiv aliaje cu entropie ridicată (HEA) și compozite cu matrice HEA.

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

Mulțumiri

Adresez respectuase mulțumiri domnului prof. dr.ing. Ioan CARCEA, conducătorul

științific al lucrării, pentru profesionalismul cu care m-a ghidat pe drumul către obținerea

titlului de doctor în științe, pentru competența și permanenta îndrumare științifică, pentru

sprijinul real acordat pe întreaga perioadă de desfășurare a doctoratului și a elaborării tezei de

doctorat, observațiile critice extrem de prețioase oferite pe tot parcursul acestei lucrări.

Mulțumesc în mod special membrilor comisiei de doctorat pentru bunăvoința de a-mi

analiza și aprecia conținutul tezei de doctorat și din partea cărora am beneficiat de

recomandări profesionale și anume prof. univ. dr. ing. Gabriela POPESCU, C.S.I Vasile

SOARE și prof. univ. dr. ing. Corneliu MUNTEANU.

Alese mulțumiri adresez și domnului profesor univ.dr.ing Romeu CHELARIU

pentru perioada în care m-a ghidat și pentru sfaturile de înaltă calitate științifică în finalizarea

acestei lucrări.

Îmi exprim recunoștința față de conducerea facultății de Știința și Ingineria

Materialelor pentru sprijinul acordat incă de la începutul acestui drum.

Doresc de asemenea să mulțumesc tuturor colegilor din Departamentul de Știința și

Ingineria Materialelor, special domnului conf.univ. dr.ing. Nicanor CIMPOESU și dl. dr.

ing. Alexandru ENACHE.

O importanță deosebită în realizarea încercărilor experimentale a avut și stagiul de

pregătire de o luna, care s-a desfăsurat în cadrul Institutului de Metale și Tehnologie din

Ljubljana, Slovenia. Doresc să aduc sincere mulțumiri echipei de profesori și cercetători din

cadrul laboratorului de Încercări Mecanice, prof. univ. Bojan PODGORNIK, și dr.ing.

Borut ZUZEK.

Adresez totodată recunoștinta mea către colaboratorii care au făcut posibilă această

reușită: C.S.III, Dumitru MITRICĂ (INCDMNR – IMNR din București), colectivului S.C.

RANCON S.R.L din Iași.

Pentru sprijinul acordat în realizarea unor experimente, mulţumiri alese aduc și asist.

univ. dr. Bogdan ISTRATE din cadrul Facultății de Mecanică

Sincere mulțumiri aduc și colegilor mei care m-au susținut moral și sprijinit

necondiționat: Iulia, Ion, Raluca, Oana și Laura.

Închei prin a adresa mulţumiri din tot sufletul familiei mele pentru sprijinul acordat și

că au fost alături de mine necondiționat.

Totodată, multumesc prietenilor mei care m-au încurajat și m-au susținut pe întreg parcursul

acestei etape: Maria, Alexandra, Manu și Coca.

Acestă reușită este dedicată în memoria surorei mele,

Cu deosebită considerație,

Drd. ing. Gheorghe Buluc

Cristina.

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

CUPRINS Introducere 1

1. Stadiul actual al cercetărilor în domeniul aliajelor cu entropie ridicată 1

1.1 Evoluția aliajelor cu entropie ridicată 1

1.2 Metode de obținere a aliajelor cu entropie ridicată 2

1.3 Proprietăți mecanice, magnetice, chimice și biologice ale aliajelor cu entropie

ridicată 3

1.3.1 Rezistența la oxidare a aliajelor HEA 3

1.3.2 Proprietăți magnetice a aliajelor HEA 3

1.3.3 Proprietăți chimice și biomedicale ale aliajelor HEA 4

1.3.4 Rezistența la uzare a aliajelor HEA 4

1.4 Aplicații ale aliajelor cu entropie ridicată rezistente la uzare 4

2. Considerații termodinamice asupra aliajelor cu entropie ridicată 5

2.1 Definiția aliajelor cu entropie ridicată 5

2.2 Conceptul aliajelor cu entropie ridicată 6

2.3 Influența unor efecte în aliajele HEA 6

2.3.1 Efectul entropiei ridicate 7

2.3.2 Efectul distorsionării severe a rețelei cristaline 7

2.3.3 Efectul împiedicării difuziei 7

2.3.4 Efectul cocktail 7

3. Cercetări experimentale pentru obținerea în laborator a aliajelor cu entropie

ridicată 8

3.1 Obiectivele și metodologia cercetării experimentale a aliajelor HEA 8

3.2 Principii de alegere a compoziției chimice ale aliajelor HEA 9

3.3 Proiectarea compoziției chimice a aliajelor HEA 10

3.4 Elaborarea și turnarea aliajelor HEA 11

3.4.1 Descrierea procesului de topire prin inducție 11

3.4.2 Cuptorul cu inducție de frecvență înaltă 11

3.4.3 Cuptorul cu inducție de tip Linn MFG – 30 cu atmosferă inertă (Ar) 12

4. Cercetări experimentale asupra microstructurii aliajelor cu entropie ridicată 12

4.1 Caracterizarea microstructurală a aliajelor HEA turnate, studiate prin microscopie

optică 13

4.2 Caracterizarea microstructurală a aliajelor HEA turnate, studiate prin microscopie

electronică – SEM 14

4.3 Considerații asupra determinărilor prin difracție cu raze X a aliajelor cu entropie

ridicată investigate 18

5. Cercetări experimentale asupra proprietăților fizico-mecanice ale aliajelor cu

entropie ridicată elaborate 21

5.1 Determinarea experimentală a durității aliajelor cu entropie ridicată investigate 21

5.2 Determinarea experimentală a microdurității aliajelor cu entropie ridicată

investigate 22

5.3 Analiza comportării la compresiune a aliajelor HEA investigate 24

6. Cercetări experimentale asupra proprietăților tribologice ale aliajelor cu entropie

ridicată elaborate 25

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

6.1 Considerații generale tribologice 25

6.2 Determinarea rezistenței la uzare a aliajelor cu entropie ridicată 25

6.3 Pierderea de material și evoluția coeficientului de frecare 26

6.4 Analiza SEM a probelor HEA după uzare 28

7. Cercetări experimentale asupra transformărilor fizico-chimice la temperaturi înalte

a aliajelor cu entropie ridicată elaborate 29

7.1 Proceseul de oxidare a aliajelor HEA 30

7.2 Analiza SEM și EDX la temperatura de 900⁰C, timp de 3h 31

7.3 Analiza SEM și EDX la temperatura de 900⁰C, timp de 6h 35

7.4 Analiza XRD a aliajelor HEA oxidate la temperatura de 900⁰C, timp de 3h 40

7.5 Analiza XRD a aliajelor HEA oxidate la temperatura de 900⁰C, timp de 6h 43

7.6 Metoda de analize “ micro-scratch” a aliajelor HEA 44

8. Implementarea tehnologiei de elaborare-turnare la nivel industrial pentru fabricația

unor repere din aliaje cu entropie ridicată 46

8.1 Considerații generale privind utilizarea aliajelor HEA în industrie 46

8.2 Stabilirea compozițiilor chimice 47

8.3 Agregatul de elaborare 47

8.4 Interacțiunea topiturilor cu creuzetul 47

8.5 Calculul încărcăturii metalice 48

8.6 Elaborarea aliajelor HEA în cuptorul cu inducție 49

8.7 Tehnologia de formare - turnare 49

8.8 Etapele fluxului tehnologic de formare 49

8.9 Turnarea rolelor în forme coji 52

8.10 Răcirea, dezbaterea și curățirea 53

9. Concluzii, contribuții personale și direcții de cercetare 55

Articole științifice publicate în perioada de pregătire pentru doctorat

Bibliografie

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

1

INTRODUCERE

Aliajele cu entropie ridicată (HEA) constituie o clasă nouă de materiale care se

caracterizează prin proprietăți mecanice, magnetice și chimice deosebite. Cercetările privind

producerea și caracterizarea aliajelor multicomponente cu entropie mare s-au bucurat în

ultimii ani de un interes major atât pe plan internațional cât și național. Aplicațiile practice ale

acestor noi tipuri de materiale, obținute în laborator și la nivel de pilot industrial, sunt

determinate de proprietățile fizico-mecanice și chimice, precum și de costurile de fabricație

sau dificultățile de procesare.

Lucrarea de față abordează un domeniu nou al ingineriei materialelor atât pe plan

național cât și internațional. Tema propusă spre cercetare necesită ample cunoștințe de

chimie, fizică, termodinamică și ingineria materialelor.

1. STADIUL ACTUAL AL CERCETĂRILOR ÎN DOMENIUL

ALIAJELOR CU ENTROPIE RIDICATĂ (HEA)

1.1 Evoluția aliajelor cu entropie ridicată

Din punct de vedere istoric privind evoluția dezvoltării de noi materiale și designului

aliajelor, producerea aliajelor și selectarea acestora se baza pe un concept al unui singur

element principal în componența acestora. Acest concept al aliajului a dus la apariţia a

numeroase aliaje practice care au contribuit la dezvoltarea vieţii cotidiene și a civilizaţiei

umane. În consecință, știința materialelor și ingineria aliajelor nu a fost pe deplin explorată

deoarece aliajele din afara schemei convenționale nu au fost incluse [1-3].

Figura 1.1 Numărul de publicații privind cercetarea aliajelor cu entropie ridicată (HEA)

raportate în perioada 2004 – 2015 [1].

Un alt cercetător internațional în explorarea acestui domeniu a fost Cantor și studentul

său, Alain Vincent. Aceștia au realizat mai multe aliaje cu mai multe elemente metalice dar în

proporții egale.

Recordul privind realizarea aliajelor multicomponente constă în amestecarea a 20 de

elemente diferite, fiecare cu 5 procente, în urma căruia s-a format o singură soluție solidă cu

o structură cubică cu fețe centrate (CFC) [4]. Bazându-se pe această compoziție alți

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

2

cercetători au dezvoltat o gamă largă de aliaje formate din șase până la nouă componente

prin adăugarea unor altor elemente cum ar fi: cupru (Cu), titan (Ti), vanadium (V), wolfram

(W), molibden (Mo), taliu (Ta) și germanium (Ge). Acestea au prezentat dentrite primare în

structura lor cubică cu fețe centrate (CFC). Aliajele care au conţinut 20 de elemente metalice,

mangan, crom, fier, cobalt, cupru, argint, wolfram, molibden, rubidiu, aluminiu, cadmiu,

staniu, plumb, bismuth, zinc, germaniu, siliciu, stibiu, magneziu cu concentraţia de 5%

fiecare, a avut o structură multifazică, cristalină şi casantă după prima turnare dar şi după un

număr de n turnări a aceluiaşi aliaj [4-6]. În funcţie de compoziţia chimică şi de procedeul de

elaborare se dovedeşte că aceste aliaje au un spectru larg de microstructuri şi proprietăţi ( în

special mecanice ), unele mult mai bune decât aliajele tradiționale .

1.2 Metode de obținere a aliajelor cu entropie ridicată

Literatura de specialitate arată că metodele cele mai des întalnite în obținerea aliajelor

cu entropie ridicată sunt [1-5]:

Metoda topirii și turnării

Metoda depunerilor

Metoda sinterizării

Metoda turnării și topirii

Cea mai folosită metodă pentru obținerea aliajelor cu entropie ridicată (HEA) este

metoda topirii și turnării. Figura 2 ne oferă o idee a numărului de publicații privind aliajele cu

entropie ridicată (HEA), grupate în funcție de metoda de obținere.

Figura 1.2 Gruparea aliajelor HEA în funcție de metodele de obținere raportate în

publicațiile de specialitate [1].

Se poate observa că aproximativ 75% din publicații au prezentat metoda topirii și

turnării ca metodă principală de obținere a acestor aliaje HEA. Probe din aliaje cu entropie

ridicată sub formă de bare și tăblițe au fost obținute pentru investigarea proprietăților

acestora.

1.3 Proprietățile mecanice, magnetice, chimice și biologice ale

aliajelor cu entropie ridicată

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

3

Literatura de specialitate arată că aliajele HEA au unele proprietăţi mecanice

excelente în comparație cu aliajele convenționale.

Figura 1.3. Valori ale durității unor aliaje HEA în comparație cu ale aliajelor convenționale

cu baza Al, Co, Cr, Cu, FeNi, Ti, V

Duritatea reprezintă o proprietate mecanică importantă a materialelor metalice. În

figura 1.3 sunt redate valorile durității celor mai studiate aliaje HEA în comparație cu valorile

durității aliajelor convenționale.

1.3.1 Rezistența la oxidare a aliajelor HEA În aliajele convenționale, rezistența la oxidare poate fi îmbunătățită în mare măsură

prin adăugarea unor cantități adecvate de Al, Cr, și Si deoarece aceste elemente formează un

strat de oxid dens și stabil pe suprafața aliajului investigat la temperaturi ridicate. [2-4].

1.3.2 Proprietăți magnetice a aliajelor HEA Suprimarea interferenţelor electromagnetice (EMI) este o nouă provocare a cercetării

din domeniul electronicii aflat în plină expansiune. S-a constatat că termoizolarea cu aliaje cu

entropie ridicată (HEA) poate elimina în mod eficient interferenţele electromagnetice, aşa

cum se arată în figura 1.4 [8].

Figura 1.4. Eficacitatea izolării electromagnetice în funcție de frecvența termoizolării

aliajelor cu entropie ridicată [8]

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

4

Studiile efectuate au prezentat posibilitatea de a crea un aliaj cu entropie ridicată

capabil de a fi superconductor la temperaturi scăzute.

1.3.3 Proprietăți chimice și biomedicale ale aliajelor cu entropie ridicată Testele de viabilitate celulară au arătat că celulele osteoblaste au aderat la suprafața

probei din aliajul cu entropie ridicată și un procent ridicat (80%) din celulele vitale au fost

observate pe această suprafață după 72 de ore de incubare

1.3.4 Rezistența la uzare a aliajelor cu entropie ridicată

Figura 1.5. Variația rezistenței la uzare a aliajului cu entropie ridicată Al0.5BxCoCrCuFeNi

funcție de conținutul de bor și de duritate [1]

Rezistența la uzare a fost studiată încă din stadiul incipient al dezvoltării și explorării

lumii aliajelor cu entropie ridicată, cu toate acestea datele experimentale referitoare la aceste

rezultate sunt limitate. Figura 1.5 compară rezultatele rezistenței la uzare a aliajului cu

entropie ridicată Al0.5BxCoCrCuFeNi cu aliajele tradiționale.

1.4 Aplicații ale aliajelor cu entropie ridicată rezistente la uzare Posibilităţile largi de variație a compoziției chimice ale unui aliaj cu entropie ridicată

(HEA) permit satisfacerea oricărei solicitări de proprietate mecanică, chimică sau biologică a

acestor noi materiale

Figura 1.6. Rolă obținută prin laminare la rece din aliajul HEA, Al5Cr12Fe35Mn28Ni28 [2]

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

5

Aceste materiale pot fi folosite pentru forarea unor puțuri de mare adâncime cât și

pentru componente complexe care necesită o duritate mărită și o bună rezistență la uzare. În

general materialele dure (lubrifiate), stabile termic, non-reactive din punct de vedere chimice

sunt ideale pentru astfel de aplicații.

2. CONSIDERAȚII TERMODINAMICE ASUPRA ALIAJELOR CU

ENTROPIE RIDICATĂ (HEA)

Știința care studiază efectele energetice, transformările cantitative de energie și

posibilitățile de desfășurare a proceselor chimice sau fizice se numește termodinamică.

Pentru o bună întelegere a termenului de termodinamică trebuie avute în vedere câteva

noțiuni fundamentale [10-12]:

sistem termodinamic – este definit ca fiind o porțiune din universal material unde au

loc fenomene de schimb de căldură și lucru mecanic.

sistem material – este definit ca fiind o porțiune din spațiu alcătuit din mai multe

corpuri, delimitată de o suprafață bine conturată.

S=kB·lnΩ, (2.1)

kB = 1,3806488 × 10-23

m2 kg s

-2 K

-1 ,constanta lui Boltzmann.

2.1 Definiția aliajului cu entropie ridicată Un aliaj numit ”cu entropie ridicată” este un aliaj constituit din cel puțin cinci

elemente metalice în proporții echiatomice sau non-echiatomice.

Altfel spus, echilibrul sistemului va fi atins atunci când G va atinge valoarea minimă.

Astfel, există relația următoare pentru definirea energiei libere a sistemului:

G= H-TS (2.2)

ΔGmix=ΔHmix-TΔSmix (2.3)

Urmând ipoteza lui Boltzmann, entropia amestecului unui aliaj în proporție total

echiatomică de n – elemente trecând de la o stare de soluție elementară la o stare de soluție

aleatorie (stare ideală), poate fi calculată cu ajutorul ecuației următoare:

ΔSmix=R·ln(n) (2.4)

Cu R = 8,314J.mol-1.

K-1

- constanta gazului ideal.

