logica interferente

download logica interferente

of 30

  • date post

    21-Apr-2015
  • Category

    Documents

  • view

    37
  • download

    0

Embed Size (px)

Transcript of logica interferente

111 1 Q1 1111111 1.1 1ML1LM g 1 MMMLM ntr-L LLL_ 111L _L_111 _L L1 LL 1L11 g1 LL >1@L>11N _L 11 LL _1 11 11@11L> , logica este L1L1L11Z1 L1L_1 WLLQ DJkQGLULLcorecte, presupunndu->L L _111L1_1 [LL 11 >11@11j L1 1111111L LL1>1 11 1_111 L 1L 11N L11 > @1L11 1L111L1-ne de erori. Ce-i L1L_1 >11L111 1L@1L11 1 _11L g1 1 11L111 > 1L L1L1L 1L1L11L111 11L1 gndiri mai riguroase, ce 11111LZ 11 >1@11 >_1L 111L 11L1 LLN 1111 111L 111L1L11L LN111L L1 >_L111 L11L11>_LL 1L L_L1L1L g1 _1L1 L1L 11gL1 1L1L. 1 1L1L>L1L LNL1111L _L L1L 1L _L1L L1LL >11L111 1L@1L11 >_L111L 111111L g1 _1L111Z11L @1L1111 L11N 11 1L_1LZ111 L11g1 LL _1 11 11 > 1111 LL11111L111 1L LL>111 LL1L111 1LL1L11L g L11 1_111 L 1L ]11 > 1L 111111 1 11L _L111L L11 > >L111 1 11Z1L 1 L>L1L1L1 11 >111 11 > 1111 LL11111L111 1L L11L111111 L1LL111L. 11 L1L@L1L 1L@1L11 L g1111 gndirii corecte induce presu-_LZ1 1 @1Lg11 L LLN 11111L 1L@1L11 >-1 1Z L11N _L LL1>L1>11 g1 _L 1Z1 L1L 1LL1111 L1LL11N 11 L1L L1L111 1g1 111 1 11L 1LL11L g1 L1N111L1L ndemnndu-1L _1L > >LL1L1 g1111 1L@1L11 L1 @1111L. i111 L aceast _1L11 1111L11L L>1L 11L71>1L11 . L@1111L LL 1L11L1L@1L g1 >1117 _L L1L 1L L111 @1111L >111 N1111L 11111L1 L11111L g1 >1>-1L111ZLZ L _L11L111 111@N1>11L 1Z11 1111-un anumit stadiu de LNL11 1L 11L1 11111 L1LL11N NL1111L. 1 >_11L L 1 YRUEHWH prea mult >1 L L1 WUHEXL L > 11 11N 1 L 1 Lg11 mai superior L11 L i1 VH PHULW > 1L1@1 1 11L L1L. >111 LL1>111L 11 @1111L1 L1L11L n OLPEDURPkQ _L1111 L 11 g >L NL11Lg1L LL1LL1 1L11Lg1L L111 LL ideile exprimate ntr-L 1L11 @1111L1 L1L11 _L1 11 _L1111L11L. 111L1_111 1L@1L 1 1LL1111 11 _1L_11L1 11L 11_11L 1L1 11L111L >1 1L@11L >11L@1>11111 LL _11L >111 11> N1111L 11 _L1111 L 1]L1111L L1L111L1 1L L11L>L g1 1L _11L L1LL11N 11 1LLul lor de gndire, ci 11111L1 >L >1> 11 _111 LL1L1>11 11 11@11L>L L1L 11 L7L11>1N LL LL1>111L 1 11L1 >1>1L1L LL L1111 1 g1 1L1 11 _11 1LL1L 1L1 g L11 teoremele lui Thales, Pitagora >1 L111> >_11L1 111L111 111 iL1L1 sau geometriile neeuc11L1L1L 11 >L 111L1L1Z _L L11Lg1L1L g1 >1> 11L1L 1L1 LL L 11L 1]L1111L 11L1N1Z11L1 L1 1111 _L 1@11L11L1L @1L1111 11L111LL L1L L>1L 111NL1>1 g1 1L1_L11 . i1 _11L1 L7_11L 1 111L _11111-L LL>L11L1L 111111>1 _1L11L11L1 1111]1111 1111 1L1> i@L1. _..._ 11 1 >11 11 L1L _1L11L11L 111@N1>11LL 1L LLZN 111L _111L1_111L @1L1111 >1 1L 11L1L LL _11L LLN LL>_1L 1111 _1L_LZ1 111L1 1111L11LL LL>1 11L11 11 >L L1L1LZ 1_11111 L 1L@1L L>1L L @1111L L1 1_11111 L @ramatica se supune logicii. Un limbaj n care modus ponens 11 1 11 L 111L1L1 N11L >1 11 L1L 1LL11111L 11 1 11 111Z111N 1-ar putea fi folosit pentru a exprima