2.2 Conceptul aliajelor cu entropie ridicată Figura 2.1 arată entropia de amestec calculată cu ecuația 2.4, în funcție de numărul de

elemente din aliaj. Astfel, un aliaj binar și un aliaj de cinci elemente echimolare au entropii

de amestec între 5,76 și 13,37 J.mol-1

. [2]

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

6

Figura 2.1 Evoluția entropiei de amestecare în funcție de numărul de elemente într-un aliaj

echiatomic [2].

Pe baza caracteristicilor din figura 2.1, aliajul HEA trebuie să fie compus, de preferat,

de la 5 până la 13 elemente metalice.

După definiția de mai sus,aliajele au fost regrupate în trei categorii în funcție de

entropia lor de amestec a stării de soluție aleatoare, după cum urmează:

aliaje cu entropie scăzută ( aliaje convenționale), cu unul sau două elemente majore;

aliaje cu entropie medie cu două sau patru elemente majore;

aliaje cu entropie ridicata cu cel puțin cinci elemente majore, cum este reprezentat în

figura 2.1 [2].

Figura 2.2. Aliajele divizate după entropia de amestec a stării de soluție aleatorie [2]

2.3 Influența unor efecte în aliajele HEA

Pe baza cercetărilor efectuate asupra literaturii de specialitate pot afirma că

principalele efecte asupra structurii aliajelor cu entropie ridicată (HEA) sunt [1]:

Efectul entropiei ridicate

Efectul împiedicării difuziei

Efectul distorsionării severe a rețelei cristaline

Efectul de „cocktail”, care indică obținerea unor proprietăți deosebite din

amestecarea unui număr suficient de mare de elemente de aliere.

2.3.1 Efectul entropiei ridicate Numărul de faze este mult mai mic decât numărul maxim permis de către legea lui

Gibbs. Acest lucru implică faptul că în aliajul cu entropie ridicată, crește solubilitatea de

elemente în cadrul aceleași faze şi împiedică formarea de compuşi intermetalici multipli.

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

7

2.3.2 Efectul distorsionării severe a rețelei cristaline Deoarece fazele soluţiilor solide cu elementele principale sunt de obicei găsite în

aliajele cu entropie ridicată, conceptul structurii cristaline clasice este astfel extins pornind de

la o bază de unul sau două elemente la una multielementară. Figura 2.4 arată exemple de

structuri cristaline CVC şi CFC care încorporează cinci elemente principale.

Figura 2.4. Structură cubică cu volum centrat (CVC) (a) și cubică cu fețe centrate (CFC) (b),

cu 5 elemente principale [30]

2.3.3 Efectul împiedicării difuziei Transformările de fază depinzând de difuzia atomică necesită împrăștierea de

elemente omogene pentru a realiza echilibrul între faze [13]. Acest lucru, în combinaţie cu o

denaturare a rețelei care împiedică mişcarea atomică, limitează o difuzie eficientă.

2.3.4 Efectul cocktail Aliajele cu entropie ridicată (HEA) pot fi considerate ca fiind aliaje de tip compozit.

Figura 2.6. Proprietățile mecanice ale aliajelor cu entropie ridicată (HEA) comparate cu

proprietățile unor materiale utiliate în industria aeronautică [13]

Aliajele cu entropie ridicată oferă proprietăţi mecanice mai interesante decât aliajele

tradiționale. În figura 2.6 este comparată rezistența la curgere a superaliajelor INCONEL718

și HAYNESS230 cu rezistența la curgere a aliajului cu entropie ridicată

V20Nb20Mo20Ta20W20.

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

8

3. CERCETĂRI EXPERIMENTALE PENTRU OBȚINEREA ÎN

LABORATOR A ALIAJELOR CU ENTROPIE RIDICATĂ

Nevoia de dezvoltare și de obținere de noi materiale metalice cu proprietăți deosebite

este într-o continuă arie de cercetare. Pe plan internațional, interesul cercetării asupra alaijelor

cu entropie ridicată a crescut de la an la an, incepând cu anul 1995.

3.1 Obiectivele și metodologia cercetării experimentale a unor aliaje cu

entropie ridicată

Metodologia cercetărilor realizate a urmărit o planificare a experimentelor în ceea ce

privește caracterizarea structurală și investigarea proprietăților mecanice ale acestora. Scopul

principal al tezei de doctorat îl reprezintă obținerea de aliaje cu entropie ridicată (HEA) și

investigarea proprietăților mecanice ale acestora, cu posibile aplicații industriale.

Pentru îndeplinirea acestui obiectiv s-au parcurs urmatoarele etape:

1. Elaborarea și turnarea unui număr de șapte aliaje cu entropie ridicată (HEA).

2. Caracterizarea microstructurală a aliajelor HEA obținute prin diferite metode de

investigare: microscopie electronică (SEM), microscopie optică, XRD.

3. Testarea proprietătilor mecanice ale aliajelor HEA investigate.

4. Testarea proprietăților tribologice ale aliajelor HEA obținute.

5. Testarea rezistenței la oxidare a aliajelor HEA investigate.

6. Testarea aliajelor HEA prin aplicații industriale.

Tabelul 3.2 Cercetări efectuate și laboratoarele implicate în realizarea tezei de doctorat.

Cercetări experimentale

Laboratoarele implicate

Obținerea de aliaje cu entropie

ridicată (HEA)

- Universitatea Tehnică „Gheorghe Asachi” din Iași,

Facultatea S.I.M, Laboratorul de turnare a aliajelor

neferoase.

- Institutul Național de Cercetare - Dezvoltare pentru

Metale Neferoase și Rare București, Departamentul

Echipamente și Tehnologii Noi.

Caracterizarea structurală a

aliajelor HEA prin microscopie

optică

- Institutul de Metale și Tehnologie din Ljubljana,

Slovenia.

Caracterizarea structurală a

aliajelor HEA prin microscopie

electronică

- Universitatea Tehnică „Gheorghe Asachi” din Iași,

Facultatea SIM, Laboratorul de microscopie electronică.

Analiza XRD a aliajelor HEA

- Universitatea Tehnică „Gheorghe Asachi” din Iași,

Facultatea de Mecanică, Laboratorul de Nanomateriale

Analiza privind rezistența la

uzare a aliajelor HEA

- Institutul de Metale și Tehnologie din Ljubljana, Slovenia

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

9

Analiza privind aliajelor HEA

investigate

- Institutul de Metale și Tehnologie din Ljubljana, Slovenia

Analiza privind microduritatea

aliajelor HEA investigate

- Institutul Național pentru Tribologie Avansată,

Laboratorul de Nanometrologie, Universitatea din

Southampton, Anglia

Analiza privind rezistența la

compresiune a aliajelor HEA

investigate

Universitatea Tehnică „Gheorghe Asachi” din Iași,

Facultatea de Mecanică, Laboratorul de Încercări mecanice

Analize privind rezistenta la

oxidare a aliajelor HEA

Universitatea Tehnică „Gheorghe Asachi” din Iași,

Facultatea S.I.M, Laboratorul de Aliaje Neferoase

Facultatea de Mecanică, Iași

Turnarea rolelor de laminor din

aliaje HEA

S.C RANCON IAȘI

3.2 Principii de alegere a compoziției chimice a aliajelor cu entropie

ridicată investigate. Principiul care fundamentează existența aliajelor cu entropie ridicată (HEA) este

următorul: soluțiile solide formate prin dizolvarea mai multor elemente principale de aliere

sunt mult mai stabile la temperaturi ridicate:

stabilirea aplicației pentru care vor fi folosite (uzare, coroziune, temperatură ridicată,

automobile etc.),

calculul entropiei configuraționale, care în cazul aliajelor HEA trebuie să fie cel puțin

egală cu 1,5R,

calculul diferenței razelor atomice, care trebuie să fie cel mult egală cu 6%, pentru

formarea soluțiilor solide,

concentrația electronilor de valență (VEC-Valence Electron Concentration), care

oferă indicații asupra tipului de soluție solidă care se poate forma, VEC < 7,55 soluție

solidă cub cu volum centrat, VEC > 7,80 soluție solidă cub cu fețe centrate.

diferența de electronegativitate, Δγ, care trebuie să fie cuprinsă între 3 și 6 % pentru a

se forma doar soluții solide.

3.3 Proiectarea compoziției chimice a aliajelor cu entropie ridicată

investigate Pentru calculul mărimilor utile în proiectarea compoziției chimice s-au utilizat

următoarele relații [15-18]:

∆𝑺𝒎𝒊𝒙 = −𝑹 ∙ 𝒄𝒊 ∙ 𝒍𝒏𝒄𝒊 (3.6)

în care ΔSmix (J/mol K) este entropia de amestecare, R (8.134 J/mol K) este constanta

universală a gazului ideal, ci este procentul atomic, iar ln este logaritmul natural.

𝜹 = 𝟏𝟎𝟎 ∙ 𝒄𝒊 ∙ 𝟏 −𝒓𝒊

𝒓 𝟐

(3.7)

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

10

Având în vedere aceste cerințe am ales să elaborez următoarele aliaje HEA

simbolizate în lucrare, sub următoarele coduri:

Pentru cercetările efectuate în actuala lucrare de doctorat au fost propuse șapte aliaje

HEA a căror compoziții chimice sunt indicate în tabelul 3.4.

Tabelul 3.4 Compozițiile chimice ale aliajelor HEA investigate

Metal/

Aliaj

HEA1 HEA2 HEA3 HEA4 HEA5 HEA6 HEA7

%a %m %a %m %a %m %a %m %a %m %a %m %a %m

Fe 20 22,4 20 21,9 20 22,5 30 32,3 20 19,6 31 32,5 25 26,5

Ni 20 23,5 20 22,0 20 23,6 10 11,3 20 20,6 12 13,2 17 19,0

Cr 20 20,8 20 19,5 20 20,9 30 30,0 20 18,2 32 31,2 33 32,6

Mn 20 22,0 6,67 6,9 20 22,1 20 21,2 20 19,3 20 20,6 17 17,8

Cu - 20 23,8 - - - - 20 22,3 - - - -

Al - 6,67 3,4 20 10,9 10 5,2 - - 5 2,5 8 4,1

Si 20 11,3 6,66 3,5 - - - - - - - - - -

Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100

3.4. Elaborarea și turnarea aliajelor cu entropie ridicată (HEA)

Obținerea aliajelor cu entropie ridicată se poate realiza prin trei mari metode așa cum

este ilustrat în figura 3.1.

Aliaj HEA Standardizare

FeNiCrMnSi HEA1

FeNiCrCuMnSiAl HEA2

FeNiCrMnAl HEA3

FeNiCrMnAl HEA4

FeNiCrMnCu HEA5

FeNiCrMnAl HEA6

FeNiCrMnAl HEA7

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

11

Figura 3.1 Metode de obținere a aliajelor HEA [2]

Pentru elaborarea și obținerea aliajelor HEA am folosit metoda topirii și turnării

utilizându-se trei cuptoare cu inducție:

1. Cuptorul electric cu încălzire prin inducție de înaltă frecvență;

2. Cuptorul electric cu încălzire prin inducție de tip Linn MFG – 30 cu funcționare în vid

și atmosferă inertă de argon;

3. Cuptorul electric cu încălzire prin inducție de medie frecvență.

3.4.1. Descrierea procesului și topirea prin inducție Gradul de agitare electromagnetică este proporţional cu puterea indusă şi raportul d0 hi

şi invers proporţional cu frecvenţa curentului. Vitezele de topire și amestecare pot fi

controlate printr-o atentă selecţie a frecvenței și puterii [18].

Cuptoarele de topire cu inducţie sunt de trei tipuri:

de frecvență joasă (60 Hz)

de frecvență medie (200 – 1.200 Hz)

de frecvență înaltă ( > 1.200 Hz)

3.4.2 Cuptorul cu inducție de frecvență înaltă

Elaborarea și obținerea aliajelor HEA din gama FeNiCrMnSi, FeNiCrCuMnSiAl,

FeNiCrMnAl, FeNiCrMnCu, respectiv, HEA1, HEA2, HEA4, HEA5, HEA6 s-a realizat cu

ajutorul cuptorului cu inducție la frecvență înaltă și atmosferă normal din cadrul Facultății de

Știința și Ingineria Materialelor din Iași. În continuare este prezentat fluxul tehnologic de

obținere a aliajelor HEA prin metoda si turnării cu ajutorul cuptorului cu inducție de

frecvență înaltă.

Pulverizare,

PLD,ALD,

MBE, Depunere

chimică

Aliaje cu entropie ridicată (HEA)

Procesare aliaje

HEA în stare

stare solidă

Topirea cu arc în vid, topirea cu arc

electric, topirea prin inducție, topirea cu

laser, depuneri cu laser și metoda LENS

Procesare aliaje

HEA în stare

lichidă

Procesare aliaje

HEA în stare de

vapori Aliere mecanică

Elemente componente

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

12

Figura 3.4 Schema fluxului

tehnologic de obținere a aliajelor cu

entropie ridicată (HEA) cu ajutorul

cuptorului cu inducție de frecvență

înaltă

Figura 3.5 Fluxul tehnologic de obținere

a aliajelor HEA cu ajutorul cuptorului cu

inducție Lin MFG – 30

3.4.3. Cuptorul cu inducție de tip Linn MFG – 30 cu atmosferă inertă (Ar)

Elaborarea aliajelor HEA din sistemul FeNiCrMnAl, respectiv, HEA3 si HEA7, s-a realizat

într-un cuptor cu inducţie de tip Linn MFG – 30 (figura 3.5 ) cu atmosferă controlată (Ar).

4. CERCETĂRI EXPERIMENTALE ASUPRA MICROSTRUCTURII

ALIAJELOR CU ENTROPIE RIDICATĂ (HEA) ELABORATE.

Pentru caracterizarea aliajelor HEA obţinute, probele metalografice au fost realizate și

pregatite conform STAS 420 –74. Probele cilindrice cu diametrul de 20 mm și o grosime de

12 mm au fost obţinute şi investigate microstructural.

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

13

4.1 Caracterizarea microstructurală a aliajelor HEA studiate prin

microscopie optică

Echipamentul utilizat în vederea analizelor microsctructurale prin

microscopie optică a fost un Microscop Optic Microphot FXA, cu o cameră foto Hitachi HV-

C20A 3CCD, prezentat în figura 4.1.În figurile 4.2.- 4.8. sunt prezentate microstructurile

optice ale aliajelor HEA investigate la o scară de 50 microni și 200 microni.

Figura 4.2. Microstructuri optice ale aliajului cu entropie ridicată HEA1, FeNiCrMnSi.

Figura 4.3. Microstructuri optice ale aliajului cu entropie ridicată HEA2, FeNiCrCuMnSiAl.

Figura 4.4. Microstructuri reprezentative ale aliajului cu entropie ridicată HEA3,

FeNiCrMnAl.

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

14

Figura 4.5. Microstructuri reprezentative ale aliajului cu entropie ridicată HEA4,

FeNiCrMnAl

Figura 4.6. Microstructuri reprezentative ale aliajului cu entropie ridicată HEA5,

FeNiCrMnCu

Analiza microstructurilor aliajelor HEA indică faptul că toate aliajele au o structură

dendritică. Limitele de graunte primar sunt dificil de vizualizat, cu excepția aliajului HEA3 și

HEA7

4.2 Caracterizarea microstructurală a aliajelor HEA turnate,

studiate prin microscopie electronică – SEM, în stare turnată.

Microscopia electronică este o metodă importantă de caracterizare micro

structurală și de studiu a materialelor metalice. Probele obținute din aliajele HEA avute în

vedereacercetării microstructurale au fost curațate și atacate chimic timp de 20 de secunde cu

soluție de NITAL 2%.

a)

b)

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

15

Figura 4.10. Analiza SEM a aliajului HEA1

a) Imagine de microscopie elctronică pentru aliajul HEA – FeNiCrMnSi; b) distribuția tuturor

elementelor, c) distribuția fierului; d) distribuția cromului; e) distribuția nichelului;

f) distribuția manganului; g) distribuția siliciului;

În urma analizelor SEM efectuate asupra aliajului HEA FeNiCrMnSi se poate spune

că aliajul investigat are o structură omogenă, elementele chimice componente găsindu-se

distribuite în toată structura aliajului.

a)

Figura 4.11. Analiza SEM a aliajului HEA2

a) distribuția tuturor elementelor în aliajul HEA– FeNiCrMnCuAlSi

Studile efectuate asupra microstructurii aliajului HEA2, FeNiCrMnCuAlSi, au arătat

o structură dentritică cu un conținut mare de mangan și cupru. De asemenea, se pot vizualiza

mici separari de aluminiu.

Spectrul energiilor din figura 4.10 - b ne oferă prezența a cinci peak-uri de energii

corespunzătoare elementelor metalice crom, mangan, fier, cupru și nichel ceea ce sugerează

că participă la mai multe legături în formarea aliajelor.

a)

b)

c)

d)

e)

f)

g)

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

16

c)

d)

e)

f)

g)

Figura 4.12. Analiza SEM a aliajului HEA3

a) Imagine de microscopie elctronică pentru aliajul HEA – FeNiCrMnAl

b) distribuția tuturor elementelor în aliajul HEA c) distribuția fierului d) distribuția nichelului

e) distribuția cromului f) distribuția manganului g) distribuția aluminiului

Figura 4.13. Analiza SEM a aliajului HEA4

a) Imagine SEM a aliajului HEA FeNiCrMnAl

b) distibuția tuturor elementelor c) distribuția fierului d) distribuția nichelului e) distribuția

cromului f) distribuția manganului g) distribuția aluminiului

În microstructura aliajului HEA4 se observă formațiuni dentritice de crom și fier în

toată suprafața aliajului. De asemenea, sunt vizibile separări de aluminiu și nichel. Manganul

este distribuit uniform în toată suprafața aliajului HEA4.

a)

b)

c)

d) e)

f) g)

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

17

Figura 4.14. Analiza SEM a aliajului HEA5

a) Imagine SEM a aliajului FeNiCrMnCu

b) distribuția tuturor elementelor c) distribuția fierului d) distribuția nichelului e) distribuția

cromului f) distribuția manganului g) distribuția cuprului

În urma analizei SEM a aliajului HEA5, FeNiCrMnCu, se pot observa separări de

crom în structură. De asemenea, nichelul este distribuit uniform în suprafața aliajului. Fierul

formează compuși intermetalici cu cromul.

Figura4.15.Analiza SEM a aliajului HEA6

a)

b)

c)

d)

e)

f)

g)

a)

b)

c)

d)

e)

f)

g)

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

18

a) Imagine SEM a aliajului HEA FeNiCrMnAl

b) distribuția tuturor elementelor c) distribuția fierului d) distribuția nichelului e) distribuția

cromului f) distribuția manganului g) distribuția aluminiului

Analiza SEM a aliajului HEA6, FeNiCrMnAl, arată o separare a aluminiului. De

asemenea, se poate observa o distribuție uniformă în toată suprafața a manganului și fierului

4.3 Considerații asupra determinărilor prin difracție X a aliajelor HEA

studiate.

Difractometria cu radiații X reprezintă o tehnică non - distructivă utilizată la

identificarea şi determinarea calitativă și cantitativă a compuşilor chimici metalici şi

nemetalici numiţi și faze.

Figura 4.17. Difractometrul cu raze X – X’PERT PRO MRD [Munteanu și colab.,2010]

În continuare sunt prezentate difractogramele XRD investigate în prezenta lucrare de

doctorat:

Figura 4.18 Difractograma aliajului HEA1

Position [°2Theta] (Copper (Cu))

20 30 40 50 60 70 80 90 100

Counts

0

5000

10000

15000

0 1

0; N

i Fe

0 0

2 0 1

2; M

n3 N

i2 S

i

0 1

-1; F

e2 M

n Si

; Mn6

Ni1

6 Si

7; M

n4 F

e Si

3; F

e1.6

0 M

n8.4

0 Si

6

1 0

1; N

i Fe;

Mn6

Ni1

6 Si

7

1 -1

-1; N

i Fe;

Mn3

Ni2

Si

1 1

1; M

n6 N

i16

Si7;

Mn4

Fe

Si3;

Fe1

.60

Mn8

.40

Si6

1 1

3; M

n6 N

i16

Si7;

Mn4

Fe

Si3;

Fe1

.60

Mn8

.40

Si6

0 1

-3; M

n4 F

e Si

3; F

e1.6

0 M

n8.4

0 Si

6

0 1

5; N

i Fe

1 2

1; M

n6 N

i16

Si7

2 -1

2; M

n3 N

i2 S

i; M

n6 N

i16

Si7

2 -1

0; M

n6 N

i16

Si7

2 -1

3; N

i Fe;

Mn4

Fe

Si3;

Fe1

.60

Mn8

.40

Si6

2 -1

-1; M

n4 F

e Si

3; F

e1.6

0 M

n8.4

0 Si

62

1 2;

Mn3

Ni2

Si;

Mn4

Fe

Si3;

Fe1

.60

Mn8

.40

Si6

0 0

6; N

i Fe;

Mn6

Ni1

6 Si

7; M

n4 F

e Si

3; F

e1.6

0 M

n8.4

0 Si

6

1 -3

22

-2 3

; Fe1

.60

Mn8

.40

Si6

1 0

-5; N

i Fe;

Fe1

.60

Mn8

.40

Si6

0 3

-2; F

e1.6

0 M

n8.4

0 Si

62

1 6;

Fe1

.60

Mn8

.40

Si6

2 -3

0; F

e1.6

0 M

n8.4

0 Si

6

HEA1

Search Unit Cell Result 1

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

19

Figura 4.19 Difractograma aliajului HEA5

Figura 4.20 Difractograma aliajului HEA2

Figura 4.21 Difractograma aliajului HEA4

Position [°2Theta] (Copper (Cu))

20 30 40 50 60 70 80 90 100

Counts

0

10000

20000

30000

40000

1 0

1; A

l7 C

u4 N

i

1 0

2; (

Fe0

.9 N

i0.1

)0

0 2;

( F

e0.9

Ni0

.1 )

; Fe

3 N

i21

1 1;

Fe3

Ni2

0 1

-1;

Al7

Cu4

Ni

1 1

0; F

e3 N

i2;

Al7

Cu4

Ni

0 1

1; A

l7 C

u4 N

i

2 1

2; A

l7 C

u4 N

i1

0 4;

Fe3

Ni2

1 2

2; A

l7 C

u4 N

i1

2 0;

Fe3

Ni2

2 0

4; (

Fe0

.9 N

i0.1

)2

1 0;

( F

e0.9

Ni0

.1 )

; Fe

3 N

i2

HEA5

Search Unit Cell Result 1

Position [°2Theta] (Copper (Cu))

20 30 40 50 60 70 80 90 100

Counts

0

2000

4000

6000

8000

0 2

0; A

l65

Cu20

Fe1

5

1 0

0; A

l5 F

e Ni

1 0

-5; A

l5 F

e Ni

; Al6

5 Cu

20 F

e15

1 2

1; (

Fe0.

5 M

n0.2

Ni0

.3 );

Al9

Mn3

Si

1 -1

-1; F

e Ni

; Al5

Fe

Ni; A

l9 M

n3 S

i1

2 -1

; Fe2

Mn

Si1

-3 -4

; Al5

Fe

Ni0

0 4;

Al6

5 Cu

20 F

e15;

Al9

Mn3

Si

0 2

-1; (

Fe0

.5 M

n0.2

Ni0

.3 );

Al5

Fe

Ni; A

l9 M

n3 S

i

2 -1

-3; A

l9 M

n3 S

i2

0 -8

; ( F

e0.5

Mn0

.2 N

i0.3

)0

0 6;

Al9

Mn3

Si;

( Al0

.6 S

i0.4

) Ni

32

-4 -7

; Al6

5 Cu

20 F

e15

0 6

12

0 8

111

0 4;

( Fe

0.5

Mn0

.2 N

i0.3

); A

l9 M

n3 S

i

2 0

0; A

l9 M

n3 S

i

2 4

2; (

Fe0.

5 M

n0.2

Ni0

.3 );

Al9

Mn3

Si

( Al0

.6 S

i0.4

) Ni

3

HEA2

Search Unit Cell Result 1

Position [°2Theta] (Copper (Cu))

20 30 40 50 60 70 80 90 100

Counts

0

2000

4000

44,3

33 [

°];

0,2

33 [

°]

64,3

43 [

°];

0,6

20 [

°]

81,5

47 [

°];

0,4

41 [

°]

HEA4

Position [°2Theta] (Copper (Cu))

20 30 40 50 60 70 80 90 100

Counts

0

2000

4000

Ni3

Fe

Ni3

Fe

Ni3

Fe

Al Fe

Al Fe

Ni3

Fe

Al Fe

Ni3

Fe

HEA4

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

20

Figura 4.22 Spectrele difracţiei de raze X pentru aliajele HEA3 - (a) și

HEA7 – (b)

Aliajele din sistemul Fe-Cr-Ni-Mn-Al prezintă o structură formată majoritar din

soluția solidă CVC de tip A2 (figura 4.22), conținând în procente reduse faze D03 (tabelul

4.4). Conform datelor din literatura de specialitate, fazele D03 și A12 se formează in urma

descompunerii fazei A2.

Tabelul 4.3 Parametrii compuşilor identificaţi în urma analizei XRD

Compus

Grup

Spațial

Sistem de

cristalizare

a

(Å)

b

(Å)

C

(Å)

α

(⁰)

β

(⁰)

γ

(⁰)

Volumul

celulei

106pm

3

Aliajul

HEA1

Fe1.6Mn8.4Si6 P63/mcm Hexagonal 6,88 6,88 4,7861 90 90 120 196,48

Fe2MnSi Fm-3m Cubic 5.59 5.59 5.59 90 90 90 174,68

FeMn4Si3 P63/mcm Hexagonal 6,88 6,88 4,78 90 90 120 196,40

FeNi Pm Monoclinic 3,58 3,58 3,58 90 90 90 46,01

Mn3Ni2Si Fd-3m Cubic 10,7 10,7 10,7 90 90 90 1244,7

Mn6Ni1.6Si7 Fm-3m Cubic 11,1 11,1 11,1 90 90 90 1363,9

Aliajul

HEA2

Al0.6Ni3Si0.4 Pm-3m Cubic 3,54 3,54 3,54 90 90 90 44,63

Al5FeNi P63/mmc Hexagonal 7,69 7,69 7,69 90 90 120 392,45

Al9Mn3Si P63/mmc Hexagonal 7,51 7,51 7,51 90 90 120 378,60

Al65Cu20Fe15 Pmmm Ortorombic 14,86 16,8 16 90 90 90 4012,04

Fe0.5Mn0.2Ni0.3 Fm-3m Cubic 3,59 3,59 3,59 90 90 90 40,35

Fe2MnSi Fm-3m Cubic 5,59 5,59 5,59 90 90 90 174,68

FeNi Cubic 3,51 3,51 3,51 90 90 90 43,81

Aliajul AlFe Pm-3m Cubic 2,91 2,91 2,91 90 90 90 24,64

ss type D03ss type A2 HEA-R1X - Start: 13.909 °

In

ten

sit

y (

cp

s)

0

100

200

300

400

2Theta (deg)

25 30 40 50 60 70 80 90 100 110 120

a

ss type A2

ss type A12 (alpha-Mn)

ss type D03

Es_421_1 HEA4_XIn

ten

sit

y (

CP

S)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

2-Theta - Scale

34 40 50 60 70 80 90 100 110

b

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

21

HEA4 FeNi3 Pm-3m Cubic 3,54 3,54 3,54 90 90 90 44,55

Aliajul

HEA5

Al7Cu4Ni R-3m Romboedric 4,1 4,1 39,7 90 90 120 583,30

Fe0.9Ni0.1 P63/mmc Hexagonal 2,45 2,45 3,96 90 90 120 20,64

Fe3Ni2 Fm-3m Cubic 3,59 3,59 3,59 90 90 90 46,58

Analiza XRD a arătat că faza predominantă a aliajului HEA1 este Fe1.6Mn8.4Si6 având

o structură cristalografică de tip hxagonală. Fazele identificate în componența aliajului HEA1

au fost de tipul: Fe2MnSi cu o structură cristalografică de tip cubică, FeMn4Si3 cu o structură

cristalografică de tip hexagonal, FeNi cu o structură cristalografică de tip monoclinic și

Mn3Ni2Si cu o structură cristalografică de tip cubică.

Tabelul 4.4. Parametrii compuşilor identificaţi în urma analizei XRD pentru aliajele HEA3 și

HEA7

Tip faza Baza S-Q(%ms.) Bibliografie

HEA3

Soluţie solidă CVC tip A2 Ni,Cr,Fe ~ 80 01-071-3763 (A)

Soluţie solidă cubică complexă tip D03 AlFe3 ~ 20 03-065-4682 (A)

HEA7

Soluţie solidă cubică complexă tip D03 AlFe3 ~ 4,7 03-065-4682 (A)

Soluţie solidă cubică complexă tip A12 α-Mn ~ 1,2 01-071-7541 (A)

5. CERCETĂRI EXPERIMENTALE ASUPRA PROPRIETĂȚILOR

FIZICO-MECANICE ALE ALIAJELOR CU ENTROPIE RIDICATĂ

ELABORATE

Investigarea proprietăților mecanice ale aliajelor HEA a reprezentat o mare parte din

publicațiile în acest domeniu mai ales privind duritatea, microduritatea și comportamentul la

compresiune. Aplicațiile tehnice ale aliajelor HEA necesită o mare atenție privind aceste

proprietăți.

5.1 Determinarea experimentală a durității aliajelor HEA investigate

Având în vedere faptul că aceste aliaje sunt destinate unor aplicații unde rezistența la

uzare este o proprietate critică au fost făcute încercări de duritate și microduritate pentru toate

aliajele HEA și încercări de compresiune pentru trei aliaje HEA cu compoziții chimice

diferite semnificativ și pentru care au putut fi realizate epruvete corespunzătoare .

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

22

Tabelul 5.2 Valorile durității aliajelor HEA investigate

Valorile din tabelul 5.2 arată că siliciul, ca element principal de aliere, determină creșterea

durității aliajului HEA1 la valori semnificativ mai mari decât duritatea celorlalte aliaje, de

circa 2 ori mai mare în comparație cu valoarea aliajului HEA4.

Figura 5.2 Valori ale durității ale aliajelor HEA investigate

5.2 Determinarea experimentală a microdurității a aliajelor HEA

investigate

S-au efectuat mai multe încercări pe probă, în linie, pe toată suprafața probelor

examinate. Determinările s-au făcut cu ajutorul unui penetrator de tip piramidă, greutatea de

apăsare pe probă a fost de 100 g, timp de 30 de secunde iar distanța dintre amprente de 200

µm pentru a nu periclita microstructura. În continuare sunt redate analizele microdurității

realizate cu dispozitvul Alicona Optical 3D Surface Metrology.

Marca materialului

Condițiile

încercării Duritatea

HV

Duritatea

Rockwell

Duritatea

Brinell F

[kgf]

t

[s]

1. HEA1 – FeNiCrMnSi 1 15 948 68 -

2. HEA2 - FeNiCrCuMnSiAl 1 15 441 44 415

3. HEA3 – FeNiCrMnAl 1 15 475 47 450

4. HEA4 – FeNiCrMnAl 1 15 412 42 390

5. HEA5 – FeNiCrMnCu 1 15 184 - 175

6. HEA6 – FeNiCrMnAl 1 15 420 43 394

7. HEA7 – FeNiCrMnAl 1 15 465 46 444

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

23

Figura 5.4 Determinarea microdurității aliajului HEA2

Figura 5.5 Determinarea microdurității aliajului HEA3

Figura 5.8 Determinarea microdurității aliajului HEA6.

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

24

Valorile microdurității Vickers au fost determinate cu ajutorul relaţiei:

HV = 20000 · P/N2 [daN/mm

2], unde:

P= forța de apăsare,

N2

= numarul de diviziuni

Rezultatele privind valorile microdurităţii sunt prezentate în tabelul 5.3

Tabelul 5.3 Valori ale microdurităţii pentru aliajele HEA investigate

Aliaj HEA P

[g]

T

[s]

HV

[daN/mm2]

HEA2 100 30 473,37

HEA3 100 30 408,16

HEA4 100 30 459,13

HEA5 100 30 236,29

HEA6 100 30 555

HEA7 100 30 470,18

În urma determinării microdurității aliajelor HEA s-au putut observa diferențe mari

ale valorilor urmelor lasate pe suprafața lor pentru fiecare încercare efectuată.

5.3 Analiza comportării la compresiune a aliajelor HEA investigate

Investigarea rezistenței la compresiune a aliajelor HEA s-a realizat pe epruvete scurte

cu formă cilindrică (l0 ≤5⋅d0) pentu evitarea apariției fenomenului de flambaj.

Dimensiunile probelor aliajelor HEA au fost următoarele: d0=10 mm, l0=20 mm.

Probele cilindrice au fost așezate între platourile echipamentului utilizat cu o centrare a

acestora cât mai corectă.

În figura 5.12 este reprezentat graficul tensiune-deformație obținut în urma

comprimării aliajelor HEA2, HEA3 și HEA5.

Figura 5.12 Curbe de compresiune caracteristice aliajelor HEA2, HEA3 și HEA5

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

25

Tabelul 5.4 Proprietățile mecanice ale aliajelor HEA investigate.

Aliaj/

Proprietate mecanică

HEA5

FeNiCrMnCu

HEA2

FeNiCrCu(MnSiAl)

HEA3

FeNiCrMnAl

E, [GPa] 56 96 142

Rezistența la

curgere, [MPa] 150 435 539

Rezistența la rupere,

[MPa] 508 600 895

Deformația relativă

la rupere, [%] 20 8 14

Valorile proprietăților mecanice sunt în concordanță cu microstructura și duritatea

aliajelor investigate. Aliajul care are doar cuprul ca element principal de aliere, pe lângă fier,

nichel, crom și mangan, are cele mai mici valori ale rezistenței mecanice, însă și cea mai

mare deformație relativă la rupere.

6. CERCETĂRI EXPERIMENTALE ASUPRA PROPRIETĂȚILOR

TRIBOLOGICE ALE ALIAJELOR CU ENTROPIE RIDICATĂ

ELABORATE

6.1 Considerații generale tribologice

Tribologia este o ramură a științei care studiază procesele de uzare și frecare.