nici un fel de idei.1 L@1L1L111 LL >1 Z1 1L>_11@ 11 L1L@L1L 1L@1L11 L g1111 @1L1111 LL1LL1L g1 _L1111 L gndirea L>1L L L11N111L _>111L LLL>L111 LL LL1_1L7 L1L >L LL>1 gL1 11 111 11L L1L111L1 N1L LL 11LL1L L1 L 1111L1111 1L1 >111LL11N _111 L1L 11L1N1Z11 >L LLL>L1L>L 11 1111 >1 11 _1 11 1111 LL 1111. Vndirea este un obiect de studiu pentru psihologie, g1111 L7_L111L111 L1L 111 1Lg1L > LL1L1111L _111 L1>L1N 1L 1 >111L LL1_11L >11111L 1LLL11L L1L. LLL LL de UHJXO sau vQ PRG RELQXLW LLL11@L 11 1LL 1L111 11 111 11L oamenilor, sintetiZ1L g1 111L11 111L L711L1 LL L1NL1>111L1L _L L1L 1L 11111ZLZ L1>L1_111L _1LL11 L11L11L11L 1LL11 111L11 1L1 1L11L-11Z1L1L@1 g1 11L1L. 1111L11 1111 11 11LL_1L_L L1 11L111L dect cu psihologia sau gramatica, logica QXHVWHRWLLQ H[SHULPHQWDO , L L1 L 11 LL>L11L g1 11 L7_11L 1LL11 LL1L1L1 11 L1L L1L111 LL 1L1 1L111 @1LL>L L1LL11N ndrumndu-1 L1 >11111 g1 1LLL11L 11 _L L1L L1 >111 111L11 > 1L 111LZL sau nu, cu rezultate ierarhizabile pe diferite >L1L LL _L11L111 . Neinteresa1 LL LL1 111111 L1L1L1 LL @1L11L 11L11L1L11 1 LL >L1>11 g1 N1L1L 111L11 1L11 V1LL11L12 1L@1L >11L1Z >111L1111 LL 1L1 11 1LLL>1L 1111L L1111 1 1LL1L 1>11L1L >111L1111 LL _1L@1L>1N generalitate, izomorfe nu numai cu actele cogni11NL L1 g1 L1 1L111 11L >1>1L1L 11111L >1 11111L11L L11 111L 1L1L1L11 . 11 LL LL 1 >1L @1L11L 11 >L1 _>11L1L@11L1 g1 NL1111L LL1LL1 11 >L1 111L1L@11L1 NL1 >_11L L ORJLFD VWXGLD] GLQ SXQFW GH YHGHUHIRUPDO LQIHUHQ HOH YDOLGH. 11 L1L@em prin ML1LM orice extragere sau derivare dintr-una sau mai multe _1L_LZ1 11 L1L 11111L _1L11>L 11L1 noi _1L_LZ1 11 11111 concluzie. Cu alte cuvinte, fiind reunite n premise, printr-L 111L1L1 LL1LL1 L11 _11L1 LL NLLL1L 1L@1L L>1L _L>1111 >u 1LLL>1 11111L 11L1 11111L LL1L11Z11 L1L >L LL>_111LL >1 1LZ111 L11 _1L11>L1L L1L g1 LLL_11L 11L11L1L11 L1 LL 111 1 >1 L1 LL _1 111 1 11 11L1N1Z11 L_1111 > L1LL11LZL 11111 LL>_111LL1L LL1L11Z1L1 LL1LL1L g1 11L11L1L11 L1 LL 11L >u de mic ar fi efortul intelectual necesar _L1111 11 L1L@L1L 1LL11>11111 1L@1L _111 L1L LL1L11Z1 LL11N L11 _1L11>L1L >1L. `_11L L11LL. i1 >L _11L L11g1 LL _1 11 _1L11L1 LL 111L1 L1L 1111L 1L>11 LLL_1 _1L11>L1L >11 11 111L1L11 > accept 1 g1 LL1L11Z1. >1L LLN 11 L L11 111L 1 1L1 1 11 @L1L11 LL1LL1. 1LL>1 L>1L 11> 11 LL1LL11 LL1L11Z1 LLN 11 1 1 11L LLN 11 g1 LL 11 1 >11 1 11L1 11 111L1L LL L LLL_1 11 LL 11> 1 1 11L 11> L111 LL 11 1 _11L 1LZ1>1 _L1nirii de a crede n ea.2 11 L1LN L7L1_1L LL 111L1L1 L L1L1L111L. [j 1 1111L _1L11> Zx = 10, putem infera concluzia x = 5. (2) Din premisa x2 L 1LZ111 _111 111L1L1 x = 4 sau x = (4). (3) 111L L1L L1L_1L1L [j [1j g1 [Lj _1LL11 g1 1L1 1 LL _11L11>1 L11 _1L11>L1L [j || [1j g1 [1j || [Lj 1LZ111 concluzia: (a) || (c). (4) Date fiind premisele: L1L _11111L1L1L >111 _L11@L1L g1 Toate romburile sunt