Uzarea este un proces important în studierea aliajelor HEA. În general, tribocoroziunea este

definită ca o degradare a materialelor care rezultă dintr-o combinație de procese tribologice și

electrochimice.

6.2 Determinarea rezistenței la uzare a aliajelor HEA Echipamentul utilizat în vederea investigării rezistenței la uzare și a determinării

coeficientului de frecare a fost un tribometru de tip „ pin-on-disk ” prezentat în figura 6.1.

Bila utilizată este din Al2O3 de dimensiune 6 mm diametru. Încercările privind rezistența la

uzare s-au realizat în regim de frecare uscată folosindu-se parametrii din tabelul 6.1.

După realizarea încercărilor la uzare aliajele HEA investigate au fost analizate cu

ajutorul microscopului confocal ALICONA G4 cu care s-a calculat pierderea de material dar

și cu ajutorul microscopului electronic. Pe baza volumului de material pierdut în timpul

testelor, se calculează coeficienții de frecare a mai multor materiale în stare solidă, prin

modificarea anumitor parametri de lucru: timp, viteză, sarcină, temperatură și umiditate.

Figura 6.2 Schema de principiu a tribometrului de tip pin-on-disc

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

26

Coeficientul de frecare a fost monitorizat pe întreaga durată a testării aliajelor HEA

privind rezistența la uzare, după care s-a măsurat pierderea de volum cu ajutorul

microscopului ALICONA G4 ilustrat în figura 6.2

Figura 6.2. Echipamentul Alicona Infinty Focus G4

Probe ale aliajelor investigate au fost debitate și pregătite metalografic cu pânze

abrazive de diferite dimensiuni ale granulației. Înainte de a fi supuse procesului de uzare

probele s-au cântărit cu ajutorul unei balanțe analitice de tipul ALT 250 - 4B.

6.3 Pierderea de material și evoluția coeficientului de frecare

Coeficientul de frecare ( µ ) reprezintă un parametru important în analiza rezistenței la

uzare a aliajelor HEA. Valorile coeficientului de frecare pentru aliajele HEA studiate sunt

prezentate în figurile de mai jos.

Figura 6.18. Coeficientul de frecare pentru aliajele HEA1-HEA7, în primele 20 s.

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

27

Figura 6.19. Coeficientul de frecare pentru aliajul HEA1- HEA7 pentru 1667 s.

S-a observat că în primele 20 de secunde ale analizei privind comportamentul

tribologic al aliajelor HEA apar mari fluctuații ale coeficientului de frecare. În intervalul 20

sec - 1667 sec, coeficientul de frecare a înregistrat o mișcare constantă.

Creșterea bruscă a coeficientului de frecare dupa 20 de secunde este pusă pe seama

abraziunii iniţiale la trecerea bilei de alumină pe suprafața materialului.

Particulele ceramice sunt aruncate de pe suprafaţă în condițiile mișcării de alunecare

alternativă a bilei de alumină.

Valoarea cea mai mare a coficientului de frecare în primele 20 sec a fost de 0.6655 a

aliajului HEA1 dar apropiată cu cea a aliajelor HEA4 care a avut o valoare de 0,6063 dar și

cu cea aliajului HEA6 cu o valoare de 0.59.

Rezultatele privind coeficientul de frecare și duritatea aliajelor HEA investigate sunt

în strânsă concordanță de unde se poate concluziona că testele au fost efectuate corect din

punct de vedere tehnic.

Tabelul 6.3. Valori ale greutății aliajelor HEA înainte de a fi supuse procesului de uzare

Materialul Valoarea greutății (g) Valoarea medie a greutății (g)

HEA1 21, 323

21,323 21,323

21,323

HEA2 43,457

43,457 43,457

43,457

HEA3 32,599

32,599 32,599

32,599

HEA4 19,224

19,224 19,224

19,224

HEA5 19,392

19,392 19,392

19,392

HEA6 23,061

23,061 23,061

23,06134

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

28

Analiza privind pierderea de volum a aliajelor HEA în urma procesului de uzare a fost

efectuată cu microscopul confocal ALICONA G4 . Valorile privind pierderea de material

sunt ilustrate în figura 5.20.

Figura 6.20. Pierderea de material a aliajelor HEA investigate în urma procesului de uzare

Cercetările efectuate au relevat faptul că în urma procesului de uzare cea mai mică

valoare a pierderii de volum o are aliajul HEA1, respectiv 0.05 mm3 iar cele mai mari valori

le-au înregistrat HEA5 și HEA4 cu valori apropiate, 0,3846 mm3 , respectiv 0.3623 mm

3.

Aliajul HEA1, acolo unde conținutul de siliciu este de 20% a mărit considerabil

duritatea dar au scăzut considerabil proprietățile mecanice, aliajul devenind casant.

Profilograme 3D ale aliajului HEA1

Profilograme 3D ale aliajului HEA2

HEA7 52,933

52,933 52,933

52,933

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

29

6.4 Analiza SEM a probelor HEA după uzare

Imaginile SEM ale urmelor de uzare asupra aliajelor HEA1-HEA7 sunt redate în

figurile 6.22-6.28. Asupra acestor aliaje HEA, procesul de uzare se manifestă prin canale

aliniate de-a lungul urmei de uzură. Pe suprafața urmei de uzare se pot vizualiza aglomerări

de material ca o consecință a transferului de material de pe probă pe contramaterial în timpul

procesului de alunecare.

Figura 6.22. Micrografii reprezentative ale aliajelor HEA1 după procesul de uzare

Figura 6.23. Micrografii reprezentative ale aliajelor HEA2 după procesul de uzare

Figura 6.24. Micrografii reprezentative ale aliajelor HEA3 după procesul de uzare

Imaginile SEM prezentate în figurile 6.22 - 6.28 asupra urmei lăsate în urma

procesului de uzare, indică prezența fenomenului de uzare prin cojire (exfoliere). Acest

proces se datorează forței tangențiale de frecare și deformării plastice. Astfel, s-au produs

unele dislocații și goluri pe suprafața aliajelor HEA investigate. Prezența golurilor pe

suprafața aliajelor HEA indică prezența unor particule dure în structura aliajelor. Analizele

EDS asupra aliajelor HEA au indicat pe suprafața probelor și microfisuri în urma procesului

de uzare ceea ce confirmă prezența unei uzări prin exfoliere.

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

30

7. CERCETĂRI EXPERIMENTALE ASUPRA TRANSFORMĂRILOR

FIZICO-CHIMICE LA TEMPERATURI RIDICATE A ALIAJELOR CU

ENTROPIE RIDICATĂ ELABORATE

Odată cu creșterea temperaturii asupra materialelor metalice are loc și degradarea

acestora diminuând considerabil proprietățile mecanice.

Procesul de degradare are loc și din cauza interacțiunii chimice dintre metal cu mediul

înconjurător. Această interacţiune chimică poate fi: oxidare, sulfitare şi coroziune la

temperaturi înalte.

De exemplu, reacția:

M(s) + O2(g) = MO2(s)

∆G◦ trebuie sa aiba valoare negativă, M – metal;

∆G◦ - energia liberă standard pentru formarea oxidului MO2.

Energia liberă poate face referire la presiunea parţială a oxigenului folosind o stare de

echilibru standard, unde: pO2(g) este presiunea parțială a oxigenului la temperatura T si R

este constanta gazului universal.

În continuare, folosind acest tabel, se poate citi presiunea de disociere a diferitelor

metale la temperaturi diferite şi, de asemenea, se poate afla presiunea minimă parțială,

necesară pentru ca un metal sa oxideze la diferite temperaturi, oxidarea având loc la scară

nomo-grafică în jurul graficului ∆G◦ /T .

Figura 7.1. Diagrama Ellingham/Richardon

Diagrama din figura 7.1 este cunoscută ca diagrama Ellingham sau diagrama

Richardson. Exista trei scale nomo-grafice, una în care se poate citi direct pO2(g) in functie

de p(H2/H2O) și de p(CO/CO2) care sunt în stransă legătură cu pO2(g).

Detaliile privind această diagramă pot fi observate în diagrama Ellingham unde se

defineşte procesul de oxidare pe baza criteriilor termodinamice.

De asemenea, această diagramă precizeaza dacă un metal poate fi oxidat sau nu la o

anumită temperatură şi la o anumită presiune. Cea mai mare limitare a diagramei Ellingham

este că aceasta nu poate prezice cat de rapid sau lent este procesul de oxidare

7.1 Procesul de oxidare a aliajelor HEA

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

31

În continuarea investigării aliajelor HEA mi-am propus să cercetez rezistența la

oxidare a aliajelor obținute și investigate în prezenta teză de doctorat. Probele necesare

cercetării rezistenței la oxidare au fost debitate și tăiate corespunzător dispozitivelor folosite

cercetării. Acestea au avut un diametru de 10 mm și o grosime de 7 mm.

Figura 7.2. Probe HEA supuse procesului de oxidare la temperatura de 900⁰C timp de 3h,

respectiv 6h.

Un lot de șapte aliaje HEA a fost menținut timp de 3h la o temperatură de 900 ⁰C,

respectiv 6h la o temperatură de 900 ⁰C într-un cuptor de calcinare de tipul LBS 6/04 aflat în

dotarea laboratorului de Aliaje Neferoase din cadrul Facultății de Știința și Ingineria

Materialelor din Iași, apoi răcit în aer, la temperatura camerei.

Aliajele HEA supuse procesului și investigării rezistenței la oxidare vor fi

standardizate conform tabelului 7.1.

Tabelul 7.1. Standardizarea aliajelor HEA oxidate

Oxidare

3h, 900⁰C

Oxidare

6h, 900⁰C

Aliaj HEA

1.1 2.1 FeNiCrMnAl

1.2 2.2 FeNiCrMnCu

1.3 2.3 FeNiCrMnCuAlSi

1.4 2.4 FeNiCrMnSi

1.5 2.5 FeNiCrMnCuAlSi

1.6 2.6 FeNiCrMnAl

1.7 2.7 FeNiCrMnAl

Aliajele HEA investigate au fost cântărite înainte și după procesul de oxidare, la 3h și

respectiv 6h, cu ajutorul unei balanțe electronice aflată în dotarea laboratorului de Aliaje

Neferoase din cadrul Facultății de Știința și Ingineria Materialelor din Iasi. Valorile privind

greutatea aliajelor sunt redate în tabelul 6.2.

Tabelul 7.2. Valori ale greutății aliajelor HEA înregistrate înainte și după procesul de oxidare

900⁰C – 3h 900⁰C – 6h

Înaintea

procesului

de oxidare

[g]

După

procesul

de

oxidare

[g]

Diferența de

greutate

după

oxidare

[g]

Înaintea

procesului de

oxidare

[g]

După procesul

de oxidare

[g]

Diferența

de greutate

după

oxidare

[g]

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

32

1.1 11.4088 11.4108 0.002 2.1 10.5821 10.6723 0.0902

1.2 10.5464 10.5905 0.0441 2.2 11.0403 11.0883 0.048

1.3 11.0631 11.1010 0.0379 2.3 11.7325 11.7485 0.016

1.4 13.1490 13.15 0.001 2.4 11.9219 11.9769 0.055

1.5 12.2543 12.3050 0.0507 2.5 12.3115 12.3645 0.053

1.6 10.6896 10.7148 0.0252 2.6 14.6861 14.6961 0.01

1.7 12.6063 12.6085 0.0022 2.7 11.4672 11.4962 0.029

7.2 Analiza SEM și EDX la temperatura de 900⁰C, timp de 3h a

aliajelor HEA investigate

În continuare sunt prezentate micrografiile aliajelor HEA după procesul de oxidare

realizate la temperatura de 900 ⁰C, timp de 3h.

Aliajul HEA 1.1

Figura 7.4. Analiza EDX a aliajului HEA 1.1, oxidat la temperatura de 900 ⁰C, timp de 3h

În figura 7.4 este redată micrografia aliajului HEA1.1. Se poate observa că în urma

procesului de oxidare, pe suprafața aliajului s-a format o peliculă densă de oxizi sub formă de

sfere, oxizi de tipul Mn2O (oxid de mangan) și Fe2O3 (oxid de fier). Reacțiile chimice

corespunzătoarea oxizilor formați sunt de tipul:

2Mn+O2=2MnO (7.1)

Tabelul 7.3. Compoziția chimică a aliajului HEA 1.1

Rezultatele compoziției chimice indică faptul că elementele componente aliajului

HEA investigat se încadrează în parametrii specifici aliajelor HEA și că oxigenul se găseste

în aliaj cu o valoare aproximativ de 20%.

Element AN series Net [wt.%] [norm.

wt.%]

[norm.

at.%]

Error in %

Al 13 K-series 26207 23.61057 21.99415 26.36037 1.228223

O 8 K-series 20714 20.68153 19.26563 38.93953 3.193005

Cr 24 K-series 44995 19.20241 17.88778 11.12494 0.579218

Mn 25 K-series 38385 18.6322 17.3566 10.21652 0.539416

Fe 26 K-series 27869 15.80058 14.71885 8.522855 0.438313

Ni 28 K-series 13251 9.422032 8.776983 4.835786 0.274203

Sum: 107.3493 100 100

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

33

Aliajul HEA 1.2

Figura 7.6. Analiza EDX a aliajului HEA 1.2, oxidat la temperatura de 900 ⁰C, timp de 3h

Figura 7.6 redă micrografia suprafeței oxidate a aliajului HEA 1.2. Se poate observa

că în urma procesului de oxidare se formează oxizi de tipul FeOși Cr2O3.

Reacțiile chimice corespunzătoare oxizilor formați sunt de tipul:

2Fe+O2=2FeO (7.2)

Tabelul 7.4. Compoziția chimică a aliajului HEA1.2 Element AN Series Net [wt.%] [norm.

wt.%]

[norm.

at.%]

Error in

%

Mn 25 K-series 106894 63.40549 57.3806 38.79765 1.683924

O 8 K-series 25122 22.15377 20.04868 46.54739 3.3204

Cu 29 K-series 8306 8.54425 7.732362 4.519986 0.258105

Cr 24 K-series 15618 7.957161 7.201059 5.144458 0.610526

Fe 26 K-series 8165 5.377942 4.866921 3.237186 0.181835

Ni 28 K-series 3418 3.061265 2.770379 1.753328 0.119776

Sum: 110.4999 100 100

Compoziția chimică a aliajului HEA1.2 oxidat relevă faptul că oxigenul a aderat într-

cantitate importantă pe suprafața aliajului HEA, aproximativ 22%.

Aliajul HEA 1.3

Figura 7.8. Analiza EDX a aliajului HEA1.3, oxidat la temperatura de 900 ⁰C, timp de 3h

Analiza microstructurală a aliajului HEA1.3 indică faptul că pe suprafața oxidată

s-au format oxizi de tipul MnO. Reacțiile chimice corespunzătoare oxizilor formați sunt de

tipul:

2Mn + O2 = 2MnO (7.3)

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

34

Tabelul 7.5 Compoziția chimică a aliajului HEA1.3

Element AN Series Net [wt.%] [norm.

wt.%]

[norm.

at.%]

Error in

%

O 8 K-series 23914 21.96715 20.0232 42.82517 3.326592

Mn 25 K-series 39301 20.59978 18.77684 11.69551 0.591773

Cr 24 K-series 40316 18.67264 17.02023 11.20121 0.578121

Fe 26 K-series 23262 14.14376 12.89213 7.899403 0.397811

Al 13 K-series 13056 12.3489 11.25611 14.27549 0.665414

Ni 28 K-series 14517 11.26428 10.26747 5.986092 0.321223

Cu 29 K-series 10330 9.325436 8.500197 4.577308 0.27454

Si 14 K-series 1778 1.386512 1.263815 1.539823 0.101863

Sum: 109.7085 100 100

Compoziția chimică a aliajului HEA1.3 oxidat la temperatura de 900⁰C, timp de 3h

relevă faptul că 22 procente de oxigen au aderat și format oxizi la suprafața aliajului.

Aliajul HEA1.4

Spectrul de energii prezentat în figura 7.10 redă prezența elementelor componente a

aliajului HEA1.4, respectiv, crom, mangan, siliciu, fier, nichel și oxigen.

Figura 7.11. Analiza EDX a aliajului HEA 1.4, oxidat la temperatura de 900 ⁰C, 3h

Aliajul HEA 1.5

Figura 7.12. Analiza EDX a aliajului HEA 1.5, oxidat la temperatura de 900 ⁰C, timp de 3

ore

Tabelul 7.6. Compoziția chimică a aliajului HEA1.5 Element AN series Net [wt.%] [norm.

wt.%]

[norm.

at.%]

Error in

%

Mn 25 K-series 49865 26.774 25.08239 15.78655 0.759202

O 8 K-series 22043 20.74697 19.43615 42.0047 4.022679

Cr 24 K-series 40903 19.38669 18.16181 12.0776 0.651935

Fe 26 K-series 18550 11.60621 10.87292 6.731897 0.335759

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

35

Ni 28 K-series 13714 10.97972 10.28601 6.059667 0.31476

Al 13 K-series 11937 10.66834 9.994305 12.80788 0.580008

Cu 29 K-series 5129 4.754518 4.454121 2.423623 0.162225

Si 14 K-series 2514 1.827781 1.712299 2.108088 0.121253

Sum: 106.7442 100 100

Aliajul HEA 1.6

Figura 7.14. Analiza EDX a aliajului HEA1.6, oxidat la temperatura de 900 ⁰C, timp de 3h

Tabelul 7.7. Compoziția chimică a aliajului HEA1.6 Element AN Series Net [wt.%] [norm.

wt.%]

[norm.

at.%]

Error in

%

Mn 25 K-series 104684 60.15578 55.06799 36.08881 1.59959

O 8 K-series 26310 23.21343 21.25011 47.81936 3.457274

Cu 29 K-series 9222 9.23121 8.450463 4.787828 0.274413

Cr 24 K-series 13532 6.662894 6.099367 4.223389 0.561699

Fe 26 K-series 7748 4.932464 4.515291 2.910933 0.16995

Ni 28 K-series 3424 2.969187 2.718062 1.66731 0.1169

Al 13 K-series 1330 1.423594 1.303191 1.738952 0.116065

Si 14 K-series 845 0.650545 0.595524 0.76342 0.066772

Sum: 109.2391 100 100

Aliajul HEA 1.7

Figura 7.16. Analiza EDX a aliajului HEA1.7, oxidat la temperatura de 900 ⁰C, 3 ore

Tabelul 7.8 Compoziția chimică a aliajului HEA1.7 Element AN Series Net [wt.%] [norm.

wt.%]

[norm.

at.%]

Error in

%

Mn 25 K-series 57084 29.30823 27.14875 16.4012 0.809847

O 8 K-series 25858 22.79848 21.11865 43.80877 3.37708

Al 13 K-series 14887 14.07595 13.03881 16.03872 0.751927

Cr 24 K-series 31263 14.05037 13.01511 8.307618 0.51019

Fe 26 K-series 20339 11.92027 11.04196 6.56213 0.341646

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

36

Ni 28 K-series 10466 7.910032 7.327208 4.143313 0.237818

Cu 29 K-series 7284 6.383854 5.913481 3.088542 0.201509

Si 14 K-series 1871 1.507061 1.396018 1.64971 0.107863

Sum: 107.9542 100 100

7.3 Analiza SEM și EDX la temperatura de 900⁰C, timp de 6h a

aliajelor HEA investigate Aliajul HEA 2.1

Figura 7.18. Analiza EDX a aliajului HEA2.1, oxidat la temperatura de 900 ⁰C, timp de 6h

Aliajul HEA 2.2

Figura 7.20. Analiza EDX a aliajului HEA2.2, oxidat la temperatura de 900 ⁰C, timp de 6h

Figura 7.20 prezintă microstructura aliajului 2.2, oxidat la temperatura de 900 ⁰C,

timp de 6 ore. Se observă o peliculă densă de oxid de fier pe toată suprafața probei aliajului

investigat, formată în urma procesului de oxidare.

Se observă faptul că elementele chimice, crom, nichel, mangam și cupru participă la formarea

de legături în aliaj.

Aliajul HEA 2.3

Figura 7.22. Analiza EDX a aliajului HEA2.3, oxidat la temperatura de 900 ⁰C, timp de 6h

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

37

Microstructura aliajului HEA2.3 prezentată în figura 7.22, redă faptul că în urma

procesului de oxidare, un strat considerabil de oxid de mangan s-a format pe întreaga

suprafață a probei martor a aliajului investigat.

Tabelul 7.9 Compoziția chimică a aliajului HEA2.3 Element AN series Net [wt.%] [norm.

wt.%]

[norm.

at.%]

Error in

%

Mn 25 K-series 74970 38.82371 36.777 19.82543 1.051586

O 8 K-series 35370 28.05868 26.57948 49.19965 3.973797

Al 13 K-series 29225 20.88394 19.78298 21.71421 1.0873

Cr 24 K-series 21049 9.525006 9.022866 5.139179 0.506989

Fe 26 K-series 11793 6.846642 6.485701 3.439349 0.214721

Ni 28 K-series 1935 1.427211 1.351971 0.682178 0.074845

Sum: 105.5652 100 100

Aliajul HEA 2.4.

Figura 7.24 Analiza EDX a aliajului HEA2.4, oxidat la temperatura de 900 ⁰C, timp de 6h

În figura 7.24 se poate observa microstructura aliajului 2.4 oxidat la temperatura de

900 ⁰C, timp de 6 ore. Pelicula de ozixi formată în urma procesului de oxidare este densă pe

toată suprafața aliajului investigat.

Tabelul 7.10 Compoziția chimică a aliajului HEA 2.4 Element AN series Net [wt.%] [norm.

wt.%]

[norm.

at.%]

Error in

%

Mn 25 K-series 113942 63.57656 59.44308 38.89165 1.68493

O 8 K-series 26443 24.00419 22.44353 50.42146 3.558182

Cu 29 K-series 15224 14.85912 13.89304 7.858453 0.412075

Cr 24 K-series 6909 3.306637 3.091653 2.137217 0.355772

Ni 28 K-series 1438 1.207183 1.128697 0.691219 0.070562

Sum: 106.9537 100 100

Aliajul HEA 2.5

Figura 7.26 Analiza EDX a aliajului HEA2.5, oxidat la temperatura de 900 ⁰C, timp de 6h

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

38

Figura 7.26 prezintă microstructura aliajului 2.5 oxidat la temperatura de 900 ⁰C, timp

de 6h. Se poate observa că în urma procesului de oxidare s-a format o peliculă densă de oxizi

pe suprafața aliajului.

Aliajul HEA 2.6.

Figura 7.28. Analiza EDX a aliajului HEA2.6, oxidat la temperatura de 900 ⁰C, timp de 6h

Figura 7.28 prezintă microstructura aliajului HEA2.6, oxidat la temperatura de 900

⁰C, timp de 6 ore. În urma procesului de oxidare, o pelicula densă de oxizi de tipul MnO, NiO

și FeO s-a format pe suprafața probei martor.

În continuarea cercetărilor s-au realizat determinări privind stratul de oxizi format la

suprafața aliajelor. S-au efectuat determinări pentru aliajele HEA1.2, HEA 1.1, HEA1.3 și

HEA2.6.

Figura 7.30. Stratul de oxizi format la suprafața aliajului HEA1.2

În figura 7.30 se poate observa mărimea stratului de oxizi format la suprafața aliajului

HEA1.2, la temperatura de 900 ⁰C, timp de 3 ore. Valoarea medie a stratului de oxizi este de

6.46 µm.

Figura 7.32. prezintă distibuția elementelor a aliajului HEA1.2. S-a pus în evidență faptul că

oxigenul este distribuit uniform pe toată suprafața aliajului și că formează o peliculă densă de

oxizi cu scopul de a îmbunătăți proprietățile mecanice și proprietățile tribologice.

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

39

Aliajul HEA 1.1

Figura 7.33. Analiza SEM efectuată asupra aliajului HEA1.1 la suprafața peliculei de oxizi

formate

Figura 7.33 prezintă analiza SEM a aliajului HEA1.1 oxidat la temperatura de 900

⁰C, timp de 3h.

Figura 7.34 Analiza EDX a aliajului HEA 1.1 efectuată asupra peliculei de oxizi

Figura 7.34 prezintă analiza EDX în linie a aliajului HEA1.1. Aceasta pune în

evidență stratul de oxizi format. Oxizii formați sunt de tipul Al2O3.

Figura 7.35 Distribuția elementelor aliajului HEA1.1 pe stratul de oxizi format

Distribuția elementelor a aliajului HEA1.1 este prezentată în figura 7.35. Se poate

observa prezența oxigenului uniform distribuit pe toată suprafața aliajului. Acest fapt

confirmă faptul că în urma procesului de oxidare s-a format o peliculă densă de oxizi.

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

40

Aliajul HEA 1.3

Figura 7.36 Dimensiunea stratului de oxizi format la suprafața aliajului HEA1.2

Figura 7.36 prezintă mărimea stratului de oxizi a aliajului HEA1.2 format în urma

pocesului de oxidare la temperatura de 900 ⁰C, timp de 3 ore și are o valoare medie de 14.74

µm.

Figura 7.37 Analiza EDX a aliajului HEA 1.2 asupra stratului de oxizi

Figura 7.37 prezintă analiza EDX în linie a aliajului HEA1.2. Aceasta pune în

evidență stratul de oxid format ,de tipul CuO (oxid de cupru).

Figura 7.38 Distribuția elementelor în aliajul HEA 1.2 pe stratul de oxizi format

Distribuția elementelor în aliajul HEA1.2 arată faptul că elementul chimc oxigen este

prezent pe toată suprafața aliajului investigat, formându-se o peliculă densă de oxizi. Acest

lucru îmbunătățește rezistența la coroziune a aliajului inevestigat.

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

41

7.3 Analiza XRD a aliajelor HEA oxidate la temperatura de 900⁰C, timp de

3 ore.

Analiza difractografică cu raze X a presupus utilizarea difractometrului X‟Pert Pro

MRD cu raz X, din dotarea Facultății de Mecanică, Laboratorul de Materiale Avansate,

Universitatea “Gheorghe Asachi” din Iași.

Acest echipament are în dotarea sa un tub de raze X cu anod din Cu kα, λ=1.54 Å,

echipament Panalytical, Olanda, căruia i-a fost aplicată o tensiune de 45kV, unghiul de

difracție (2θ) variind între 20⁰ și 120⁰. Datele obținute au fost prelucrate cu ajutorul unui software X‟Pert Data Collector,

X‟Pert High Score Plus și X‟Pert Data Viewer, fiind redate în final sub forma unor

difractograme în coordonate unghi de difracție (2θ) și intensitatea absolută a maximului de

difracție.

Scopul acestor analize asupra aliajelor HEA îl reprezintă identificarea compușilor

formați în urma procesului de oxidare. În continuare sunt prezentate difractogramele aliajelor

HEA oxidate la temperatura de 900⁰C, timp de 3 h.

Figura 7.39 Difractograma aliajului HEA1.1 oxidat la temperatura de 900⁰C, timp de 3 h

Figura 7.40 Difractograma aliajului HEA1.2 oxidat la temperatura de 900⁰C, timp de 3 h

Position [°2Theta] (Copper (Cu))

30 40 50 60 70 80 90 100 110 120

Counts

0

1000

2000

Cr0.

956

Fe1.

044;

Al1

3 Fe

4

Al13

Fe4

Ni3

Fe;

Fe

Ni; A

l13

Fe4

Cr0.

956

Fe1.

044

Cr0.

956

Fe1.

044;

Al1

3 Fe

4

Cr0.

956

Fe1.

044

Cr0.

956

Fe1.

044;

Al1

3 Fe

4N

i3 F

e; A

l13

Fe4

Cr0.

956

Fe1.

044;

Fe

Ni; A

l13

Fe4

Cr0.

956

Fe1.

044;

Al1

3 Fe

4Cr

0.95

6 Fe

1.04

4; A

l13

Fe4

Cr0.

956

Fe1.

044

Fe N

i; A

l13

Fe4

Ni3

Fe;

Cr0

.956

Fe1

.044

Cr0.

956

Fe1.

044

Cr0.

956

Fe1.

044

1.1

Search Unit Cell Result 1

Position [°2Theta] (Copper (Cu))

30 40 50 60 70 80 90 100 110 120

Counts

0

2000

4000

( M

n2.8

8 F

e0.1

2 )

O4

Ni Fe

2 O

4(

Mn2.8

8 F

e0.1

2 )

O4

( M

n2.8

8 F

e0.1

2 )

O4

Fe2.9

33 O

4N

i Fe

2 O

4(

Mn2.8

8 F

e0.1

2 )

O4

Fe2.9

33 O

4Cu0.3

33 F

e0.3

33 N

i0.3

34

( M

n2.8

8 F

e0.1

2 )

O4;

( Cr0

.7 F

e0.3

)

Cu0.3

33 F

e0.3

33 N

i0.3

34

Ni Fe

2 O

4;

( M

n2.8

8 F

e0.1

2 )

O4

( M

n2.8

8 F

e0.1

2 )

O4

Ni Fe

2 O

4

Fe2.9

33 O

4N

i Fe

2 O

4(

Mn2.8

8 F

e0.1

2 )

O4;

( Cr0

.7 F

e0.3

)

Ni Fe

2 O

4;

Cu0.3

33 F

e0.3

33 N

i0.3

34;

Fe2.9

33 O

4

Fe2.9

33 O

4

Ni Fe

2 O

4;

Cu0.3

33 F

e0.3

33 N

i0.3

34;

( M

n2.8

8 F

e0.1

2 )

O4

Cu0.3

33 F

e0.3

33 N

i0.3

34

1.2

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

42

Figura 7.41 Difractograma aliajului HEA1.3 oxidat la temperatura de 900⁰C, timp de 3 h

Tabelul 7.11 Parametrii compușilor identificați în urma procesului de oxidare la temperatura

de 900⁰C, timp de 3h.

Compus

Grup

Spațial

Sistem de

cristalizare

a

(Å)

b

(Å)

c

(Å)

α

(⁰) β

(⁰) γ

(⁰) Volumul

celulei

106pm

3

Aliajul

HEA1.1/

2.1

AlFeO3 Pc21m ortorombic 8.56 9.24 4.98 90 90 90 395.26

Al3Fe4 Bmmm ortorombic 7.75 4.03 23.77 90 90 90 743.1

Cr0.9Fe1.044 P42/mnm tetragonal 8.79 8.79 4.56 90 90 90 352.85

Fe2O3 R-3c romboedric 5.03 5.03 13.73 90 90 120 301.15

FeNi Pm monoclinic 3.58 3.58 3.38 90 90 90 43.45

FeNi3 Pm-3m Cubic 3.54 3.54 3.54 90 90 90 44.55

Fe0.62Ni0.38 Fm-3m Cubic 3.59 3.59 3.59 90 90 90 46.50

Aliajul

HEA1.2/

2.2

Cr0.7FeO3 Lm-3m cubic 2.87 2.87 2.87 90 90 90 23.69

Cu0.3Fe0.3NiO Fm-3m cubic 3.58 3.58 3.58 90 90 90 46,19

Fe0.1Mn1.8O4 L41/amd tetragonal 5.77 5.77 9.26 90 90 90 309,6

Fe2.9O4 Fd-3m cubic 8.43 8.43 8.43 90 90 90 599,65

Fe2Ni04 Fd-3m cubic 8.33 8.33 8.33 90 90 90 579.9

Fe3O4 Fd-3m cubic 8.24 8.24 8.24 90 90 90 560.86

Aliajul

HEA1.3/

2.3

Cr0.95Fe1.04 P42/mnm Tetragonal 8.79 8.79 4.56 90 90 90 352.8

Fe0.5Mn0.2NiO3 Fm-3m Cubic 3.59 3.59 3.59 90 90 90 40.35

Fe3O4 R-3m Romboedric 5.92 5.92 14.56 90 90 120 443.3

Fe4Mn77Si19 C2 monoedric 13.3 11.6 8.7 90 90 90 1358.9

FeMnO3 La-3 cubic 9.4 9.4 9.4 90 90 90 830.5

Aliajul

HEA1.4/2.4

Fe2O3 R-3c romboedric 4.98 4.98 13.5 90 90 120 290.7

FeNi Pm Monoclinic 3.58 3.58 3.58 90 90 90 46.01

Fe3O4 P2/c monoclinic 5.94 5.92 16.77 90 90 90 590.8

Fe21.34O32 P41212 tetragonal 8.34 8.34 25.04 90 90 90 1744.9

Fe3O3Si C2/c monoclinic 9.9 9.9 5.3 90 110 90 544.78

Aliajul

HEA1.5/2.5

Fe0.64Ni0.36 Fm-3mE cubic 3.59 3.59 3.59 90 90 90 46.35

Fe3O4 P2/C monoclinic 5.94 5.94 6.77 90 90 90 590.8

Fe4Mn77Si19 C2 monoclinic 13.36 11.64 8.73 90 90 90 6.79

Fe2O3 La-3 cubic 9.39 9.39 9.39 90 90 90 828.73

FeAl2O4 Fd-3m cubic 8.15 8.15 8.15 90 90 90 542.50

Position [°2Theta] (Copper (Cu))

30 40 50 60 70 80 90 100 110 120

Counts

0

5000

10000

Fe M

n O

3

Mn77 F

e4 S

i19

Fe3 O

4;

Cr0

.956 F

e1.0

44

Mn77 F

e4 S

i19

Fe M

n O

3

Mn77 F

e4 S

i19;

Fe3 O

4M

n77 F

e4 S

i19;

Cr0

.956 F

e1.0

44

Fe M

n O

3

Mn77 F

e4 S

i19;

Cr0

.956 F

e1.0

44

Mn77 F

e4 S

i19;

Cr0

.956 F

e1.0

44

Mn77 F

e4 S

i19;

Fe3 O

4(

Fe0.5

Mn0.2

Ni0

.3 )

; M

n77 F

e4 S

i19;

Cr0

.956 F

e1.0

44

Mn77 F

e4 S

i19

Mn77 F

e4 S

i19;

Cr0

.956 F

e1.0

44

Fe M

n O

3;

Mn77 F

e4 S

i19;

Fe3 O

4;

Cr0

.956 F

e1.0

44

Mn77 F

e4 S

i19;