patrulatere, se poate infera concluzia: Toate romburile sunt poligoane. (5) L 1 1L11L1 11 11> 1LL11L>L11 L1 L1L 11 1 L1>L111 1111L L1 L1L NL 1L111 @11L1 LL11 L111L1 L1 >L11L g1 _111 LL1L111 _11L1 111L1 L 1L>_LL11N11 11L1N1L 11L111L > 11L 11 >111L L11 711L111 Orient. (6) Intrnd ntr-L L1L1 _ > _L LL1111L1 g1 11 >L _111LL 11111 1_111 L 11L LL1L1L11 L1 1L 11111L _L L1L 1L _L>LL LL>_1L 11>11 111L L1LL111LL 1 1L > _1L>1_11 L 1L1L1L111 >L L1L1LZ 11L1 L1111L 111 1L1L1L L1ZL _L>1111L. 11 L>1L L11L11 11 1L L >-a ars filamentul becului; s-a defectat comutatorul etc. 111 1 111L 1L@1L L1111L _1L11>L g1 LL1L11Z1L >L 11 111Lg1L g1 argument 1L11L1 _1L1L11 LL L 11L 1111 1L@1L1L11 11 1LL11 LL111 LL 111L1L1 11111L1 L>1L [>1 LL1 _1 11 _1Lj 11 111111. L11g1, cei doi termeni nu sunt, credem noi, pe deplin sinonimi. A argumenta sau a LL1>1111 11 1@11L11 11>L11 L1LLL1 LL11N L11 _1L11>L L1L g1 LLL_11L L 11111 LL1L11Z1L cu alte cuvinte, a infera; n multe cazuri, 11> 1@11L11 11>L11 >1> 11L L1 11111L 1L1L1111 L _1L_LZ1 1L L1 1 L 1L1 LLN 1 11 L>1L LL11. 1111L1 >_1> LL1>1111 11 1@11L11 _L1L > 11>L11L LL>LL_L11 11111L _1L11>L L11 L1L _1L_LZ1 1 LL >1> 1111 LL11N 1L@1L L1L_1 LL1L11Z1 1L1. 11 L1LN L7L1_1L LL argumente de acest tip: [j 11111 1 L 11 1111 LL1L 11 _L1L 11 11 11L1 11 LZ L@1 L1 11 1111 _ 111 [111L> _1L11L1 L11L>L11 11 1>1L11 11L111L11 L1L_1 LNL1111 LL1L1111j 11 L>1L L11g1 LL _1 11 LL 1 >11L LN1LL11 . L LL g1 L11 > 1L LL1N11@L1 LL LLN 111 L1 1NL1 1LNL1L LL 11 1@11L11. 1LL>1 1L>1 1L11111 11 111 Z LL L 11L 11L111L1111 Ferdinand Lindemann (1852 - `O`j L1_ L11 111LZ . 11 _ 1111111 >L L1L11LZ L1_ 1L1111 l2 latura l N1L 11 L11LL >111 1L L 111@11L (valoare numL11L 11 >1>1L111 1L111Lj 11111 >11L1 11L1 g1 >1_11 _ 1111111 L>1L L1 1LLL>111L 11111 11 LL1L1111 >L L1L11LZ L1_ formula r2 111 111 1111L 11 1L11 L1 11 111 1 1111111 LL ZLL111L astfel nct aria nici unui cerc nu poate avea o va1L1L 111L11L 11111 . L 1L1 1LZ111 L1 LL11111L11L L7L1 _1L_LZ1 1 111 11 LL L1L L11 >111L1 LL1N11g1 _11111-L 1@11L111L 11@11L> . (8) V1L111 LL LL1111 1 1L>1 L711L1 LL LL11111 1 111L1 L1L 1111 11 L1L_ 1 filosofi, matematicieni, astronomi din Antichitate au >1> 1111 L _ 11111 11 L>1L _11 L1 >1L11L >1 1L111L 1111 1L 111 ntr-11 N1L1L11 LL1111L1 L1 LN1LL1 L1L _L1LL_11NL. 11 LL 1L1 LL 1@11L11L L1LL LL _11L 111>1L1L1 11 >_11]1111 LL>1L1 1111 11. 111L1 L1L L corabie dispare n larg, la limita orizontului, se pierde din vedere mai 1111 LLL >1 LL1_11 1NL1 g1 11 _L 111 L1>_1L g1 L11@11 L g1 L11 corabia s-ar scufunda n mare g1 11NL1> 111L1 L1L L LL111L >L 1NLg1L din larg mai nt1 1 >L Z 1Lg1L L11@11 g1 11 _L 111 _1L L11 N1111 g1 LLL 1NL1 L g1 L11 LL111 >-ar ridica din mare; umbra pe care o _1L1LL1LZ _ 11111 _L >1_11 11111 11 111_11 LL11_>L1L1 LL 111 L>1L ntotLL11 L11L111 11L1LL1 L11_11L >1 11111