Cr0

.956 F

e1.0

44

Fe M

n O

3;

Mn77 F

e4 S

i19;

Cr0

.956 F

e1.0

44

Mn77 F

e4 S

i19;

Cr0

.956 F

e1.0

44

( Fe

0.5

Mn0.2

Ni0

.3 )

; M

n77 F

e4 S

i19

Mn77 F

e4 S

i19;

Cr0

.956 F

e1.0

44

Fe M

n O

3;

Mn77 F

e4 S

i19;

Cr0

.956 F

e1.0

44

Mn77 F

e4 S

i19

Mn77 F

e4 S

i19;

Cr0

.956 F

e1.0

44

Fe M

n O

3;

Fe3 O

4;

Cr0

.956 F

e1.0

44

Fe M

n O

3;

Fe3 O

4;

Cr0

.956 F

e1.0

44

Fe M

n O

3;

Fe3 O

4(

Fe0.5

Mn0.2

Ni0

.3 )

; Fe

3 O

4Cr0

.956 F

e1.0

44

Fe M

n O

3;

Fe3 O

4;

Cr0

.956 F

e1.0

44

( Fe

0.5

Mn0.2

Ni0

.3 )

( Fe

0.5

Mn0.2

Ni0

.3 )

; Cr0

.956 F

e1.0

44

( Fe

0.5

Mn0.2

Ni0

.3 )

; Fe

3 O

4

1.3

Search Unit Cell Result 1

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

43

Aliajul

HEA1.6/2.6

Al2FeO4 Fd-3m cubic 8.15 8.15 8.15 90 90 90 542.5

Fe0.03Mn2.94O4 L41/amd tetragonal 5.71 5.71 9.37 90 90 90 305.6

Fe2O3 P4132 cubic 8.35 8.35 8.35 90 90 90 582.5

FeNi3 Pm-3m cubic 3.54 3.54 3.54 90 90 90 44.55

Fe2O3 R-3c romboedric 4.98 4.98 13.5 90 90 120 290.7

FeNi Pm monoclinic 3.58 3.58 3.58 90 90 90 46.01

Aliajul

HEA1.7/2.7

Al13Fe4 C2/M monoclinic 15.4 8.08 12.47 90 90 90 1487.8

Cr5Fe6Mn8 - - - - - - - - -

Fe0.5Mn0.2Ni0.3 Fm-3m cubic 3.59 3.59 3.59 90 90 90 46.35

FeMnO3 La-3 cubic 9.4 9.4 9.4 90 90 90 830.50

În tabelul 7.11 sunt prezentați parametrii compușilor identificați în urma procesului

de oxidare la temperatura de 900⁰C, timp de 3h, respectiv 6h. Diferențele de faze și compuși

apărute între aliajele HEA1.1-1.7 și HEA2.1-2.7 sunt evidențiate în tabelul 7.11.

Analiza XRD a aliajului HEA1.2/2.1 arată că faza predominantă identificată este de

tipul AlFeO3 care are o structură cristalografică de tip ortorombic. Celelalte faze identificate

sunt de tipul: Al3Fe4 cu o structură cristalografică de tipul ortorombic, Fe2O3 cu o structură

romboedric. Aceleași faze se găsesc și în structura aliajului HEA2.1 oxidat la temperature de

900⁰C, timp de 6 ore, cu diferența compusului de tipul Fe0.62Ni0.38 care are o structură

cristalografică de tip cubic. În cazul aliajului HEA1.2 s-au identificat fazele de tipul

Cr0.7FeO3, Cu0.3Fe0.3NiO, Fe0.1Mn1.8O4, Fe2.9O4, Fe2Ni04 . Aceleași faze s-au regăsit și în

componența aliajului oxidat timp de 6 ore, la temperatura de 900⁰C cu excepția fazei Fe3O4

cu o structură cristalografică de tip cubic. Analiza XRD a aliajului HEA1.3/2.3 oxidat la

temperatura de 900⁰C timp de 3 ore, respectiv, 6 ore, a arătat prezența acelorași faze de tipul

Cr0.95Fe1.04, Fe0.5Mn0.2NiO3, Fe3O4, Fe4Mn77Si19, FeMnO3. În cazul aliajului 1.4/2.4 se pot observa apariția unor noi faze de tipul Fe3O4,

Fe21.34O32, Fe3O3Si în cazul aliajului oxidat timp de 6 ore. Analiza XRD realizată asupra

aliajului HEA1.5/2.5 a dus la identificarea fazelor de tipul Fe0.64Ni0.36, Fe3O4, Fe4Mn77Si19 cu

deosebirea că oxidarea timp de 6 ore a dus la apariția și altor faze de tipul Fe2O3 și FeAl2O4.

În cazul aliajului HEA 1.7/2.7 se pot observa prezența acelorași faze de tipul Al13Fe4.

Cr5Fe6Mn8, Fe0.5Mn0.2Ni0.3, FeMnO3.

7.4 Analiza XRD a aliajelor HEA oxidate la temperatura de 900⁰C, timp de 6h

Figura 7.45 Difractograma aliajului HEA2.1oxidat la temperatura de 900⁰C, timp de 6 h

Position [°2Theta] (Copper (Cu))

30 40 50 60 70 80 90 100 110 120

Counts

0

2000

4000

6000

8000

( M

n2.8

8 Fe

0.12

) O

4(

Mn2

.88

Fe0.

12 )

O4;

Fe3

O4 ( M

n2.8

8 Fe

0.12

) O

4

( M

n2.8

8 Fe

0.12

) O

4; N

i Fe2

O4;

Fe3

O4

( M

n2.8

8 Fe

0.12

) O

4

Cu0.

333

Fe0.

333

Ni0

.334

; Fe

3 O

4

( M

n2.8

8 Fe

0.12

) O

4

( M

n2.8

8 Fe

0.12

) O

4; N

i Fe2

O4;

Fe3

O4

Fe3

O4

( M

n2.8

8 Fe

0.12

) O

4

Ni F

e2 O

4(

Cr0.

7 Fe

0.3

); F

e2.9

33 O

4

Fe3

O4

( M

n2.8

8 Fe

0.12

) O

4; C

u0.3

33 F

e0.3

33 N

i0.3

34

( M

n2.8

8 Fe

0.12

) O

4

2.2

Search Unit Cell Result 1

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

44

Figura 7.46 Difractograma aliajului HEA2.2 oxidat la temperatura de 900⁰C, timp de 6 h

Figura 7.47 Difractograma aliajului HEA2.3 oxidat la temperatura de 900⁰C, timp de 6 h

7.5 Metoda de analiză “micro-scratch” a aliajelor HEA investigate Determinarea rezistenței de aderență s-a realizat cu ajutorul testului de zgâriere

(scratch test) care se bazează pe standardul ASTM C 1624 (Standard Test Method for

Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative

Single Point Scratch Testing). După ce aliajele HEA investigate au fost supuse procesului de

oxidare, probe martor din acestea au fost supuse testului de adeziune a suprafeţei, test care s-a

realizat cu ajutorul tribometrului CETR UMT-2, din dotarea Laboratorului de Tribologie al

Facultății de Mecanică.

Position [°2Theta] (Copper (Cu))

30 40 50 60 70 80 90 100 110 120

Counts

0

2000

4000

6000

8000

Al F

e O

3Cr

0.95

6 Fe

1.04

4; A

l13

Fe4

Al13

Fe4

Al F

e O

3; A

l13

Fe4;

Fe2

O3

Al13

Fe4

; Fe

Ni;

Fe2

O3

Al F

e O

3Al

13 F

e4Cr

0.95

6 Fe

1.04

4; A

l13

Fe4;

Fe2

O3

Al13

Fe4

Cr0.

956

Fe1.

044;

Al F

e O

3Al

Fe

O3;

Al1

3 Fe

4; (

Fe

, Ni )

Cr0.

956

Fe1.

044;

Al1

3 Fe

4; F

e2 O

3; (

Fe

, Ni )

Al F

e O

3; A

l13

Fe4

Cr0.

956

Fe1.

044;

Al F

e O

3; A

l13

Fe4

Cr0.

956

Fe1.

044;

Al F

e O

3Cr

0.95

6 Fe

1.04

4; A

l Fe

O3

Fe N

i; (

Fe ,

Ni )

Cr0.

956

Fe1.

044;

Al F

e O

3

Cr0.

956

Fe1.

044

Cr0.

956

Fe1.

044

Cr0.

956

Fe1.

044;

Al F

e O

3

Al F

e O

3; F

e2 O

3

Fe N

i; (

Fe ,

Ni )

Cr0.

956

Fe1.

044;

Al F

e O

3

( Fe

, N

i )

Cr0.

956

Fe1.

044;

( F

e , N

i )

Cr0.

956

Fe1.

044;

Fe

Ni

2.1

Search Unit Cell Result 1

Position [°2Theta] (Copper (Cu))

30 40 50 60 70 80 90 100 110 120

Counts

0

2000

4000

Fe M

n O

3

Cr0.

956

Fe1.

044;

Mn7

7 Fe

4 Si

19Cr

0.95

6 Fe

1.04

4; M

n77

Fe4

Si19

; Fe

3 O

4

Cr0.

956

Fe1.

044;

Mn7

7 Fe

4 Si

19Fe

Mn

O3

Cr0.

956

Fe1.

044;

Mn7

7 Fe

4 Si

19

Fe M

n O

3 Cr0.

956

Fe1.

044;

Mn7

7 Fe

4 Si

19

Cr0.

956

Fe1.

044;

Mn7

7 Fe

4 Si

19Cr

0.95

6 Fe

1.04

4; M

n77

Fe4

Si19

; (

Fe0.

5 M

n0.2

Ni0

.3 )

Mn7

7 Fe

4 Si

19Cr

0.95

6 Fe

1.04

4; M

n77

Fe4

Si19

Cr0.

956

Fe1.

044;

Mn7

7 Fe

4 Si

19Cr

0.95

6 Fe

1.04

4; M

n77

Fe4

Si19

; Fe

3 O

4Cr

0.95

6 Fe

1.04

4; M

n77

Fe4

Si19

Fe M

n O

3; C

r0.9

56 F

e1.0

44;

Mn7

7 Fe

4 Si

19Cr

0.95

6 Fe

1.04

4; M

n77

Fe4

Si19

; (

Fe0.

5 M

n0.2

Ni0

.3 )

Fe M

n O

3; C

r0.9

56 F

e1.0

44;

Mn7

7 Fe

4 Si

19;

Fe3

O4

Fe M

n O

3; C

r0.9

56 F

e1.0

44;

Mn7

7 Fe

4 Si

19Fe

Mn

O3;

Cr0

.956

Fe1

.044

; M

n77

Fe4

Si19

; Fe

3 O

4

Cr0.

956

Fe1.

044;

Mn7

7 Fe

4 Si

19Fe

Mn

O3;

Cr0

.956

Fe1

.044

; M

n77

Fe4

Si19

; Fe

3 O

4

Fe M

n O

3; C

r0.9

56 F

e1.0

44;

Fe3

O4

Fe M

n O

3

Cr0.

956

Fe1.

044

Cr0.

956

Fe1.

044

Fe M

n O

3; C

r0.9

56 F

e1.0

44;

Fe3

O4

2.3

Search Unit Cell Result 1

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

45

Figura 7.52. Modul de testare a adeziunii pe Microtribometrul CETR UMT-2,

[www.cetr.com]

Rezistența la fracturare poate fi determinată ca fiind valoarea forței normale aplicate pe

suprafața probei în momentul când se produce prima fractură. Acest eveniment este urmat cu

fluctuații necontrolate în ambele direcții ale forțelor Fx și Fy, cât și fluctuații ale forței de

penetrare Fz. Fractura poate fi, de asemenea, urmată de un coeficient de frecare cu schimbare

bruscă a valorii acestuia, iar în cele mai frecvente cazuri, prezența emisiei acustice.

Aliajul HEA1.3

Figura 7.53 Graficul încercării la aderență pentru aliajul HEA1.3

În urma analizelor efectuate au rezultat variația medie a forței de răspuns (Fx) cu o

valoare de 16N, variația forței de încărcare normală, variația mediei de frecare (Ff ) cu o

valoare de 16N iar variația mediei coeficientului de frecare (COF) este de 1.6NAliajul

HEA2.7

Figura 7.54 Rezultatele testelor de aderență efectuate pentru aliajul HEA2.7

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

46

În urma analizelor efectuate au rezultat variația medie a forței de răspuns (Fx) cu o

valoare de 17. 6N, variația forței de încărcare normală, variația mediei de frecare (Ff ) cu o

valoare de 17.6N iar variația mediei coeficientului de frecare (COF) este de 2.6N.

Aliajul HEA1.2

Figura 7.55 Graficul încercării la aderență pentru aliajul HEA1.2

În urma analizelor efectuate au rezultat variația medie a forței de răspuns (Fx) cu o

valoare de 16N, variația forței de încărcare normală, variația mediei de frecare (Ff ) cu o

valoare de 16N iar variația mediei coeficientului de frecare (COF) este de 1.6N.

Aliajul HEA2.6

Figura 7.56 Graficul încercării la aderență pentru aliajul HEA2.6

În urma analizelor efectuate au rezultat variația medie a forței de răspuns (Fx) cu o

valoare de 8.8N, variația forței de încărcare normală, variația mediei de frecare (Ff ) cu o

valoare de 8.8N iar variația mediei coeficientului de frecare (COF) este de 1.04N.

8. CERCETĂRI PRIVIND APLICAȚIILE TEHNICE ASUPRA

UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

8.1 Considerații generale privind utilizarea aliajelor cu entropie

ridicată în industrie

O problemă majoră cu care se confruntă firmele din domeniul prelucrării

metalelor/aliajelor prin deformare plastic la cald o constituie uzura rapidă a

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

47

componentelor/pieselor (role și lagare de laminor, matrițe de forjare, ciocane de forjă, prese,

etc) cu impact asupra calității acestora și productivității echipamentelor (laminoare, forje,

prese). Datorită proprietăților excepționale, aliajele HEA pot fi utilizate într-o gamă largă de

aplicații industriale, la înlocuirea aliajelor refractare speciale dure, rezistente la uzare,

coroziune și la solicitări mecanice. În prezent rolele de laminare se realizează din fontă

obişnuită, fontă dură, materiale compuse și oţel. Deficiența lor este reprezentată de exfolierea

superficială, cu înrăutăţirea calităţii suprafeţelor pieselor laminate. Aliajele cu entropie

ridicată (HEA) se caracterizează prin durități foarte ridicate, rezistență bună la coroziune,

rezistență ridicată la uzură sau stabilitate la temperaturi mari, ceea ce permite înlocuirea unor

aliaje clasice scumpe și cu o fiabilitate redusă la utilizarea în condiții grele, cum sunt cele din

industria metalurgică [1-3].

În colaborare cu societatea comercială Rancon SRL Iași s-a realizat obținerea și

turnarea unor aliaje cu entropie ridicată din gama FeNiCrMnAl ca mai apoi, turnarea si

obținerea unor role de laminor.

Rolele din secțiile de laminoare, dar și din alte sectoare metalurgice care sunt utilizate

la transportul semifabricatelor sau al țevilor în cuptoarele de încălzire sunt supuse unor

eforturi puternice de uzare la temperaturi înalte. Din acest motiv ele se execută din aliaje

refractare cu duritate ridicată. Fiabilitatea lor crește odată cu mărirea numărului și

concentrației elementelor de aliere care influențează favorabil rezistența la oxidare și

rezistența la uzare la temperaturile ridicate de încălzire și/sau tratament termic.

8.2 Stabilirea compozițiilor chimice

Pe baza informațiilor apărute în literatura de specialitate [2] care susțin teoria conform

căreia proprietățile noilor aliaje diferă cu atât mai mult față de a celor clasice cu cât

conținutul a 5 sau mai multe elemente este mai apropiat de echimolaritate.

Cercetările s-au axat pe aliajele HEA din clasa FeNiCrMnAl.

Aliaj

HEA

HEA1 HEA2 HEA3

a% m% a% m% a% m%

Al 9,17 4,72 10.41 5,39 9,71 4,99

Cr 27,29 27,29 25 24,91 23,3 23,08

Fe 28,44 30,29 29,17 31,21 26,2 27,88

Mn 18,35 19,22 18,75 19,74 21,36 22,34

Ni 16,52 18,48 16,67 18,75

19,42 21,71

Modificările efectuate au urmărit apropierea de compoziția echimolară a celor 5

elemente testate. Elaborarea aliajelor HEA1 și HEA2 s-a realizat în cuptorul electric cu

încălzire prin inducție căptușit cu masă refractară cuarțoasă, iar elaborarea aliajelor HEA 3 s-

a făcut în cuptorul electric cu încălzire prin inducție căptușit cu masă refractară neutră.

8.3 Agregatul de elaborare

Elaborarea aliajelor HEA s-a realizat în cuptorul electric cu încălzire prin inducție cu

o capacitate de 300 kg/șarjă, o putere instalată de 250 KW și frecvența de 1000 Hz, aflat în

dotarea atelierului de turnătorie al SC RANCON SRL Iași, prezentat în figura 7.1.

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

48

Figura 8.1. Cuptorul electric cu încălzire prin inducție la 1000 Hz, capacitate 300 kg

Operațiile de pregătire a creuzetului refractar sunt complexe și se efectuează în funcție

de caracteristicile fizico-chimice ale aliajelor elaborate și ale zgurelor ce se formează.

Astfel, pentru elaborarea aliajelor de tip HEA1 și HEA2 s-a utilizat o masă

refractară acidă, iar pentru elaborarea aliajelor de tip HEA3 s-a utilizat o masă refractară

neutră. Pentru elaborarea aliajelor de tip HEA3 s-au parcurs aceleași etape în vederea

pregătirii cuptorului și a creuzetului refractar, deosebirea constând în aceea că peste stratul de

nonazbest (sticlotextolit) s-a depus o masă refractară neutră, DRI – VIBE 681 A, produsă de

Allied Mineral Products, care are compoziția chimică: 85,8% Al2O3 ; 12,2% MgO;0,6%

SiO2.

8.4 Interacțiunea topiturilor cu creuzetul

Deoarece la temperaturile înalte din timpul topirii și supraîncălzirii, care pot atinge

local 1600 – 16500C, se pot desfășura reacții între componentele încărcăturii sau a zgurei cu

masa refractară a creuzetelor s-a urmărit cu atenție consumurile și compozițiile chimice.

S-a concluzionat că la elaborarea aliajelor HEA din sistemul FeCrNiMnAl în

cuptoarele cu topire prin inducție cu creuzet acid au loc reacțiile:

4 [ Al ] + 3 \ SiO2 \ = 2 ( Al2O3 ) + 3 [ Si ] (8.1)

4 [ Cr ] + 3 \ SiO2 \ = 2 ( Cr2O3 ) + 3 [ Si ] (8.2)

[ Mn ] + [ O ] = ( MnO ) (8.3)

2 ( MnO ) + \ SiO2 \ = ( 2MnO · SiO2 ) (8.4)

în care cu: [ ] , am simbolizat prezența în topitura metalică;

( ) , am simbolizat prezența în zgură;

\ \ , am simbolizat prezența în căptușeala refractară.

Explicația agresivității manganului asupra căptușelilor acide constă în caracterul sau bazic.

Atât manganul cât și oxidul său au un pronunțat caracter bazic ceea ce determină creșterea

vitezei de desfășurare a reacției (8.4 ) la creșterea temperaturii.

Prezența cromului în încărcătură și în băile din cuptoarele cu creuzete acide este mai

puțin nocivă decât cea a manganului. Explicația constă în faptul că oxidul Cr2O3 are un

caracter bazic mult mai redus decât cel al oxidului MnO.

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

49

Deși aluminiul este mult mai activ decât manganul, efectele sale asupra căptușelilor

acide sunt mai puțin vizibile datorită faptului că oxidul său Al2O3 care este foarte stabil are

caracter amfoter. Neutralitatea relativă a oxidului Al2O3 justifică impactul redus asupra

căptușelilor acide pentru perioade scurte de timp.

8.5 Calculul încărcăturii metalice

La elaborarea aliajelor HEA1 și HEA2 s-au luat în considerare atât pierderile prin

oxidare cât și cele datorate interacținii cu creuzetul și anume:

-la fier și nichel: 1,0% prin oxidare + 0,1% interacțiune = 1,0% pierderi masice;

-la crom: 5,0% prin oxidare + 2,0% interacțiune = 7,0% pierderi masice;

-la mangan: 3,0% prin oxidare + 5,0% interacțiune = 8,0% pierderi masice;

-la aluminiu: 3,0% prin oxidare + 2,0% interacțiune = 5,0% pierderi masice.

Pentru determinarea conținutului de element din încărcătură se utilizează relația:

< Me > = [ 𝑴𝒆 ]

𝟏𝟎𝟎−𝒂𝑴𝒆 100 % (8.5)

în care: < Me > este conținutul de element Me din încărcătură, în %;

[ Me ] - conținutul de metal din aliajul elaborat, în %;

aMe - pierderea totală de element Me în timpul elaborării, în %.

8.6 Elaborarea aliajelor HEA în cuptorul cu inducție

Principalele etape ale procesului de elaborare sunt:

Calculul încărcăturii pentru cantitatea de aliaj necesară;

Pregătirea componentelor încărcăturii prin curățirea și debitarea corespunzătoare;

Preîncălzirea, eventual calcinarea componentelor încărcăturii;

Încărcarea cuptorului;

Încălzirea și topirea;

Alierea;

Supraîncălzirea;

Rafinarea prin barbotare cu gaze inerte;

Îndepărtarea zgurei și verificarea temperaturii;

Evacuarea șarjei;

În dorința controlării compozițiilor chimice mai puțin obișnuite s-au ales încărcături

speciale, cu proveniență controlată, ceea ce a facilitat rezolvarea unora din problemele mai

sus menționate.

Astfel, curățirea și debitarea încărcăturii nu a necesitat o manoperă foarte mare

deoarece s-a lucrat cu metale pure, feroaliaje, iar deșeurile de inox provin din dezmembrări

ale echipamentelor și utilajelor utilizate la fabricarea medicamentelor.

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

50

8.7 Tehnologia de formare – turnare

Una din caracteristicile aliajelor de tip HEA, este duritatea extrem de ridicată cea ce

face ca prelucrarea mecanică să fie foarte dificilă, uneori chiar imposibilă. În diferite faze ale

cercetărilor experimentale efectuate s-au măsurat durități de 650 – 720 HV pe probele și

piesele turnate.

În aceste condiții tehnologia de formare-turnare a pieselor în amestecuri din nisip

cuarțos liat cu silicat de sodiu sau cu rășini furanice cu autoîntărire nu se recomandă..

8.8 Etapele fluxului tehnologic de formare

Obținerea prin turnare a semifabricatelor turnate din aliaje HEA pentru rolele

transportoare din cuptoarele metalugice de încălzire presupune parcurgerea următoarelor

etape importante:

proiectarea tehnologiei de turnare și a SDV-urilor necesare;

execuția SDV-urilor de turnare și a echipamentelor auxiliare pentru execuția cojilor;

execuția formelor coji;

asamblarea și pregătirea de turnare;

a) Rola transportoare, prezentată în figura 8.2, era realizată până acum din oțeluri

refractare prin turnare cu adaosuri de prelucrare .

Figura 8.2 Desen rolă brut turnată

Rola realizată din aliaje de tip HEA este destinată echipării traseelor transportoare ale

semifabricatelor brute în vederea încălzirii pentru deformarea plastică sau pentru unele

tratamente termice.

Figura 8.3. Desen rolă turnată în forme coji

Astfel, rola turnată nu va necesita prelucrări mecanice pe suprafața exterioară

bitronconică.

b) Forma bitronconică a piesei a permis alegerea suprafeței de separație în plan radial.

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

51

Figura 8.4. Amplasarea inserției din oțel inoxidabil

Datorită fineței amestecului de formare și a poziției verticale la turnare este posibil ca

la viteze mai mari de turnare să se formeza vârtejuri care conduc la spumarea topiturii și

antrenarea zgurei.

Figura 8.5. Placa port-model

Placa port-model se execută prin prelucrare mecanică din fontă (deoarece este mai

stabilă dimensional la variațiile mici de temperatură) la dimensiunile 350 x 300 x 20 mm,

figura 8.6.

Figura 8.6. Placă port-model cu ramă pentru nisipul peliculizat

Grosimea de 20 mm asigură masă suficient de mare pentru ca după încălzirea la

2500C să aibă o inerție termică suficient de mare încât să declanșeje recția de polimerizare a

rășinii.

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

52

Figura 8.7 Forma coajă extrasă de pe placa port-model după virarea spre verzui

Figura 8.8. Forme coajă în diferite stadii de polimerizare a rășinii fenol-

formaldehidice

demularea semiformei coajă de pe placa port-model se face prin apăsarea în plan

vertical, simultan a tuturor tijelor aruncătoare; coaja se îndepărtează de suprafața

modelelor și a plăcii port-model cu 5–10 mm și va fi preluată ușor în vederea

asamblării;

Fiecare semiformă coajă va fi verificată vizual pentru observarea integrității și

aspectului amprentei modelului.Se va efectua operația de ajustare a marginilor și se

vor acoperi cu vopsea refractară pe bază de zircon toate suprafețele active, (figura 8.9)

Figura 8.9 Formele coji protejate cu vopsea refractară zircofluid

se va monta în locașul mărcilor modelului o tijă de oțel inoxidabil Ø26 x Ø22 x 230,

care va rămâne înserată în piesa turnată.

se aplică un cordon de pastă refractară de lipit în planul de separație, cu scopul de a

asigura atât etanșarea cât și unirea celor două semiforme.

se urmăresc pozițiile mărcilor de centrare ale semiformelor și apoi se asamblează.

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

53

formele de turnare astfel obținute se împachetează în amestec de formare în vederea

turnării.

8.9 Turnarea rolelor în forme coji

Pentru turnarea rolelor transportoare s-a utilizat un chit refractar de turnătorie care a

fost depus sub forma unui șnur subțire și continuu în planul de separație și în exteriorul

conturului cavităților formei, iar după presarea până la lipirea plăcilor ansamblul a fost

montat într-o ramă de formare cu ajutorul amestecului de formare liat cu rășini furanice.

Figura 8.10. Evacuarea șarjei din cuptor

Deversarea aliajului lichid în pâlnia formei coajă ansamblată în amestec de formare

autoîntăritor se realizează de la mică înălțime pentru a limita turbulențele și apariția stropilor,

În figura 8.11 este prezentată turnarea aliajelor HEA în forme din amestec pentru obținerea

semifabricatelor din care se prelevează probe de determinare a caracteristicilor fizico-

mecanice.

8.11. Turnarea rolelor din aliaje HEA

Figura 8.12. Turnarea probelor din aliaje HEA

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

54

8.10 Răcirea, dezbaterea și curățirea

După turnare formele au fost lăsate să se răcească natural timp de 24 ore pentru a nu

influența cristalizarea și solidificarea.

Figura 8.13. Ansambluri rolă-rețea de turnare după extragerea din forme

Figura 8.14. Bare pentru probe de laborator extrase din formă

În figura 8.15 sunt prezentate rolele în diferite stadii de procesare. În stânga este

prezentată o rolă din oțel refractar prelucrată mecanic prin procedee clasice, în mijloc este

prezentată o rolă turnată în forme coji care a fost șlefuită, în dreapta este fotografiată rola

rezultată prin turnarea în forme coji.

Figura 8.15 Role transportoare

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

55

9. CONCLUZII

Teza de doctorat intitulată “Cercetări asupra unor aliaje cu entropie ridicată

rezistente la uzare” a avut ca obiectiv principal dezvoltarea cercetărilor pentru obținerea și

caracterizarea unor materiale metalice noi care fac parte din grupa aliajelor cu entropie

ridicată (HEA).

În primele două capitole ale tezei sunt prezentate rezultatele unor studii și cercetări

întreprinse pe plan mondial pentru procesarea, caracterizarea și întrebuințarea anumitor aliaje

cu entropie ridicată, precum și aspectele teoretice referitoare la termodinamica acestor

sisteme metalice multicomponente.

În urma analizei referințelor bibliografice consultate s-a realizat un studiu complex al

stadiului actual al cercetărilor în domeniul aliajelor cu entropie ridicată din care se pot

desprinde următoarele concluzii:

Aliajele HEA sunt constituite din 5 până la 13 metale principale a căror fracție

molară este cuprinsă între 5% și 35%;

Proprietățile mecanice excelente ale acestora fac ca aliajele cu entropie ridicată să

fie folosite la aplicații în medii înalt corozive, cu temperatură ridicată, solicitări

mari la uzarea abrazivă etc.;

Aliajele HEA au în componența lor elemente metalice majoritare, care au

concentrația atomică între 5% și 35%, precum și elemente minoritare, care au

concentrația atomică sub 5%;

Cele mai utilizate variante de aliaje HEA au la bază sistemul Fe-Ni-Cr-Al, la care

se fac adaosuri de Co, sau Mn, sau W, precum și unele elemente minoritare;

Au fost identificate mai multe metode de obținere a aliajelor HEA: metoda topirii

și turnării(care este cea mai des utilizată), metoda alierii mecanice, metoda

sinterizării și metoda acoperirilor;

Deoarece utilizarea elementului aluminiu în componența aliajelor HEA, în diferite

proporții, poate avea o influență fastă sau nefastă asupra proprietăților, se impune

dozarea optimă a acestuia;

Aliajele HEA pot fi folosite într-o gamă diversificată de aplicații: în industria

navală la fabricarea de pompe, conducte; instalaţii şi echipamente din industria

petrolieră, fabricarea de scule şi utilaje care sunt supuse unor medii înalt corozive

(supape, bucşe, rulmenţi etc.); colţii benelor de excavatoare pentru terasamente, în

domeniul medical, în special la instrumente chirurgicale sau ca simpla acoperire

antibacteriană a ustensilelor de bucătărie.

Principalul dezavantaj al acestor aliaje HEA, îl reprezintă costul mare de producție

în comparație cu alte aliaje tradiționale.

Obținerea aliajelor HEA investigate în această teză, s-a realizat cu ajutorul a două

cuptoare cu inducție. În vederea obținerii aliajelor HEA1, HEA2, HEA4, HEA5, HEA6, s-a

folosit cuptorul cu inducție de frecvență medie din cadrul Facultății de Știința și Ingineria

Materialelor din Iași iar pentru obținerea aliajelor HEA3 și HEA7, s-a utilizat cuptorul cu

inducție de tip Linn MFG – 30 cu atmosferă inertă (Ar) din dotarea Institutului Național de

Cercetare - Dezvoltare pentru Metale Neferoase și Rare București, Departamentul

Echipamente și Tehnologii Noi.

Aliajele HEA au fost turnate în forme metalice sau confecționate din răsini furanice,

sub formă de bare. Ulterior, probe au fost taiate din acestea la grosimi de 10-15 mm și

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

56

diametru de 10-15 mm. Probele obținute au fost supuse testelor de caracterizare structurală,

investigarea rezistenței la uzare, investigarea rezistenței la oxidare dar și determinarea

proprietăților mecanice.

În urma analizelor experimentale se pot deduce următoarele concluzii principale:

Analizele structurale concretizate prin analizele metalografice optice, microscopiei

electronice și difracției de raze X, au putut identifica pentru aliajele HEA investigate, fazele

și constituienții acestora. Aceste analize au arătat că aliajele investigate au o structură

dentritică, de tip soluție solidă, specific aliajelor HEA.

Analizele structurale au arătat că aliajul HEA3 se apropie cel mai mult de o structură

de tip soluție solidă, ramurile dendritice fiind greu vizibile, distingându-se în schimb

limitele grăunților primari cu dimensiuni între 20 și 100 microni. În cazul aliajului

HEA2, ramurile dendritice sunt înconjurate discontinuu de un compus intermetalic cu

diverse morfologii, separările având dimensiuni de ordinul a 1-10 microni.

Studiul termodinamic al aliajelor HEA investigate s-a concluzionat cu următoarele

observații.

după valorile entropiei de amestecare corespund criteriului de a fi aliaje cu

entropie ridicată aliajele HEA4, HEA5 și HEA7, aliajul HEA6 având o valoare a

entropiei de amestecare mai mică decât 1,5R (12,471 J/molK), însă relativ

apropiată de această valoare; de asemenea, aliajele HEA1 - HEA5 au tendința de a

forma o singură soluție solidă, celelalte având valori ale entropiei de amestecare

mai mici de 1,61R (13,38 J/molK).

după valorile diferenței razei atomice toate aliajele ar trebui să aibă o structură

formată din soluție solidă întrucât toate valorile pentru această mărime sunt mai

mici de 6%.

după valorile concentrației electronilor de valență aliajul HEA1 și HEA2 ar trebui

să fie formate dintr-o soluție solidă cu o rețea cristalină de tip cub cu fețe centrate,

(CFC) iar aliajele HEA3 - HEA7 ar trebui să fie formate dintr-o soluție solidă cu o

rețea cristalină de tip cub cu volum centrat (CVC)

după valorile diferenței de electronegativitate niciun aliaj nu poate forma doar

soluții solide.

Valorile proprietăților mecanice sunt în concordanță cu microstructura și duritatea

aliajelor investigate. Aliajul care are doar cuprul ca element principal de aliere, pe

lângă fier, nichel, crom și mangan, are cele mai mici valori ale rezistenței mecanice,

însă și cea mai mare deformație relativă la rupere.

Înlocuirea manganului cu, cupru, aluminiu și siliciu determină creșterea proprietăților

de rezistență, însă determină scăderea semnificativă a deformației relative la rupere.

Înlocuirea cu aluminiu a cuprului sau a amestecului de mangan, siliciu și aluminiu

conduce la creșterea semnificativă a proprietăților mecanice de rezistență, în condițiile

menținerii unei valori aceptabile pentru deformația relativă la rupere.

Aliajele din sistemul FeCrNiMnAl prezintă o structură formată majoritar din soluția

solidă CVC de tip A2, conținând în procente reduse faze D03 .

Conform datelor din literatura de specialitate, fazele D03 și A12 se formează în urma

descompunerii fazei A2. În concluzie, aliajele din sistemul FeCrNiMnAl conțin un

procent ridicat de faze dure de tip CVC și au un potențial superior în fabricarea rolelor

de laminor.

Analiza XRD a arătat că faza predominantă a aliajului HEA1 este Fe1.6Mn8.4Si6 având

o structură cristalografică de tip hxagonală. Componența aliajului HEA2 arată că faza

predominantă identificată este de tipul Al9Mn

3Si care are o structură cristalografică de

tipul hexagonal.

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

57

Valorile durității arată că siliciul ca element principal de aliere, determină creșterea

durității aliajului HEA1 la valori semnificativ mai mari decât duritatea celorlalte

aliaje, de circa 2 ori mai mare în comparație cu valoarea aliajului HEA4.

Utilizarea aluminiului ca element principal de aliere determină creșterea moderată a

durității. Valori similare ale durității cu celelale aliaje HEA3, HEA4 - HEA6 prezintă

și aliajul HEA2, deși conține atât cupru cât și siliciu.

Cea mai mică valoare a durității o are aliajul HEA5 deși în structură s-au observat

separări de compus intermetalic. Probabil fracția volumică a acestui compus este

suficient de mică pentru a nu produce o modificare importantă a durității.

În urma procesului de oxidare la temperatura de 900⁰C timp de 3 ore și respectiv 6 ore

pentru cele două loturi de aliaje HEA, s-a constat formarea unor pelicule dense de

oxizi formate la suprafața aliajului.

Cercetările efectuate au relevat faptul că în urma procesului de uzare cea mai mică

valoare a pierderii de volum o are aliajul HEA1, respectiv 0.05 mm3 iar cele mai mari

valori le-au înregistrat HEA5 și HEA4 cu valori apropiate, 0,3846 mm3 , respectiv

0.3623 mm3. Aliajul HEA1, acolo unde conținutul de siliciu este de 20% a mărit

considerabil duritatea dar au scăzut considerabil proprietățile mecanice, aliajul

devenind casant.

CONTRIBUȚII ORIGINALE ȘI DIRECȚII DE CERCETARE

Contribuțiile personale aduse în prezenta teză de doctorat sunt următoarele:

am realizat un amplu studiu bibliografic asupra aliajelor HEA privind structura,

metodele de obținere, proprietățile mecanice dar și a utilizării acestor aliaje în diverse

aplicații tehnice.

am efectuat un studiu bibliografic asupra noțiunilor termodinamice teoretice a

aliajelor cu entropie ridicată.

am stabilit tehnologia de obținere a aliajelor cu entropie ridicată prin turnare folosind

cuptorul cu inducție de frecvență medie și cuptorul cu inducție de tip Linn MFG – 30

cu atmosferă inertă (Ar).

am proiectat și obținut șapte aliaje HEA, din gama: FeNiCrMnSi, FeNiCrCuMnSiAl,

FeNiCrMnAl, FeNiCrMnCu,

am realizat un plan experimental de lucru pentru aliajele HEA obținute și tehnicile de

analiză ( EDX, SEM, XRD, duritate, semiduritate, compresiune, microscopie optică,

micro-scratch, investigarea rezistenței la oxidare, investigarea rezistenței la uzare).

am efectuat o caracterizare structurală complexă folosind metode de investigare

moderne ( microscopie optică, SEM, XRD, EDS).

am investigat rezistența la oxidare a aliajelor cu entropie ridicată obținute la

temperatura de 900 ⁰C, timp de 3h și respectiv 6h.

am obținut role de laminor prin turnare, fabricate din aliajele HEA investigate în

prezenta lucrare de doctorat.

Doresc să menționez că obținerea aliajelor HEA s-a datorat unei strânse colaborări

între Universitatea Tehnică „Gheorghe Asachi” din Iași, Facultatea S.I.M, Laboratorul de

turnare a aliajelor neferoase sub îndrumarea domnului Prof.Univ.Dr.Ing. Romeu CHELARIU

și domnului Prof. Univ. Dr. Ing Ioan CARCEA, conducător de doctorat, și Institutul Național

de Cercetare - Dezvoltare pentru Metale Neferoase și Rare București, Departamentul

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

58

Echipamente și Tehnologii Noi sub îndrumarea dl. Cercetător Științific Principal gradul I, dr.

ing. Vasile SOARE.

Testele de microscopie optică, compoziție chimică, duritate și rezistență la uzare a

aliajelor cu entropie ridicată investigate s-au efectuat în laboratorul de Analize Mecanice din

cadrul Institutului de Metale și Tehnologie din Ljubljana, Slovenia sub îndrumarea domnului

Prof. Univ. dr. Bojan Podgornik. Turnarea și obținerea rolelor de laminor a presupus

colaborarea cu firma S.C RANCON. S.A IAȘI.

DIRECȚII DE CERCETARE A ALIAJELOR HEA Cercetările și investigațiile prezentate în actuala teză de doctorat reprezintă o noutate

pe plan național și pot reprezenta un punct de plecare spre noi direcții de cercetare.

Având în vedere proprietățile mecanice deosebite pe care aliajele HEA le posedă, se

dorește înlocuirea aliajelor tradiționale aliate cu Ni deoarece costurile de fabricație sunt mari.

Cu ajutorul rezultatelor obținute, am deschis o nouă cale și direcții de cercetare pentru tema

de doctorat abordată:

obținerea de noi aliaje HEA pe bază de fier, aliate cu cobalt și alte elemente

metalice.

determinări microstructurale și mecanice ale aliajelor HEA investigate.

utilizarea și altor metode pentru obținerea aliajelor HEA.

optimizarea performanțelor aliajelor HEA în diferite aplicații tehnice, investigarea

influenței pe care elementele componente o au asupra structurii și proprietăților

mecanice.

utilizarea noilor aliajelor HEA în alte aplicații tehnice

folosirea unor modelări matematice și a unor programe speciale în vederea

elaborării aliajelor propuse.

ARTICOLE ȘTIINȚIFICE PUBLICATE, SPECIFICE TEMEI DE DOCTORAT

Perioada de pregătire pentru doctorat a însemnat și diseminarea rezultatelor prin

publicarea de articole tehnico-științifice într-un număr de 16 publicații științifice, dintre care

6 ISI (3 ca prim autor) și 10 indexate BDI (7 ca prim autor). De asemenea, această perioadă, a

presupus și participarea cu lucrări științifice la 10 conferințe internaționale (3rd

Mediterranean

Conference on Heat Treatment and Surface Engineering – MCHT&SE 2016, Portoroz,

Slovenia; 8th European Exhibition of Creativity and Innovation – EUROINVENT 2016;

XVIII-th International Conference TEHNOMUS XVIII 2015; 9th

International Conference on

Materials Science & Engineering – BRAMAT 2015; Modern Technologies in Industrial

Engineering – Modtech, 2014 - 2016; The International Conference of Young Researchers

New Trends in Environmental and Materials Engineering – TEME 2013, 2015; și la 2

conferințe naționale ( Conferința Națională de Turnătorie din 2012 și 2016).

A. Articole publicate în reviste cotate ISI în domeniul tezei de doctorat

1. Gheorghe Buluc, Iulia Florea, Oana Bălţătescu, Raluca Maria Florea, Ioan Carcea,

INVESTIGATION OF FeNiCrWMn – A NEW HIGH ENTROPY ALLOY, IOP Publishing,

DOI: http://dx.doi.org/10.1088/1757-899X/95/1/012017, 2015.

2. G Buluc, I Florea, R Chelariu, G Popescu and I Carcea, Investigation of the mechanical

properties of FeNiCrMnSi high entropy alloy wear resistance, IOP Conference Series:

Materials and Engineering, Volume 133, doi:10.1088/1757-899X/133/1/012006, 2016.

3. Florea Iulia , Buluc Gheorghe, Florea Raluca Maria , Soare Vasile, Carcea Ioan, Study on

Corrosion Resistance of High- Entropy Alloy in Medium Acid Liquid and Chemical

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

59

Properties, IOP Conf. Series: Materials Science and Engineering 95, doi:10.1088/1757-

899X/95/1/012013, 2015.

4 Gheorghe Buluc, Iulia Florea, Oana Bălţătescu, Costel Roman, Ioan Carcea,

Microstructure and mechanical properties of FeNiCrCuAl high entropy alloys, Advanced

Materials Research Vol. 1036, doi:10.4028/www.scientific.net/AMR.1036.101, (2014) pp

101-105.

5. Iulia Florea, Gheorghe Buluc, Radu Comaneci, Oana Balțătescu, Nicanor Cimpoieșu,

Ioan Carcea, Microstructure and mechanical tests of AlNiMnZnCu high entropy alloy,

doi:10.4028/www.scientific.net/AMR.1036.95 Advanced Materials Research, 2014, pp.95-

100. 6 Iulia Florea, Gheorghe Buluc, Romeu Chelariu, Elena Raluca Baciu, Ioan Carcea,

Microstructure and corrosion properties investigations of AlCrNiCuMn high-entropy alloy,

doi:10.4028/www.scientific.net/AMR.1128.127, Advance Materials Research, Vol. 1128,

2015, pp 127 - 133.

B. Articole publicate în reviste cotate BDI în domeniul tezei de doctorat

1. Gheorghe Buluc, Iulia Florea, Romeu Chelariu, Oana Rusu, Ioan Carcea, Microstructure

and Wear Resistance of FeNiCrMnCu High Entropy Alloy, Trans Tech Publications, Volume

Nanotechnologies and Advanced Materials , pg, 3, UGALMAT 2016.

2. I.Carcea, G. Buluc, I.Florea, R. Chelariu, B. Žužek, V. Soare, G. Popescu , Microstructure

and wear resistance FeNiCrMnCuAlSi and FeNiCrMnAl high entropy alloys –

characterisation, acceptată spre publicare în ASTM journal Materials Performance and

Characterization, 2016.

3. Gheorghe Buluc, Iulia Florea, Adrian Alexandru, Ioan Carcea, THE INFLUENCE OF

ALUMINUM IN HIGH ENTROPY ALLOY FeNiCrCuAl, TEHNOMUS – New Technologies

and Products in Machine Manufacturing Technologies, ISSN-1224-029X, 2015.

4. Gheorghe Buluc, Iulia Florea, Ioan Carcea, A short overview of high entropy alloys, The

Annals of “Dunarea de Jos” University of Galati. Fascicle IX. Metallurgy and Materials

Science Special Issue –, ISSN 1453 – 083X, 2013.

5. Gheorghe Buluc, Iulia Florea, Romeu Chelariu, Ioan Carcea, FeNiCrMnAl - A new high

entropy alloy. Mechanical properties, Jurnalul Analele Universitatii “Dunarea de Jos” din

Galati, Fascicula IX , ISSN 1453 – 083X 2015.

6. Gheorghe Buluc, Iulia Florea, Ioan Carcea, High entropy alloys – A New World a

Materials, BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI, Publicat de

Universitatea Tehnică „Gheorghe Asachi” din Iaşi, Tomul LIX (LXIII), Fasc. 1, 2014, Secţia

ŞTIINŢA ŞI INGINERIA MATERIALELOR.

7. Iulia Florea, Gheorghe Buluc, Ioan Carcea, High Entropy Alloys Obtained by Induction

Melt Method, The Annals of “Dunarea de jos” University of Galati. Fascicle Ix. Metallurgy

and Materials ScienceISSN 1453 – 083x, 2013.

8. Gheorghe Buluc, Romeu Chelariu, Gabriela Popescu, Mihail Sârghi, & Ioan Carcea, ,

Study on wear resistance FeNiCrMnAl high entropy alloy. Mechanical properties.,acceptată

spre publicare, ROMAT 2016, București

C. Lucrări prezentate în cadrul unor conferințe naționale

1. Raluca Maria Florea, Oana Baltatescu, Gheorghe Buluc, Mircea Baleanu, Cercetări

experimentale privind obținerea operelor de artă prin procedee cu ceară pierdută,

Conferința Națională de Turnatorie – Ediția 21, 12-14 iunie, 2013, Iasi, prezentare Poster.

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

60

2. Gheorghe Buluc, Iulia Florea, Romeu Chelariu, Matei Gherghe, Ioan Carcea, Obținerea

rolelor de laminor prin turnare din aliaje cu entropie ridicată, Conferința Națională de

Turnatorie – Ediția 21, 12-14iunie, 2016, Alba-Iulia, prezentare Poster.

D. Lucrări prezentate în cadrul unor saloane de inventică

1. Gheorghe Buluc, Raluca Maria Florea, Asavei Laura Ramona, Aliaje cu entropie ridicată

(HEA) cu baza FeNiCr – Noi materiale metalice, Salonul Național de Inventică și Creație

Științifică pentru Tineret, 2016.

E. Brevete de invenție

Propunere de brevet pentru invenția “Metodă de îmbunătățire a calității rolelor de

transportat semifabricate metalice în cuptoarele metalurgice de încălzire”, număr de

înregistrare cerere brevet, A/00941/ 29.11.2016.

autori: Matei Gherghe – S.C Rancon SRL Iași , Sârghi Mihai - S.C Rancon SRL Iași, Carcea

Ioan – Universitatea Tehnică “Gheorghe Asachi” din Iași, Romeu Chelariu - Universitatea

Tehnică “Gheorghe Asachi” din Iași, Buluc Gheorghe - Universitatea Tehnică “Gheorghe

Asachi” din Iași, Mitrică Dumitru – Institutul Naţional de Cercetare Dezvoltare pentru Metale

Neferoase şi Rare INCDMNR – IMNR, Olaru Mihai - Institutul Naţional de Cercetare

Dezvoltare pentru Metale Neferoase şi Rare INCDMNR – IMNR, Popescu Gabriela –

Universitatea Politehnică din București

BIBLIOGRAFIE

[1]. B.S. Murty, J.W. Yeh, S.Ranganathan, High – Entropy Alloys, Elsevier, 2014.

[2]. ASM International Metals handbook, vols 1 and 2, 10th edn. ASM International,

Materials Park, OH, 1990.

[3]. Westbrook JH, Fleischer RL, Intermetallic compounds-structural applications of

intermetallic, compounds. Wiley, West Sussex, 2000.

[4]. Westbrook JH, Fleischer RL, Intermetallic compounds-magnetic, electrical and optical

properties and applications of intermetallic compounds. Wiley, West Sussex, 2000.

[5]. Suryanarayana C, Inoue A, Bulk metallic glasses, 1st CRC Press, West Palm Beach,

2010.

[6]. Smith CS, Four outstanding researchers in metallurgical history, American Society for

Testing and Materials, Baltimore, 1963.

[7]. Baker H (ed) ASM handbook, vol 3, Alloy phase diagrams. ASM International, Materials

Park, 1992

[8]. Reed-Hill RE, Abbaschian R , Physical metallurgy principles, 3rd edn. PWS Publishing

Company, Boston, pp 353–358, 1994.

[9]. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY,

Nanostructured high-entropy alloys with multiple principal elements: novel alloy design

concepts and outcomes, Adv Eng Mater 6:299–303, 2004

[10]. Cantor B, Chang ITH, Knight P, Vincent AJB, Microstructural development in

equiatomic multicomponent alloys, Mater Sci Eng A 375–377:213–218, 2004.

[11]. Ranganathan S, Alloyed pleasures: multimetallic cocktails. Curr Sci 85:1404–1406,

2003.

[12]. Cantor B, Multicomponent and high entropy alloys, Entropy 16:4749–4768, 2014.

CERCETĂRI ASUPRA UNOR ALIAJE CU ENTROPIE RIDICATĂ REZISTENTE LA UZARE

61

[13]. Huang KH, Yeh JW (advisor) A study on the multicomponent alloy systems containing

equal-mole elements. Master’s thesis, National Tsing Hua University, Taiwan, 1996.

[14]. Lai KT, Chen SK, Yeh JW, Properties of the multicomponent alloy system with

equalmole elements, Master’s thesis, National Tsing Hua University, Taiwan, 1998.

[15]. Hsu YH, Chen SK, Yeh JW, A study on the multicomponent alloy systems with

equalmole FCC or BCC elements. Master’s thesis, National Tsing Hua University, Taiwan,

2000.

[16]. Hung YT, Chen SK, Yeh JW, A study on the Cu-Ni-Al-Co-Cr-Fe-Si-Ti multicomponent

alloy system, Master’s thesis, National Tsing Hua University, Taiwan, 2001.

[17]. Chen KY, Shun TT, Yeh JW, Development of multi-element high-entropy alloys for

spray coating, Master’s thesis, National Tsing Hua University, Taiwan 2002.

[18]. Tung CC, Shun TT, Chen SK, Yeh JW, Study on the deformation microstructure and

high temperature properties of Cu-Co-Ni-Cr-Al-Fe. Master’s thesis, National Tsing Hua

University, Taiwan 2002.

[19]. Chen MJ, Lin SS, The effect of V, S, and Ti additions on the microstructure and wear

properties of Al(0.5)CrCuFeCoNi high-entropy alloys, Master’s thesis, National Tsing Hua

University, Taiwan 2003.

[20]. Huang PK, Yeh JW, Research of multi-component high-entropy alloys for thermal

spray coating, Master’s thesis, National Tsing Hua University, Taiwan, 2003